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Abstract. We give explicit MacPherson cycles for the Chern-MacPherson class of a
closed affine algebraic variety X and for any constructible function α with respect to a complex
algebraic Whitney stratification of X.

We define generalized degrees of the global polar varieties and of the MacPherson cycles
and we prove a global index formula for the Euler characteristic of α. Whenever α is the
Euler obstruction of X, this index formula specializes to the Seade-Tibăr-Verjovsky global
counterpart of the Lê-Teissier formula for the local Euler obstruction.

1. Introduction. MacPherson [MP] has defined analogues of Chern classes for sin-
gular algebraic (or analytic) varieties X, based on Chern-Mather classes and his famous local
Euler obstruction EuX, a constructible function on X defined by obstruction theory on the
Nash blow-up, which measures in some sense the singularities of X. It is a natural challenge
to find representing cycles for these Chern-MacPherson homology classes, such that they re-
flect the geometry of X up to a certain extent. In the local analytic case, Lê and Teissier [LT]
explained how the generic local polar varieties enter in the description of Chern-MacPherson
classes, in particular they expressed the local Euler obstruction at a given point as the alter-
nating sum of suitable polar multiplicites. It turned out that these polar varieties are the in-
gredients of the desired representing cycles. Later on this was worked out by Massey [Ma] in
greater generality, based on a reformulation of MacPherson’s theory in terms of characteristic
cycles of constructible sheaves or holonomic D-modules (see also [BDK, Du, Gi, Sa, Sch3]).

We develop here the global affine algebraic counterpart. Abstractly, it is known that the
Chern-MacPherson classes of a complex algebraic proper subset X ⊂ CN can be represented
by algebraic cycles since the MacPherson transformation may be defined by using Chow
groups (see e.g. [Ken]). Our aim is to produce an explicit global geometric MacPherson
cycle. This construction needs techniques adapted to the affine global setting. We therefore
use global general coordinates in order to introduce the key new tool: affine polar varieties.
We give in the following a brief account of our results.

Let us assume for the moment that X is of pure dimension n < N . The k-th global polar
variety of X (0 ≤ k ≤ n) is the following algebraic set:

Pk(X) = Crit (x1, . . . , xk+1)|Xreg ,
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with Crit (x1, . . . , xk+1)|Xreg the usual critical locus of points x ∈ Xreg where the differentials
of these functions restricted to Xreg are linearly dependent. For general coordinates xi , the
polar variety Pk(X) has pure dimension k or it is empty, for all 0 ≤ k < n. We have Pn(X) :=
X and we set Pk(X) := ∅ for k > n. It turns out that Pk(X) represents the k-th dual Chern-
Mather class of X. Note that we index our polar varieties by their dimension, and not by their
codimension as often done.

We fix an algebraic Whitney stratification S with connected strata. In this context X need
not be pure dimensional and we only assume n = dim X < N . Let α : X → Z be an S-
constructible function, meaning that the restriction α|S is locally constant for all strata S ∈ S.
By stratified Morse theory [GM, Sch1], one attaches to every S the normal Morse index
η(S, α), which is the Euler characteristic of the normal Morse data NMD(S) of S weighted
by α.

We define the k-th MacPherson cycle of α (0 ≤ k ≤ n) by:

(1) Λk(α) =
∑

S∈S
(−1)dimSη(S, α)Pk(S̄) ,

where Pk(S̄) is the k-th global polar variety of the algebraic closure S̄ ⊂ CN of the stratum
S. Here we assume that the coordinates {xi} are chosen general with respect to all strata S

of our algebraic Whitney stratification. The precise meaning of “general” will be explained
in Section 2.3. We then use a reinterpretation of the MacPherson transformation (cf. §2.1) in
order to prove the following statement, to which Theorem 2.9 represents a slight extension:

THEOREM 1.1. For any S-constructible function α, the cycle class [Λk(α)] of Λk(α)

represents the k-th dual Chern-MacPherson class čM
k (α) in the Borel-Moore homology group

HBM
2k (X) or in the Chow group CHk(X).

Our main result is a general index formula for constructible functions. We explain how
it is related to other formulas in the literature. To get the degrees γk(X) of our polar varieties
Pk(X) and the generalized degrees γk(α) of our MacPherson cycles Λk(α), we have to use
additional generality conditions which take into consideration the hyperplane at infinity of the
projective closure X ⊂ X̄ ⊂ PN . This generality of the system of coordinates {xi}i implies in
case of a pure dimensional X (see Proposition 3.2 and compare with [Ha]) that the projection
(x1, . . . , xk) : Pk(X)→ Ck is proper and finite for 1 ≤ k ≤ n, so that its degree γk(X) is well
defined. We may also define γ0(X) := #P0(X) and for k > n it is natural to set γk(X) = 0.
Once the affine coordinates of CN are fixed, these degrees are independent on linear change
of coordinates, provided general. Nevertheless they depend on the embedding of X in CN .

The degrees occur in the following global index formula:

(2) Eu(X) =
n∑

k=0

(−1)n−kγk(X) ,

where Eu(X) is the global Euler obstruction introduced in [STV]. This formula, proved in
[STV] by using stratified vector fields techniques, is the global counterpart of the local formula
by Lê-Teissier [LT]. A more geometric interpretation for γk(X) is the number of complex
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Morse points of the affine pencil defined by the general coordinate xk+1 on the regular part
of the general slice X ∩ {x1 = t1, . . . , xk = tk}; by definition, this slice is X for k = 0, and ∅
for k ≥ n+ 1.

More generally, we define for some S-constructible function α the (generalised) degree
γk(α) of Λk(α) as

γk(α) :=
∑

S∈S
(−1)dimSη(S, α)γk(S̄) .

The definition of γk(α) for k > 0 only works in the affine algebraic context and is a global
counterpart of the local intersection number

γk(α)(p) := �p ([Λk(α)] ∩ [{x1 = p1, . . . , xk = pk}])
at a point p = (p1, . . . , pN) ∈ CN as used by Massey [Ma, §4] in his definition of charac-
teristic polar multiplicities.

We recall that the Euler characteristic weighted by a constructible function α is defined
as follows:

χ(X, α) :=
∑

S∈S
α(S) · χ(H ∗c (S)) ,

where the compact support cohomology H ∗c (S) is finite dimensional since the strata are lo-
cally closed algebraic sets. We then prove the following index theorem:

THEOREM 1.2. For general coordinates {xi}Ni=1 and for any S-constructible function
α and 0 ≤ k ≤ n, we have

(3) (−1)kγk(α) = χ(X ∩ {x1 = t1, . . . , xk = tk}, α)

− χ(X ∩ {x1 = t1, . . . , xk+1 = tk+1}, α) .

In particular,

(4) χ(X, α) =
n∑

k=0

(−1)kγk(α) .

We need to carefully define what exactly means “general coordinates” in our affine con-
text, and this is done in §3.

It turns out that χ(X ∩ {x1 = t1, . . . , xk = tk}, α) is independent of the choice of the
coordinates {xi} and values {ti}, provided they are chosen general enough. So (3) implies the
same property also for γk(α). For α = 1X, formula (4) calculates the global Euler characteris-
tic. Such a formula for χ(X) has been first proved for hypersurfaces with isolated singularities
in [Ti1] and then for general X in [Ti2].

For pure dimensional X we may also take α = EuX, and then formula (4) specializes to
the index formula (2).
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2. MacPherson’s Chern class transformation and characteristic cycles.
2.1. Reformulation of the MacPherson transformation. Let us recall the main ingre-

dients in MacPherson’s definition of his dual Chern classes of a constructible function and the
well known by now relation to the theory of characteristic cycles (cf. [BDK, Du, Gi, Ken, Sa,
Sch3]). Here we work in the embedded complex analytic or algebraic context, with X a closed
subspace of positive codimension in the complex manifold M . Then the main characters of
this story can be best visualized in the commutative diagram

(5)

F(X)
Ěu←−−−−∼ Z(X)

čMa∗−−−−→ H∗(X)
∥∥∥ cn

��
∥∥∥

F(X)
CC−−−−→∼ L(X,M)

c∗(T ∗M|X)∩s∗−−−−−−−−−→ H∗(X) .

Here F(X) and Z(X) are the groups of constructible functions and cycles in the corresponding
complex analytic or algebraic context. Similarly H∗(X) is either the Borel-Moore homology
group in even degrees HBM

2∗ (X,Z) or the Chow group CH∗(X).

The transformation Ěu associates to an irreducible subset Z of X the constructible func-
tion ĚuZ := (−1)dim(Z) ·EuZ , and is linearly extended to cycles. Then Ěu is an isomorphism
of groups, since EuZ |Zreg is constant of value 1. The transformation čMa∗ is similarly defined
by associating to an irreducible Z the total dual Chern-Mather class čMa∗ (Z) of Z viewed in
the homology H∗(X) of X. One has the following description of the dual Chern-Mather class
of Z in terms of the Segre class of the conormal space T ∗ZM := closure(T ∗Zreg

M) of Z in M ,
which is a conic Lagrangian cycle in T ∗M|X:

(6) čMa∗ (Z) = c∗(T ∗M|Z) ∩ s∗(T ∗ZM)

after e.g. [Sa, Lemme (1.2.1)] or [Ken, Lemma 1]. The Segre class is defined by

(7) s∗(T ∗ZM) := π̂ ′∗(c∗(O(−1))−1 ∩ [P (T ∗ZM)]) =
∑

i≥0

π ′∗(c1(O(1))i ∩ [P (T ∗ZM)])

(cf. [Fu, Example 4.1.2]). Here O(−1) denotes the tautological line subbundle on the projec-
tivisation π̂ ′ : P (T ∗M|Z)→ Z with O(1) as its dual.

By definition, L(X,M) is the group of all cycles generated by the conormal spaces T ∗ZM .
The vertical map cn in diagram (5) is the correspondence Z → T ∗ZM . Then (6) obviously
implies the commutativity of the right square in (5).

The dual MacPherson Chern class transformation is defined by

(8) čM∗ := čMa∗ ◦ Ěu−1 : F(X)→ H∗(X) .

This agrees up to a sign with MacPherson’s original definition of his Chern class transforma-
tion cM∗ , namely,

(9) čM
i (α) = (−1)i · cM

i (α) ∈ Hi(X) .
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As for the Chern-Mather classes, we have the relation

čMa
i (Z) = (−1)dim(Z)+i · cMa

i (Z) ∈ Hi(Z)

for Z ⊂ X irreducible.

2.2. Stratified Morse theory and characteristic cycles. Let X be a closed complex an-
alytic (resp. algebraic) subset of the complex (algebraic) manifold M , which is endowed with
a complex (algebraic) Whitney stratification S with connected strata S. One of the main in-
gredients in the stratified Morse theory of Goresky-MacPherson [GM] in this complex context
is the complex link lS of X attached to each stratum S, which is defined as follows (cf. [GM,
p. 161, Definition 2.2]):

DEFINITION 2.1. Let x be a point of S, and consider a holomorphic function germ
g : (M, x)→ (C, 0) with dgx ∈ T ∗S M normally nondegenerate (or in shorter terms “good”)
in the sense of [GM, p. 128, Definition 12.1, and p. 160], i.e., dgx does not vanish on any
generalized complex tangent space τ = limxn→x TxnS

′ for a sequence of points xn in another
stratum S′ �= S converging to x. In terms of conormal spaces, this just means dgx /∈ T ∗

S ′M for
all strata S′ �= S. Take a normal slice N to S in x, i.e. a germ of a closed complex submanifold
N of M which is transversal to S, with N∩S = {x}. Then g|X∩N has in x an isolated stratified
critical point with respect to the induced Whitney stratification of X∩N . So it defines a local
Milnor fibration [GM, p. 165, Proposition 2.4(a)] with Milnor fibre

lS := X ∩N ∩ Bδ(x) ∩ {g = w} for 0 < |w| � δ � 1 ,

which is called a complex link of S. Here Bδ(x) is a closed ball of radius δ in some local
coordinates. Similarly the pair of spaces

NMD(S) := (X ∩N ∩ Bδ(x) ,X ∩N ∩ Bδ(x) ∩ {g = w})
for 0 < |w| � δ � 1, is called the normal Morse datum of S.

In case g|X has an isolated stratified singularity at x, one does not need to take any normal
slice N in the definition of the normal Morse data. Then this is called local Morse datum and
denoted by LMD(g, x) (cf. also [Lê1, Lê2]).

One of the main results of Goresky-MacPherson [GM, p. 163, Theorem 2.3] tells us that
the stratified homeomorphy type of lS and NMD(S) are independent of all choices, and thus
these are invariants of the stratum S in X.

DEFINITION 2.2. Let the function α : X → Z be constructible with respect to our
stratification of X. Then its normal Morse index η(S, α) along S is defined as:

(10) η(S, α) := χ(NMD(S), α) := χ(X ∩N ∩ Bδ(x), α)− χ(lS, α) .

By the discussion before, this is a well defined invariant of the stratum S. That the
invariant (10) is well defined also follows, by independent arguments, from [Sch1, Section
5.0.2]. In loc.cit. are developed the corresponding results for constructible sheaves.
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Note that, by the local conic structure of X∩N ∩Bδ(x) (see e.g. [BV] and [GM, p. 165,
Proposition 2.4(b)]), we also have χ(X ∩N ∩ Bδ(x), α) = α(x) so that

(11) η(S, α) = χ(NMD(S), α) = α(x)− χ(lS, α) .

In particular,

(12) η(S, α) = χ(NMD(S), α) = α(x) for dim(S) = dim(X) ,

since lS = ∅ in this case.

DEFINITION 2.3. Let F(S) be the group of constructible functions for the stratifica-
tion S, and let L(S) be the group of conic Lagrangian cycles generated by the conormal
spaces T ∗S M =: T ∗̄

S
M to the (closures of) strata S of our stratification. Then

CC : F(S)→ L(S) ; CC(α) =
∑

S∈S
(−1)dimSη(S, α) · T ∗̄

S
M .

Note that in the analytic context we consider locally finite sums. We get from (12) that
CC is injective and, by induction on dim(X), we get in the same way that CC is also surjec-
tive, so that we have the isomorphism:

(13) CC : F(S)
∼→ L(S) .

LEMMA 2.4. Considered as a map from F(S) to L(X,M), the map CC does not
depend on the choice of the stratification S.

For a proof of this simple fact, we refer to [Sch1, the discusssion before diagram (5.63),
p. 327]. We get in this way the isomorphism CC : F(X)

∼→ L(X,M) from the diagram (5).
Nevertheless, the refined isomorphism (13) contains more information since it involves the
fixed complex Whitney stratification S. The key role of the (dual) Euler obstruction comes
from the fact that the (dual) Euler obstruction ĚuS̄ is constructible with respect to S, and its
characteristic cycle is:

(14) CC(ĚuS̄) = T ∗̄
S
M .

A quick detailed proof of this basic fact is given in [Sch1, (5.35), p. 293, p. 323–324]. This
result implies the commutativity of the left square in diagram (5). We end this section by
stating a result which will be used in the proof of the index theorem, i.e., Theorem 1.2. Its
proof is a straightforward application of Goresky and MacPherson’s stratified Morse theory
[GM]. Another independent proof follows from [Sch1, Theorem 5.4.1, p. 367–368], where a
much deeper counterpart for constructible sheaves is given.

LEMMA 2.5. Consider a holomorphic function germ h : (M, x) → (C, 0) having at
x ∈ S a stratified Morse critical point of h with respect to S. Then, for any α ∈ F(S), one
has the following relation between the normal and the local Morse data:

(15) η(S, α) = (−1)dimS · χ(LMD(h, x), α) .
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2.3. Affine polar varieties and MacPherson cycles. In order to express dual Chern
Mather classes in terms of polar varieties, one starts from a “general transversality” result of
Kleiman [Kl]. This was used in the local analytic context by Teissier [Te] for establishing the
existence and the main properties of his “generic local polar varieties”. The corresponding
global result for projective varieties is due to Piene [Pi1, Pi2]. One may quickly derive from
[Pi2, Theorem 3] our affine statement Proposition 2.7 below using the pull-back by the inclu-
sion map CN ↪→ PN . We shall give here a proof in the language of conormal spaces, which
is naturally related to characteristic cycles. The main reason of our different proof is that this
extends to constructible functions and allows us to easily derive Theorem 2.9.

All the results of [LT, Pi1, Pi2, Te] were first proved using the Nash blow-up. For the
translation between these two viewpoints of polar sets, we refer to [HM, Me, Te].

DEFINITION 2.6. Let ω := (ω1, . . . , ωk+1) ∈ ČN . The algebraic set

Pk(X,ω) := Crit (ω1, . . . , ωk+1)Xreg

is called the polar locus of ω.

We shall use this definition for linearly independent forms ω1, . . . , ωN . This agrees with
the definition of Pk(X) in Introduction if we trivialize T ∗CN by

(ω1, . . . , ωN ) := (dx1, . . . , dxN)

for general global affine coordinates xi on CN .

PROPOSITION 2.7 [Pi2, Theorem 3]. Let (ω1, . . . , ωn+1) be linearly independent vec-
tors in ČN such that the subspace ȞN−1−k generated by (ω1, . . . , ωk+1) belongs to the
generic set ΩN−1−k(X) as in Proposition 2.8 for all 0 ≤ k ≤ n. Then, for any such k,
Pk(X, (ω1, . . . , ωk+1)) is pure k-dimensional (or empty) with

(16) čMa
k (X) = [Pk(X, (ω1, . . . , ωk+1))] ∈ CHk(X) .

PROOF. Since Kleiman’s result [Kl] is proved in the algebraic context, its arguments
also apply to our global affine algebraic setting, as we explain here in a somewhat larger
generality.

Assume that M is a complex algebraic manifold with a trivial (co)tangent bundle of pure
dimension N , with

p : P (T ∗M) = M × P (ČN)→ P (ČN)

the projection on the last factor. Let X ⊂ M be a closed complex algebraic subset of pure
dimension n < N , with T ∗XM = closure(TXregM) ⊂ T ∗M its conormal space. Since this is a
conic subset, one can look at the projectivisation P (T ∗XM) ⊂ P (T ∗M). Consider in addition
a closed algebraic subset Z ⊂ X, containing Xsing such that U := X\Z ⊂ Xreg is dense in
X (e.g. Z = Xsing or Z = S̄ \ S in case X = S̄ is the closure of a stratum in a Whitney
stratification).

We are interested in the intersection

P (T ∗XM) ∩ p−1(P (Ȟ i)) = P (T ∗XM) ∩ (M × P (Ȟ i))
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for Ȟ i ⊂ ČN a generic linear subspace of codimension i (0 ≤ i ≤ N − 1). Note that
P (T ∗XM) is pure (N − 1)-dimensional so that the dimension of this intersection is bounded
from below by N − 1− i. For later use we also consider an additional proper algebraic subset
Z′ ⊂ P (T ∗XM) with dim Z′ < N − 1, e.g. Z′ = P (T ∗XM) ∩ P (T ∗̄

S ′M) for S′ �= S another
stratum in a Whitney stratification.

The natural action of the linear algebraic group GL(ČN) on ČN induces a transitive
action on P (ČN) and on the Grassmannian Gi (ČN) (or Gi (P (ČN))) of (projective) linear
subspaces of codimension i. So by Kleiman’s “transversality result” [Kl], one gets for generic
Ȟ i the following result.

PROPOSITION 2.8. For a given i, with 0 ≤ i ≤ N − 1, there is a Zariski-open dense
set Ωi(X) ⊂ Gi (ČN) such that the following properties are true for all Ȟ i ∈ Ωi(X) :

(a) P (T ∗XM) ∩ p−1(P (Ȟ i)) is of pure dimension N − 1− i, or empty.

(b) p−1(P (Ȟ i)) intersects P (T ∗UM) transversely.

(c) P (T ∗UM) ∩ p−1(P (Ȟ i)) is dense in P (T ∗XM) ∩ p−1(P (Ȟ i)).

(d) The dimension of Z′ ∩ p−1(P (Ȟ i)) is less than N − 1− i.
In particular, the intersection class

[P (T ∗XM)] ∩ [M ×P (Ȟ i)] = [closure(P (T ∗UM)∩p−1(P (Ȟ i)))] ∈ CHN−1−i (P (T ∗M|X))

equals c1(O(1))i ∩ [P (T ∗XM)] ∈ CHN−1−i (P (T ∗M|X)) and is therefore independent of

Ȟ i ∈ Ωi(X) (cf. [Fu]). �

The Segre class, defined at (7), is:

s∗(T ∗XM) =
∑

i≥0

π ′∗(c1(O(1))i ∩ [P (T ∗XM)]) .

In order to compute it, according to Proposition 2.8 we need to calculate the push down:

π̂ ′∗([P (T ∗XM)] ∩ [M × P (Ȟ i)]) ∈ CHN−1−i (X)

for π̂ ′ : P (T ∗M|X) → X the (proper) projection. By definition and (a) above this is 0 for
k := N−1−i > n. Then let us assume 0 ≤ k ≤ n and let us take a basis ω = (ω1, . . . , ωk+1)

of Ȟ i , where we identify the ωj by the projection p with the corresponding sections of T ∗M
(i.e. the corresponding 1-forms). Then one has

π̂ ′(P (T ∗UM) ∩ p−1(P (Ȟ i))) = {x ∈ U | rank (ω1, . . . , ωk+1) | TxU ≤ k}
= Crit (ω1, . . . , ωk+1)U .So by (c) above we get

π̂ ′(P (T ∗XM) ∩ p−1(P (Ȟ i))) = Crit (ω1, . . . , ωk+1)U

= Crit (ω1, . . . , ωk+1)Xreg = Pk(X,ω) ,

where Pk(X,ω) is the polar locus of ω, see also Definition 2.6 for the special case M = CN .
Note that dim Pk(X,ω) ≤ k by (a) above.

For k = 0 we have P0(X,ω) = Crit (ω1)U , which is of dimension ≤ 0 with

π̂ ′ : P (T ∗UM) ∩ p−1(P (Ȟ i))→ Crit (ω1)U
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bijective so that

π̂ ′∗([P (T ∗XM)] ∩ [M × P (ȞN−1)]) = [P0(X,ω)] ∈ CH0(X) .

For the case k > 0, we assume in addition now that the subspace Ȟ i+1 ⊂ Ȟ i with ba-
sis ω′ := (ω1, . . . , ωk) also belongs to the generic set Ωi+1(X) of Proposition 2.8. Then
dim Pk−1(X,ω′) < k and

π̂ ′ : P (T ∗UM) ∩ p−1(P (Ȟ i))→ Crit (ω1, . . . , ωk+1)U

is generically one to one so that Pk(X,ω) is also pure k-dimensional or empty, with

(17) π̂ ′∗([P (T ∗XM)] ∩ [M × P (Ȟ i)]) = [Pk(X,ω)] ∈ CHk(X) .

This finishes out proof, since in our context T ∗M is trivial and so c∗(T ∗M|X) = 1. �

Let us set Pk(X, (ω1, . . . , ωk+1)) := ∅ for k > n = dim X. Now putting together
(16) and the commutative diagram (5), we get the following slightly more general version of
Theorem 1.1.

THEOREM 2.9. Let X ⊂ M be a closed algebraic subset with n := dim X < N ,
endowed with a complex algebraic Whitney stratification S, which has therefore finitely many
strata S. Assume (ω1, . . . , ωN ) is a general basis of ČN , with T ∗M = M × ČN . Then

∑

S∈S
(−1)dimSη(S, α) · [Pk(S̄, (ω1, . . . , ωk+1))] = čM

k (α) ∈ CHk(X)

for 0 ≤ k ≤ n and all S-constructible functions α.

The more precise meaning of “general basis” is that the subspace ȞN−1−k generated by
(ω1, . . . , ωk+1) belongs to the generic set ΩN−1−k(S̄) of Proposition 2.8, for all 0 ≤ k ≤ n

and all strata S, where Z := S̄ \ S and U := S.

3. Degrees of affine polar varieties. We now come back to the case when the ambi-
ent algebraic manifold M is CN , with X ⊂ CN a proper algebraic subset of dimension n < N

which, for the moment, we assume to be pure dimensional. Affine polar curves occured in
the asymptotical equisingularity of families of hypersurfaces [Ti1]. Degrees of affine polar
varieties appeared implicitly in [Ti1] and in the proof of the Lefschetz type formula for the
global Euler obstruction [STV], which is the global counterpart of the Lê-Teissier formula for
the local Euler obstruction [LT].

To get the degrees γk(X) of our polar varieties Pk(X) and the generalized degrees γk(α)

of our MacPherson cycles Λk(α), we have to use additional genericity conditions. For this
we look at the closure X̄ of X inside the projective completion P N of M = CN with H∞ :=
P (CN) ⊂ P N the hyperplane at infinity. We may endow X̄ with an algebraic Whitney
stratification Ŝ such that X̄ ∩ H∞ is a union of strata and that its restriction to X is the fixed
Whitney stratification S on X.

By Kleiman’s “transversality result” [Kl], one gets the following result, for general linear
subspaces Ȟ i ⊂ ČN of codimension i.
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PROPOSITION 3.1. For a given i, with 0 ≤ i ≤ N − 1, there is a Zariski-open dense
set Ω̂i(X) ⊂ Gi (ČN) such that the following property is true for all Ȟ i ∈ Ω̂i(X):

(18) P (ker ω) is transversal inside H∞ to all strata of Ŝ which are included in H∞ .

Here P (ker ω) ⊂ H∞ is the projectivisation of the i dimensional linear subspace ker ω ⊂ CN

for ω := (ω1, . . . , ωk+1) a basis of Ȟ i , where k := N − 1− i. �

Note that ker ω only depends on Ȟ i , but not on the choice of the basis ω. This is not
the case for the following result, where we use a basis (ω1, . . . , ωN) of ČN to simplify the
notation.

PROPOSITION 3.2. Let ω := (ω1, . . . , ωk+1), and for k > 0 also ω′ := (ω1, . . . , ωk)

be chosen so that both P (ker ω) and P (ker ω′) verify the condition (18). Then the projection

(ω1, . . . , ωk) : Pk(X,ω)→ Ck

is a proper and finite map.

PROOF. Suppose that this map is not proper, where we first also assume k > 0. Then
there is a sequence of points xi ∈ Xreg ∩ Pk(X,ω) which tends to some point y ∈ H∞ with

ωj (xi) bounded for all 1 ≤ j ≤ k. Let Ŝα ⊂ H∞ be the stratum which contains y.
Let us denote by Txi the affine n-plane in CN tangent to Xreg at xi (which is obtained by

translating the vector space TxiXreg such that its origin becomes the point xi). Let then 〈Txi 〉
denote the projective closure of Txi inside PN , i.e., 〈Txi 〉 is the projective tangent space of X

at xi (compare for example with [Har, p. 181]).
The assumed boundedness of ωj (xi) implies that y ∈ P (ker ω′). Taking eventually a

sub-sequence, we may assume without loss of generality that ωj (xi) converges to some point
bj ∈ C, for any 1 ≤ j ≤ k, and that the limit of projective n-planes 〈Ty〉 := limi〈Txi 〉 exists
inside the Grassmannian GN−n(P N) of projective linear subspaces of codimension N − n.
Let b := (b1, . . . , bk). Similarly, we denote by 〈Ty Ŝα〉 the projective plane in H∞ which
coincides with the tangent plane TyŜα at y, i.e., the projective tangent space of Ŝα at y.

We claim that the assumed transversality P (ker ω′) �y Ŝα in H∞ implies that ω′ is a
submersion on TxiXreg for all xi close enough to y. If this were not true, then we would have
the non-transversality in P N , i.e.,

ω′−1(ω′(xi)) �—xi
〈Txi 〉 .

By passing to the limit, we get

ω′−1(b) �—y〈Ty〉 ,
which implies, since the plane ω′−1(b) is not included in H∞, that we have the non-
transversality in H∞ of the sections

(19) (ω′−1(b) ∩H∞) �—y(〈Ty〉 ∩H∞) .

But we have ω′−1(b) ∩ H∞ = P (ker ω′) and 〈Ty〉 ⊃ 〈Ty Ŝα〉 due to the Whitney (a)-
regularity. The last claim can be checked e.g. by pulling back under the canonical smooth
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projection π : CN+1\{0} → PN , with π−1(X̄) the affine cone over X̄, using the correspond-
ing linear (tangent) spaces in CN+1 (cf. [Har, p. 183]) and the identification GN−n(P N) �
GN−n(CN+1) of Grassmann manifolds.

Therefore (19) contradicts the transversality Ŝα � P (ker ω′).
By hypothesis, the linear map ω is not surjective on the tangent spaces TxiXreg. Due to

the transversality of the intersection ω′−1(ω′(xi)) ∩ 〈Txi 〉 proved above, this non-surjectivity
is equivalent to the non-transversality

ω−1
k+1(ωk+1(xi)) �—xi

〈Txi 〉 ∩ ω′−1(ω′(xi))

in PN . Here we may also include the case k = 0, with ω′ defined as the zero map so that
ω′−1(ω′(xi)) := P N . This non-transversality is then equivalent to the inclusion

ω−1
k+1(ωk+1(xi)) ⊃ 〈Txi 〉 ∩ ω′−1(ω′(xi)) ,

since the left-hand side is a hyperplane in P N . Slicing both sides by H∞, we get P (ker ωk+1)

⊃ (〈Txi 〉 ∩H∞) ∩ P (ker ω′).
Finally we pass to the limit, observing that only the space 〈Txi 〉 varies, and we get

P (ker ωk+1) ⊃ (〈Ty〉 ∩H∞) ∩ P (ker ω′) .

This implies y ∈ P (ker ωk+1) so that y ∈ P (ker ω) and contradicts the transversality
Ŝα � P (ker ω) in H∞, since 〈Ty〉 ⊃ 〈TyŜα〉 by Whitney (a)-regularity.

So far we have shown the properness of the map (ω1, . . . , ωk) : Pk(X,ω) → Ck . Of
course this map has then also finite fibres, because Pk(X,ω) is an affine algebraic variety (or
empty). In particular, dim(Pk(X,ω)) ≤ k. �

DEFINITION 3.3. Assume that the linear subspace generated by ω := (ω1, . . . , ωk+1),
and for k > 0 also the linear subspace generated by ω′ := (ω1, . . . , ωk) belong to the generic
sets of Propositions 3.1 and 2.8 for a given k with 0 ≤ k ≤ n. We have proved, for k > 0, that
the projection

(ω1, . . . , ωk) : Pk(X,ω)→ Ck

is a proper and finite map, where Pk(X,ω) is pure k-dimensional or empty. Its degree, which
can be defined as the number of points in a general fibre, will be denoted by γk(X). In case
k = 0, we set γ0(X) := #P0(X,ω), which makes sense since P0(X,ω) is a finite set of points.

The number γk(X) will be independent of the choices of the generic ω, at least after
restriction to another Zariski-open dense set of parameters. This follows for example from
the connectedness of the Zariski-open dense sets, by using (3) and the fact that, for an alge-
braically constructible function α (like α = EuX), the correspondence

(ω1, . . . , ωk, t1, . . . , tk) → χ(X ∩ {ω1 = t1, . . . , ωk = tk}, α)

defines an algebraically constructible function on the set of parameters (see e.g. [Sch1, Sec-
tion 2.3]). All the involved Zariski-open subsets depend on the chosen Whitney stratification
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S of X. Nevertheless the generic polar cycle classes

čMa
k (X) = [Pk(X,ω)] ∈ CHk(X)

do not, and neither do the generic degrees γk(X). One may notice that γk(X) can also be
described by

γk(X) = (ω1, . . . , ωk)∗([Pk(X,ω)]) ∈ CHk(C
k) � Z .

NOTE 3.4. The definition of γk(X) in the case k > 0 can be reduced to the case k = 0
by taking iterated slices as follows. Consider a general system of coordinates {xj } on CN (as
discussed above) and the inclusion i : X′ := X ∩ {x1 = p1, . . . , xm = pm} ↪→ X for general
p1, . . . , pm (with 1 ≤ m ≤ n fixed) so that the affine space

Am := {x1 = p1, . . . , xm = pm} ⊂ CN

is transversal to the given Whitney stratification of X. Consider the cartesian diagram for
m ≤ k ≤ n

supp(Λk(α)) −−−−→ X
(x1,...,xk)−−−−−→ Ck

� i

�
�

supp(Λk(α)) ∩ Am −−−−→ X′ (xm−k+1,...,xk)−−−−−−−−→ Ck−m {(p1, . . . , pm)} × Ck−m .

(20)

From the refined Gysin homomorphism i ! (see [Fu]) associated to this diagram, one gets the
equalities

(21) (−1)m · i !Λk(α) = Λk−m(α|X′) and (−1)m · γk(α) = γk−m(α|X′) .

Here i ! corresponds to the intersection with [Am] inside CN . The right-hand side of the equal-
ities make sense since the restriction α|X′ is constructible with respect to the induced Whitney
stratification of X′ with strata given by the connected components of S ∩ Am. Moreover the
sign (−1)m is coming from

dim(S ∩ Am) = dim(S)−m

for all strata S and our sign convention in the definition (1) of the k-th MacPherson cycle
Λk(α). Of course we implicitly use

(22) η(S, α) = η(S ∩ Am, α)

for all strata S, since the corresponding “normal Morse data” do not change by taking general
slices. In particular, η(S ∩ Am, α) depends only on S and not on the choice of a connected
component of S ∩ Am. For this it is enough to find a point x in each connected component of
S ∩Am such that T ∗S M|x contains a normally non-degenerate covector used for the definition
of η(S, α) (as explained before), which then can also be used for the definition of η(S∩Am, α).
The existence of such points follows for general Am from a simple dimension counting. But
if one only wants to assume that Am is transversal to our given stratification, then one has to
use a result of Teissier [Te, p. 455] telling us that the set of non-degenerate covectors is dense
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in all fibres of the projection T ∗S M → S, i.e., a complex analytic Whitney stratification is
bcod1-regular (cf. [Sch1, Remark 5.1.9, p. 320]). Note that, in particular,

(−1)m · i !čM∗ (α) = čM∗ (α|X′) .

This is the corresponding Verdier-Riemann-Roch Theorem for the closed inclusion

i : X′ = X ∩ Am→ X

of the transversal intersection with the subspace Am ⊂ CN , whose normal bundle is trivial
(cf. [Sch2, Corollary 0.1]).

3.1. Interpretation of the degree and the index formula. We shall give a geometric
interpretation of these degrees γk(X), which will be essential in proving a Lefschetz type
result for affine pencils on X. In turn, this will provide a proof of Theorem 1.2.

COROLLARY 3.5. Let k be an integer with 0 ≤ k ≤ n. Assume that the linear sub-
space generated by ω := (ω1, . . . , ωk+1) and, for k > 0, the linear subspace generated by
ω′ := (ω1, . . . , ωk), belong to the Zariski-open sets of Propositions 2.8 and 3.1. Then the
degree γk(X) of the polar cycle [Pk(X)] is the number of critical points of the pencil ωk+1

restricted to a general slice Xreg ∩ {ω1 = t1, . . . , ωk = tk}, and all these critical points are
complex stratified Morse points.

PROOF. Let us first remark that for k > 0 the generic choices of ω′ and of the values
t1, . . . , tk imply that the plane {ω1 = t1, . . . , ωk = tk} intersects transversely the regular
stratum Xreg and that the intersection points of Pk(X,ω) ∩ {ω1 = t1, . . . , ωk = tk} are
all contained in Xreg (compare with the discussion after Proposition 2.8). This implies for
k = n+ 1 that

X ∩ {ω1 = t1, . . . , ωk = tn} = Xreg ∩ {ω1 = t1, . . . , ωk = tn}
is a finite set of points, which by definition are all complex Morse points for ωn+1.

For k = 0 this is by definition just P0(X,ω) ⊂ Xreg. These intersection points are
singular points of the pencil ωk+1 on the slice Xreg ∩ {ω1 = t1, . . . , ωk = tk}. They are
complex Morse points by the transversality result (b) of Proposition 2.8. In fact, for k =
0, this just means in local coordinates that the graph of the 1-form ω1 intersects T ∗Xreg

M

transversely inside T ∗M , which corresponds to a complex Morse point. If we work with an
ambient algebraic Whitney stratification, then we even can get, by the dimension estimate (d)
of Proposition 2.8, that these are stratified Morse points. The case k > 0 is reduced to this by
slicing with {ω1 = t1, . . . , ωk = tk}. �

We continue to work with some fixed algebraic Whitney stratification S of X ⊂ CN and
some extension of it to a stratification Ŝ of X̄. Then the polar classes [Pk(S̄)] of any stratum
S ∈ S, as well as their degrees γk(S̄), are well defined. In particular, we have Pk(S̄) = S̄ for
k = dim S and by definition Pk(S̄) = ∅ for k > dim S so that

γk(S̄) = 0 for k > dim S and γdimS(S̄) = deg S .



42 J. SCHÜRMANN AND M. TIBĂR

For k = N − 1 − i with 0 ≤ k ≤ n, assume that the linear subspace generated by
ω := (ω1, . . . , ωk+1) and, for k > 0, the linear subspace generated by ω′ := (ω1, . . . , ωk)

belong to the generic sets Ω̂i(S̄) and Ωi(S̄) of Propositions 2.8 and 3.1, for all strata S. This
is a finite intersection of Zariski-open dense subsets, hence it is also a Zariski-open dense
subset.

PROPOSITION 3.6. Let ω be chosen as explained before, with (t1, . . . , tk) generic val-
ues of ω′. Then, for general tk+1, the slice X ∩ {ω1 = t1, . . . , ωk = tk} is homeomorphic to
the space obtained from the slice X ∩ {ω1 = t1, . . . , ωk+1 = tk+1} by attaching to it the local
Morse data of the stratified complex Morse points of the pencil ωk+1.

PROOF. The generic choices of ω, of its generators ω1, . . . , ωk and of the values t1, . . . ,

tk imply that the plane {ω1 = t1, . . . , ωk = tk} intersects transversely all the strata of the
stratification Ŝ . In particular, it does not intersect any stratum of dimension less than k. In
this way, the slice X′ := X ∩ {ω1 = t1, . . . , ωk = tk} is endowed with the induced Whitney
stratification.

It follows from the definition of Ω̂i that the axis P (ker ω) of the affine pencil defined by
ωk+1 is transversal to the strata of the slice X′. Therefore the pencil ωk+1 is a locally trivial
fibration in the neighbourhood of H∞ and the hyperplanes of the pencil intersect transversely
all the strata of the stratification S, except at a finite number of points on each stratum. These
points are the intersections of X′ with the polar loci Pk(S̄), for S ∈ S. As shown in Corollary
3.5, all such points are complex stratified Morse points of the pencil ωk+1.

By the Lefschetz theory and stratified Morse theory [GM], the total space X′ of the pencil
is obtained from the general hyperplane section X′ ∩ {ωk+1 = tk+1} by attaching the local
Morse data of the stratified critical points of the pencil ωk+1, which are complex stratified
Morse points in our case.

Note that this argument also works for k = n+ 1 with X′ ∩ {ωn+1 = tn+1} = ∅ and X′
a finite set. �

3.2. Proof of Theorem 1.2. We apply the Euler characteristic χ(·, α) weighted by the
constructible function α to the decomposition provided by Proposition 3.6. We start with
generic choices of ω,ω′, of its generators ω1, . . . , ωk and of the values t1, . . . , tk as before.
The number of singular points of the pencil ωk+1 on every stratum

S′ := S ∩ {ω1 = t1, . . . , ωk = tk}
is equal to γk(S̄), by Corollary 3.5 for dim S ≥ k, and S′ = ∅ for dim S < k. Note that here
we allow a stratum S′ to be disconnected. We get:

χ(X ∩ {ω1 = t1, . . . , ωk = tk}, α)− χ(X ∩ {ω1 = t1, . . . , ωk+1 = tk+1}, α)

=
∑

S∈S
γk(S̄)χ(LMD(ωk+1|S′, α)) ,

where LMD(ωk+1|S′) denotes the local Morse datum of ωk+1 in its critical points on S′ con-
sidered as a stratum of X ∩ {ω1 = t1, . . . , ωk = tk}. They are all isomorphic for different
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critical points in S′, because they are all complex stratified Morse critical points, and the cor-
responding normal Morse data are all isomorphic to the normal Morse datum of the stratum
S. Notice that the terms of the sum corresponding to strata S of dimension less than k are zero
since γk(S̄) = 0 in that case.

Finally we use the decomposition of the local Morse datum LMD(ωk+1|S′), which was
proven in the stratified Morse theory by Goresky and MacPherson [GM], as a product of
normal and tangential Morse data. At the level of the Euler characteristic, we get, using
Lemma 2.5,

χ(LMD(ωk+1|S′, α)) = (−1)dimS ′ · χ(NMD(S′, α)) ,

with dim S′ = dim S − k and

χ(NMD(S′, α)) = χ(NMD(S), α)) =: η(S, α)

the normal index. Note that the first equality is explained in (22). Now formula (3) follows
from the definition

γk(α) :=
∑

S∈S
(−1)dimS · η(S, α)γk(S̄) .
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