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Abstract. For any prime number p, we study local triviality of the ideal class group
of the Zp-extension over the rational field. We improve a known general result in such study
by modifying the proof of the result, and pursue known effective arguments on the above
triviality with the help of a computer. Some explicit consequences of our investigations are
then provided in the case p ≤ 7.

Introduction. Let p be any prime number. Let Zp denote the ring of p-adic integers,
and B∞ the Zp-extension over the rational number field Q, namely, the unique abelian exten-
sion over Q contained in the complex number field C such that the Galois group Gal(B∞/Q)
is topologically isomorphic to the additive group of Zp. Let

q = p or q = 4

according to whether p > 2 or p = 2. We denote by P ∞ the composite, in C, of cyclotomic
fields of pa th roots of unity for all positive integers a, i.e., P ∞ = B∞(e2πi/q). Given any
prime number l different from p, let F be the decomposition field of l for the abelian extension
P ∞/Q. For each positive integer b, let

ξb = e2πi/pb .

It follows that P ∞/F (ξ1) is a Zp-extension. We take a unique positive integer ν such that

F ⊆ Q(ξν) and [Q(ξν) : F ] | ϕ(q) ,
where ϕ denotes the Euler function. Note that ν ≥ 2 if p = 2. Let O denote the ring of
algebraic integers in F , and Z the ring of (rational) integers. Let S be the minimal set of
non-negative integers less than ϕ(pν) = pν−1(p − 1) such that

O ⊆
∑
m∈S

Zξmν .

Evidently, S is not empty, i.e., 0 < |S| ≤ ϕ(pν). Denoting by D the absolute value of the
discriminant of F , put

Θ = √
D

( [F : Q]
pν log 2

∑
m∈S

‖TQ(ξν)/F ((1 − ξ
[m/pν−1]+1
1 )ξ−m

ν )‖
)[F :Q]

;
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here, for each finite extension K ′/K of subfields of C, TK ′/K denotes the trace map from K ′
to K , for each algebraic number θ in C, ‖θ‖ denotes the maximum of the absolute values
of all conjugates of θ over Q, and for each real number x, [x] denotes as usual the maximal
integer at most equal to x. Now, take any cyclic group Γ of order pν , and a generator γ of Γ ;
Γ = {γm ; m ∈ Z, 0 ≤ m < pν}. Let S∗ denote the minimal set of non-negative integers
less than pν such that, in the group ring of Γ over Z,

(1 − γ p
ν−1
)
∑
m∈S

bmγ
m ∈

∑
w∈S∗

Zγ w

for every sequence {bm}m∈S of integers with
∑
m∈S bmξmν ∈ O. We easily see that S∗ does

not depend on the choice of Γ or γ . Further, it follows that 0 < |S∗| ≤ pν . Let N denote the
set of positive integers n which satisfy

pn ≥ p2ν−1

q
,

2(qpn−ν)1/ϕ(p−1)

ϕ(q)|S∗| < Θ

(
ϕ(q)

2
log

(
qpn

π
sin

π

p
+ cos

π

p

))[F :Q]
.

Clearly, q divides p2ν−1, and N is a finite set. When N 
= ∅, we define n0 to be the maximal
integer in N ; when N = ∅, we define an integer n0 ≥ 0 by pn0 = p2ν−1/q . For each integer
a ≥ 0, let Ba denote the subfield of B∞ with degree pa , and ha the class number of Ba . In
this paper, we first prove the following result after some preliminaries.

THEOREM 1. Assume that l � hν−1. Then the l-class group of B∞ is trivial if

l � hn0 or l ≥ Θ

(
ϕ(q)

2
log

(
qpn0

π
sin

π

p
+ cos

π

p

))[F :Q]
.

The proof of the above theorem is based essentially upon arithmetic study in [3, 5] on an
algebraic interpretation of the analytic class number formula. The theorem actually improves
a main result of [5] in general, while more precise results for certain specific cases are obtained
in [4, 6] by pursuing several arguments of [3, 5]. We should add that the p-class group of B∞
is trivial (cf. Iwasawa [9]). Here we make some corrections for [3, 5]. Insead of defining
f (χ, u) by [3, l. 19 on p. 258], one should define f (χ, u) as the maximal divisor of f (χ)
relatively prime to u, with the notation ũ retained; furthermore, “q0 = gcd(q, 2t)” in [3, l. 3
on p. 260], “f ′ = f (ψd2 )” in [3, l. 6 on p. 260] and “ψd2 (b) = 1” in [3, l. 11 on p. 260] should
be “q0 = f (ψ2)/t”, “f (ψd2 ) | f ′” and “ψ2(b)

d = 1”, respectively. Also, “tan(π/2pν)” in
[5, l. 1 on p. 393] should be “tan(π/(2pν))” and “element” in [5, l. 5 on p. 393] should be
“elements”; for other corrections, see [7, pp. 822, 823], and [8, p. 180].

It is shown in [3, 6] that, if p = 3 and l is congruent to either 2, 4, 5 or 7 modulo 9, then
the l-class group of B∞ is trivial. Theorem 1 implies the following result among others.

PROPOSITION 1. Assume that p = 3 and that l ≡ 8 (mod 27) or l ≡ 17 (mod 27).
If l � h18 or l > 34681575, then the l-class group of B∞ is trivial.

It is shown in [6] that, if p = 2 and if l ≡ 3 (mod 8) or l ≡ 5 (mod 8), then the l-class
group of B∞ is trivial. Theorem 1 also implies the following two results.
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PROPOSITION 2. Assume that p = 2, l ≡ 9 (mod 16), and either l � h36 or l >
7150001069. Then the l-class group of B∞ is trivial.

PROPOSITION 3. Assume that p = 2, l ≡ 7 (mod 16), and either l � h39 or l >
17324899980. Then the l-class group of B∞ is trivial.

In the latter part of the paper, we deduce the following theorem from several results of
[6] with the help of a (personal) computer.

THEOREM 2. Assume that p = 5 and that

l ≡ g (mod 25) for some g ∈ {2, 3, 4, 8, 9, 12, 13, 14, 17, 19, 22, 23} .
Then the l-class group of B∞ is trivial.

As to the case where

l ≡ g (mod 25) for some g ∈ {2, 3, 8, 12, 13, 17, 22, 23} ,
the above result is already shown in [4]. The final result of the present paper is as follows.

THEOREM 3. Assume that p = 7 and that l ≡ g (mod 49) for some integer g in

{2, 3, 4, 5, 9, 10, 11, 12, 16, 17, 23, 24, 25, 26, 32, 33, 37, 38, 39, 40, 44, 45, 46, 47} .
Then the l-class group of B∞ is trivial.

The proof of this theorem also needs a computer as well as several results of [6]. The
theorem is already proved in [4] for the case where

l ≡ g (mod 49) with some g ∈ {3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47} .
We conclude the present introduction with an optimistic remark. Recently, in the case

p = 2, Fukuda and Komatsu [1] established a criterion for checking the triviality of the l-class
group of B∞ and, as a consequence, verified that the l-class group of B∞ is trivial whenever
l < 107. In view of the arguments of [1], it might be possible to improve the propositions
stated above. For example, in Proposition 1, there is a possibility of knowing whether the
condition that l � h18 or l > 34681575 is omitted, namely, whether one always has l � h18 in
the case l < 34681575 (for slight improvements, cf. Remarks 1 and 2 in Section 2).

1. Some Lemmas. Let n be any positive integer, which will be fixed in the rest of the
paper. Let E denote the group of all units of Bn. In the case p > 2, we put

η =
∏
u

ξ un+1 − ξ−u
n+1

ξu1 ξ
u
n+1 − ξ−u

1 ξ−u
n+1

=
∏
u

sin(2πu/pn+1)

sin(2πu(1 + pn)/pn+1)
,

where u ranges over the positive integers such that

up−1 ≡ 1 (mod pn+1) , u < pn+1/2 ;
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in the case p = 2, we put

η = ξn+3 − ξ−1
n+3

iξn+3 + iξ−1
n+3

= tan
π

2n+2
.

Not only η belongs to E by definition, but also η is a typical example of what is called a
circular (or cyclotomic) unit of Bn. Let R denote the group ring of Gal(Bn/Q) over Z.
Naturally, the multiplicative group B×

n becomes an R-module andE an R-submodule of B×
n .

Now, take an algebraic integer α in Q(ξn). Then α is uniquely expressed in the form

α =
ϕ(pn)−1∑
m=0

amξ
m
n , a0, . . . , aϕ(pn)−1 ∈ Z .

For each ρ ∈ Gal(Bn/Q), we define an element αρ of R by

αρ =
ϕ(pn)−1∑
m=0

amρ
m .

We note as well that hn−1 divides hn, i.e., hn/hn−1 is an integer ; indeed this fact follows
from class field theory since the prime ideal of Bn−1 dividing p is totally ramified in Bn.

LEMMA 1. Assume that n ≥ ν and l divides hn/hn−1. Then

l < Θ

(
ϕ(q)

2
log

(
qpn

π
sin

π

p
+ cos

π

p

))[F :Q]
.

PROOF. Let σ be a generator of the cyclic group Gal(Bn/Q). As [5, Lemma 2] implies
by the assumption that l divides hn/hn−1, there exists a prime ideal l of F dividing l such
that, for any β ∈ ll−1, ηβσ is an lth power in E. Since the norm of ll−1 for F/Q is l[F :Q]−1,
Minkowski’s lattice theorem shows that

‖α‖ ≤ (
√
Dl[F :Q]−1)1/[F :Q] with some α ∈ ll−1 \ {0} .(1)

There also exist integers am for all m ∈ S which satisfy

α =
∑
m∈S

amξ
m
ν .(2)

Now, given any m′ ∈ S, let S′ = {m ∈ S ; m ≡ m′ (mod pν−1)}. We then see, for any
m ∈ S′, that m ≡ m′ (mod pν) if and only if m = m′ and that

0 < m−m′ + ([m′/pν−1] + 1)pν−1 < pν .

Furthermore, for any integerw, we find TQ(ξν)/Q(ξ
w
ν ) to be either ϕ(pν), −pν−1 or 0 accord-

ing to whether the highest power of p dividing w is either greater than pν−1, equal to pν−1

or smaller than pν−1. It therefore follows from (2) that

TQ(ξν )/Q((1 − ξ
[m′/pν−1]+1
1 )ξ−m′

ν α)

=
∑
m∈S ′

amTQ(ξν)/Q(ξ
m−m′
ν )−

∑
m∈S ′

amTQ(ξν)/Q(ξ
m−m′+([m′/pν−1]+1)pν−1

ν ) = pνam′ .
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Hence

|am′ | = 1

pν
|TF/Q(TQ(ξν)/F ((1 − ξ

[m′/pν−1]+1
1 )ξ−m′

ν )α)|

≤ [F : Q]
pν

‖TQ(ξν)/F ((1 − ξ
[m′/pν−1]+1
1 )ξ−m′

ν )‖‖α‖
so that, by (1),

|am′ | ≤ [F : Q]
pν

(
√
Dl[F :Q]−1)1/[F :Q]‖TQ(ξν)/F ((1 − ξ

[m′/pν−1]+1
1 )ξ−m′

ν )‖ .
However, (2) implies that

ασ =
∑
m∈S

amσ
pn−νm in R ,

and hence

‖ηασ ‖ ≤ max(‖η‖, ‖η−1‖)
∑
m∈S |am| .

Therefore, putting L = log(max(‖η‖, ‖η−1‖)), we have

log ‖ηασ ‖ ≤ [F : Q]L
pν

(
√
Dl[F :Q]−1)1/[F :Q] ∑

m∈S
‖TQ(ξν)/F ((1 − ξ

[m/pν−1]+1
1 )ξ−m

ν )‖ .

On the other hand, as in the proof of [5, Lemma 6], [5, Lemma 3] gives

l log 2 < log ‖ηασ ‖ .
Thus (

l√
D

)1/[F :Q]
<

[F : Q]L
pν log 2

∑
m∈S

‖TQ(ξν)/F ((1 − ξ
[m/pν−1]+1
1 )ξ−m

ν )‖ .

Since

L <
ϕ(q)

2
log

(
qpn

π
sin

π

p
+ cos

π

p

)

by [5, Lemma 4], we then obtain the inequality to be proved. �

In the case p > 2, let v be the number of distinct prime divisors of (p − 1)/2, let
g1, . . . , gv be the prime-powers greater than 1 such that

p − 1

2
= g1 · · · gv ,

and let V denote the subset of the cyclic group 〈e2πi/(p−1)〉 consisting of

eπiz1/g1 · · · eπizv/gv
for all v-tuples (z1, . . . , zv) of integers with 0 ≤ z1 < g1, . . . , 0 ≤ zv < gv . We understand
that V = {1} if p = 3. In the case p = 2, we put V = {1}. It follows that V is a complete set
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of representatives of the factor group 〈e2πi/ϕ(q)〉/〈−1〉. Let Φ denote the set of maps from V

to {u ∈ Z ; 0 ≤ u ≤ |S∗|l}. We put

M = max
ψ∈Φ

∣∣∣∣N
( ∑
δ∈V

ψ(δ)δ − 1

)∣∣∣∣ ,
where N denotes the norm map from Q(e2πi/(p−1)) to Q. Next, let p be a prime ideal of
Q(e2πi/(p−1)) dividing p. Let I denote the set of positive integers smaller than qpn and
congruent to suitable elements of V modulo qpn. Here

q = p or q = p2

according to whether p > 2 or p = 2. Since the degree of p is 1 and 〈e2πi/(p−1)〉 ∪ {0}
is a complete set of representatives of the residue ring Z[e2πi/(p−1)]/p, each ε ∈ V gives
a unique u ∈ I with u ≡ ε (mod qpn) and the map ε �→ u defines a bijection from V to
I . Note that I contains 1. For each pair (m, u) in S∗ × I , let Gm,u denote the set of maps
j : S∗ × I → Z such that min(l − 2, 1) ≤ j (m, u) < l and j (m′, u′) ∈ {0, l} for every
(m′, u′) in S∗ × I \ {(m, u)}. We then let

H =
⋃

(m,u)∈S∗×I
Gm,u .

In the case n ≥ ν, putting r = 1 + qpn−ν , we define

A(j) =
∑
m∈S∗

∑
u∈I

urmj (m, u)

for each j ∈ H, whence

A(j) ≡
∑
m∈S∗

∑
u∈I

uj (m, u) (mod qpn−ν ) .

LEMMA 2. Assume that M < qpn−ν and n ≥ ν. Take a map j in H. Then the
condition

A(j) ≡ |S∗|l
∑
u∈I

u− 1 (mod qpn−ν )

is equivalent to the condition that

j (w, 1) = l − 1 , j (m, u) = l

for some w ∈ S∗ and every (m, u) ∈ S∗ × I \ {(w, 1)}.
PROOF. The latter condition clearly implies the former. Let us consider the case where

j ∈ Gw,u0 with (w, u0) ∈ S∗ × I , under the former condition which can be written as

∑
u∈I

( ∑
m∈S∗

(l − j (m, u))

)
u− 1 ≡ 0 (mod qpn−ν ) .

In virtue of the bijection V → I defined above, there exists a unique ψ ∈ Φ such that

ψ(ε) =
∑
m∈S∗

(l − j (m, u))
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for every (ε, u) ∈ V × I with ε ≡ u (mod qpn). We then obtain∑
ε∈V

ψ(ε)ε − 1 ≡ 0 (mod qpn−ν) .

This yields

N

( ∑
ε∈V

ψ(ε)ε − 1

)
≡ 0 (mod qpn−ν ) .

Hence it follows from the assumptionM < qpn−ν that

N

( ∑
ε∈V

ψ(ε)ε − 1

)
= 0 , i.e.,

∑
ε∈V

ψ(ε)ε − 1 = 0 .

Therefore, by [3, Lemma 7], ψ(1) = 1 and ψ(ε) = 0 for all ε in V \ {1}. In particular, we
have u0 = 1. We thus find that j (w, 1) = l − 1 and j (m, u) = l for all (m, u) in S∗ × I \
{(w, 1)}. �

For each (m, u) ∈ S∗ × I and each j ∈ Gm,u, we define an integer B(j) by

B(j) =
∑
(m′,u′)

(
1 − j (m′, u′)

l

)
,

where (m′, u′) runs through S∗ × I \ {(m, u)}. This notation will be used in the proof of the
following lemma.

LEMMA 3. Assume that l divides hn/hn−1 and p2ν divides qpn. Then

qpn−ν ≤ M .

PROOF. The assumption p2ν | qpn yields

n ≥ ν , qpn | (qpn−ν )2 .
By the above divisibility, we have

ra ≡ 1 + aqpn−ν (mod qpn)(3)

for every a ∈ Z. Put ζ = e2πi/(qpn), namely, put

ζ = ξn+1 or ζ = ξn+2

according to whether p > 2 or p = 2. Let s be an integer such that

sp
n−ν ≡ r (mod qpn) ,

and let σ be the automorphism of Q(ζ ) mapping ζ to ζ s . When there is no risk of confu-
sion, we identify R with the group ring of Gal(Q(ζ )/Q(e2πi/q)) over Z through the natural
identification

Gal(Bn/Q) = Gal(Q(ζ )/Q(e2πi/q)) = 〈σ 〉 .
As [5, Lemma 2] shows under our hypothesis, there exists a prime ideal l of Q(ξν) dividing l
such that ηβσ is an lth power in E for every β ∈ ll−1. Let α be any algebraic integer which is
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not divisible by l but divisible by ll−1. Let τ = σp
n−1

. The definition of S∗ then enables us to
take the integers am, m ∈ S∗, satisfying

(1 − τ )ασ =
∑
m∈S∗

amσ
pn−νm .

It follows that

(1 − ξ1)α =
∑
m∈S∗

amξ
m
ν .(4)

In the case p > 2, since the disjoint union of I and {pn+1 − u ; u ∈ I } is just the set of
positive integers u < pn+1 satisfying up−1 ≡ 1 (mod pn+1) and since ζ τ = ζ 1+pn = ξ1ζ ,
we obtain

η =
∏
u∈I
(ζ u − ζ−u)1−τ =

∏
u∈I

ξu1 (ζ
2u − 1)1−τ ,

so that, by the definition of σ ,

ηασ = ξ
ασ

∑
u∈I u

1

∏
m∈S∗

∏
u∈I
(ζ 2urm − 1)am .

In the case p = 2,

η = i(ζ − 1)1−τ , whence ηασ = iασ
∏
m∈S∗

(ζ r
m − 1)am .

Consequently, we always find that ∏
m∈S∗

∏
u∈I
(ζ ur

m − 1)am

is an lth power in Z[ζ ]. Hence, in Z[ζ ], [3, Lemma 5] yields∏
m∈S∗

∏
u∈I
(ζ lur

m − 1)am ≡
∏
m∈S∗

∏
u∈I
(ζ ur

m − 1)aml (mod l2) .(5)

We add that the both sides above are relatively prime to l.
Next, let y be an indeterminate. Define a polynomial J (y) in Z[y] by

(y − 1)l = yl − 1 + lJ (y) ,

namely, let

J (y) =
l−1∑
c=1

(−1)c−1

l

(
l

c

)
yc or J (y) = −y + 1(6)

according to whether l > 2 or l = 2. Then, for each b ∈ Z and each b′ ∈ Z with ζ b
′ 
= 1,

(ζ b
′ − 1)bl ≡ (ζ lb

′ − 1)b−1(ζ lb
′ − 1 + blJ (ζ b

′
)) (mod l2) .

Therefore, we see from (5) that∏
m∈S∗

∏
u∈I
(ζ lur

m − 1) ≡
∏
m∈S∗

∏
u∈I
(ζ lur

m − 1 + amlJ (ζ
urm)) (mod l2) .
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This implies that ∑
m∈S∗

∑
u∈I

amJ (ζ
urm)

∏
(w,u′)

(ζ lu
′rw − 1) ≡ 0 (mod l) ,

where (w, u′) runs through S∗ ×I \{(m, u)}. Furthermore, for each (m, u) ∈ S∗ ×I and each
integer c with min(l − 2, 1) ≤ c < l, we have

ζ ur
mc

∏
(w,u′)

(ζ lu
′rw − 1) =

∑
j ′
(−1)B(j

′)ζA(j
′) ,

the sum taken over all j ′ ∈ Gm,u with j ′(m, u) = c. Hence, by (6),∑
m∈S∗

∑
u∈I

∑
j∈Gm,u

(−1)B(j)ambm,u(j)ζA(j) ≡ 0 (mod l) ;(7)

here, for each (m, u) ∈ S∗ × I and each j ∈ Gm,u,

bm,u(j) = (−1)j (m,u)−1

l

(
l

j (m, u)

)
or bm,u(j) = 1

according to whether l > 2 or l = 2.
Now, contrary to the conclusion of the lemma, we suppose that M < qpn−ν . It follows

from [3, Lemma 6] that the partial sum in the left-hand side of (7), under the condition

A(j) ≡ |S∗|l
∑
u∈I

u− 1 (mod qpn−ν) ,

is congruent to 0 modulo l. Therefore, by Lemma 2,∑
w∈S∗

awζ
A0−rw ≡ 0 (mod l) , with A0 =

∑
m∈S∗

∑
u∈I

lurm .

Applying complex conjugation to the above congruence, we have∑
w∈S∗

awζ
rw ≡ 0 (mod l) .

However, (3) gives ζ r
w = ζ ξwν for every w ∈ S∗. We thus deduce from (4) that

(1 − ξ1)α ≡ 0 (mod l) , i.e., α ≡ 0 (mod l) .

This contradiction completes the proof of the lemma. �

2. Proofs of Theorem 1 and Propositions. By means of the lemmas in the preceding
section, let us prove the former four results stated in the introduction, as follows.

PROOF OF THEOREM 1. For any ψ ∈ Φ,∣∣∣∣N
( ∑
δ∈V

ψ(δ)δ − 1

)∣∣∣∣ =
∏
ρ

∣∣∣∣
∑
δ∈V

ψ(δ)δρ − 1

∣∣∣∣ ,
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with ρ ranging over all automorphisms of Q(e2πi/(p−1)), and∣∣∣∣
∑
δ∈V

ψ(δ)δρ − 1

∣∣∣∣ ≤ |ψ(1)− 1| +
∑

δ∈V \{1}
ψ(δ) <

ϕ(q)

2
· |S∗|l .

Therefore

M <

(
ϕ(q)|S∗|l

2

)ϕ(p−1)

.

Now assume that the l-class group of B∞ is not trivial. Since l does not divide hν−1, it follows
that l divides hn′/hn′−1 for some positive integer n′ ≥ ν. In the case where pn

′
< p2ν/q so

that n′ ≤ n0, we have l | hn0 and Lemma 1 shows that

l<Θ

(
ϕ(q)

2
log

(
qpn

′

π
sin

π

p
+ cos

π

p

))[F :Q]
≤Θ

(
ϕ(q)

2
log

(
qpn0

π
sin

π

p
+ cos

π

p

))[F :Q]
.

We next consider the case pn
′ ≥ p2ν/q . Together with the above estimate for M , Lemma 3

yields

qpn
′−ν <

(
ϕ(q)|S∗|l

2

)ϕ(p−1)

, i.e.,
2(qpn

′−ν)1/ϕ(p−1)

ϕ(q)|S∗| < l .

Furthermore, by Lemma 1,

l < Θ

(
ϕ(q)

2
log

(
qpn

′

π
sin

π

p
+ cos

π

p

))[F :Q]
.

We therefore obtain

2(qpn
′−ν)1/ϕ(p−1)

ϕ(q)|S∗| < Θ

(
ϕ(q)

2
log

(
qpn

′

π
sin

π

p
+ cos

π

p

))[F :Q]
,

which means that n′ belongs to N . Hence the definition of n0 implies n′ ≤ n0, and conse-
quently,

l < Θ

(
ϕ(q)

2
log

(
qpn0

π
sin

π

p
+ cos

π

p

))[F :Q]
, l | hn0 . �

The following lemma is useful to continue our proofs.

LEMMA 4. Let d be any positive divisor of p − 1.
(i) If p > 2, then F is an extension of Bν−1, the condition [F : Bν−1] = d is

equivalent to the condition that l ≡ gp
ν−1d

0 (mod pν+1) for some primitive root g0 modulo
p2, and in the case [F : Bν−1] = d ,

Θ = 1

p((p
ν−1−1)d/(p−1)+1)/2

(
pν/2d

log 2

∑
m∈S

‖TQ(ξν)/F ((1 − ξ
[m/pν−1]+1
1 )ξ−m

ν )‖
)pν−1d

.
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(ii) If p = 2, then the condtion F = Q(ξν) is equivalent to the congruence l ≡ 1 + 2ν

(mod 2ν+1), and implies that

Θ = 23(ν−1)2ν−2

(log 2)2ν−1 .

(iii) If p = 2, then the three conditions [Q(ξν) : F ] = 2, F = Q(ξν − ξ−1
ν ) 
= Q(i)

and l ≡ −1 + 2ν−1 
≡ 1 (mod 2ν) are equivalent, and imply that

ν ≥ 3 , Θ = 2(ν−1)2ν−3−1/2

(log 2)2ν−2

(
1 +

ν−1∑
u=2

2u−2 cos
π

2u

)2ν−2

.

PROOF. We omit most part of the proof which follows from the basic theory of cyclo-
tomic fields. When p > 2 and [F : Bν−1] = d , F is a cyclic extension over Q of degree
pν−1d with conductor pν , so that the conductor-discriminant formula gives

D = pνp
ν−1d−(pν−1−1)d/(p−1)−1 .

Combining this with the definition of Θ , we obtain the last conclusion of (i).
We next consider the case where p = 2 and F = Q(ξν). Since

S = {0, . . . , 2ν−1 − 1} , ξ1 = −1 ,

it follows that ∑
m∈S

‖TQ(ξν)/F ((1 − ξ
[m/2ν−1]+1
1 )ξ−m

ν )‖ = 2ν .

We also have D = 2(ν−1)2ν−1
. Hence Θ can be expressed as in the assertion (ii).

We finally consider the case where p = 2, F = Q(ξν − ξ−1
ν ) 
= Q(i), and hence ν ≥ 3.

It readily follows that S = {0, . . . , 2ν−1 − 1} \ {2ν−2}. For any m ∈ S \ {0},
‖TQ(ξν)/F ((1 − ξ

[m/2ν−1]+1
1 )ξ−m

ν )‖ = 2‖ξ−m
ν + (−1)mξmν ‖ ;

further, when m is odd,

‖ξ−m
ν + (−1)mξmν ‖ = 2

∥∥∥∥ sin
π

2ν−1

∥∥∥∥ = 2 sin
(2ν−2 − 1)π

2ν−1 = 2 cos
π

2ν−1

and, when m is even,

‖ξ−m
ν + (−1)mξmν ‖ = 2

∥∥∥∥ cos
mπ

2ν−1

∥∥∥∥ = 2 cos
gcd(m, 2ν−1)π

2ν−1
.

Hence

∑
m∈S

‖TQ(ξν)/F ((1 − ξ
[m/2ν−1]+1
1 )ξ−m

ν )‖ = 4 +
ν−1∑
u=2

2u cos
π

2u
.

However, since F is a cyclic extension over Q of degree 2ν−2 with conductor 2ν , we have
D = 2(ν−1)2ν−2−1. Therefore Θ is expressed as in (iii). �
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PROOF OF PROPOSITION 1. By the hypothesis of the proposition, l ≡ g3
0 (mod 33)

for some primitive root g0 modulo 32, so that F = B1 = Q(ξ2 + ξ−1
2 ), ν = 2, [F : Q] = 3

(cf. Lemma 4), and

O = {a0 + (a1 − a2)ξ2 + (a2 − a1)ξ
2
2 − a2ξ

4
2 − a1ξ

5
2 ; a0, a1, a2 ∈ Z} .

In particular, S = {0, 1, 2, 4, 5}. Hence∑
m∈S

‖TQ(ξ2)/F ((1 − ξ
[m/3]+1
1 )ξ−m

2 )‖

= 3 + 2

∥∥∥∥2 cos
2π

9
− 2 cos

4π

9

∥∥∥∥+
∥∥∥∥2 cos

8π

9
− 2 cos

4π

9

∥∥∥∥+
∥∥∥∥2 cos

10π

9
− 2 cos

2π

9

∥∥∥∥ .
It therefore follows that

Θ = (3 + 8 cos(2π/9)− 8 cos(8π/9))3

3(log 2)3
.

Furthermore, with the same γ as in the introduction, we have

(1 − γ 3)(a0 + (a1 − a2)γ + (a2 − a1)γ
2 − a2γ

4 − a1γ
5)

= a0 + (a1 − a2)γ + (a2 − a1)γ
2 − a0γ

3 − a1γ
4 − a2γ

5 + a2γ
7 + a1γ

8

for a0, a1, a2 in Z. This gives S∗ = {0, 1, 2, 3, 4, 5, 7, 8}. Hence

N =
{
n′ ∈ Z ; n′ ≥ 2,

3n
′−1

8
< Θ

(
log

(
3n

′+3/2

2π
+ 1

2

))3}
= {2, . . . , 18}, n0 = 18 .

Since h1 is known to be 1 and[
Θ

(
log

(
318+3/2

2π
+ 1

2

))3]
= 34681575 ,

we then obtain the proposition from Theorem 1.

REMARK 1. Checking the proof of Theorem 1, we actually deduce the following fact
from Lemmas 1 and 2: If P denotes the set of pairs (n′, l′) such that n′ is an integer greater
than 1, l′ is a prime number congruent to 8 or 17 modulo 27, and

3n
′−1

8
< l′ < (3 + 8 cos(2π/9)− 8 cos(8π/9))3

3(log 2)3

(
log

(
3n

′+3/2

2π
+ 1

2

))3

,

then not only every (n′, l′) in P satisfies n′ ≤ 18 and l′ < 34681575, but the condition l � h18

in Proposition 1 can be replaced by the condition that l does not divide hn′/hn′−1 for any
integer n′ with (n′, l) ∈ P .

PROOF OF PROPOSITION 2. The hypothesis of the proposition implies that F = Q(ξ3)

and ν = 3. As S∗ = {0, . . . , 7}, (ii) of Lemma 4 yields

N = {n′ ∈ Z ; n′ ≥ 3, 2n
′−4 < Θ((n′ + 2) log 2 − logπ)4} = {3, . . . , 36} , n0 = 36 .

Therefore, because of the facts

h2 = 1 , [Θ((36 + 2) log 2 − logπ)4] = 7150001069 = 29 · 8713 · 28297 ,
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the proposition follows from Theorem 1. �

PROOF OF PROPOSITION 3. Since

F = Q(ξ4 − ξ−1
4 ) , ν = 4 , S = {0, 1, 2, 3, 5, 6, 7} ,

we have S∗ = {0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15}. Hence, by (iii) of Lemma 4,

N =
{
n′ ∈ Z ; n′ ≥ 5,

2n
′−3

7
< Θ((n′ + 2) log 2 − logπ)4

}
= {5, . . . , 39} , n0 = 39 .

Furthermore, h3 is known to be 1 and

[Θ((39 + 2) log 2 − logπ)4] = 17324899980 .

Theorem 1 therefore completes the proof of the proposition. �

REMARK 2. We can weaken the conditions of Propositions 2 and 3, as well as the
condition of Proposition 1, in a manner similar to that of Remark 1. Anyhow, once the value
of p and the field F are explicitly given, Theorem 1 provides us with a concrete result such
as each proposition.

3. Proofs of Theorems 2 and 3. Suppose p to be odd in this section. Let R be the
set of positive quadratic residues modulo p smaller than p, i.e.,

R =
{
m ∈ Z ; 0 < m < p,

(
m

p

)
= 1

}
.

We let

R+ =
{
m ∈ R ; m ≤ p − 2,

(
m+ 1

p

)
= −1

}
,

R− =
{
m ∈ R ; 3 ≤ m,

(
m− 1

p

)
= −1

}
= R \ ({m+ 1 ; m ∈ R} ∪ {1}) .

Putting

R∗+ = R+ ∪ {0} , R∗− = R− ∪ {0} ,
let F+ denote the set of all maps from R∗+ ×I to {0, l}, and F− the set of all maps fromR∗−×I
to {0, l}. For each pair (m, u) in R∗+×I , let Gm,u

+ denote the set of maps j : R∗+×I → Z such
that min(l−2, 1) ≤ j (m, u) < l and j (m′, u′) ∈ {0, l} for every (m′, u′) in R∗+ ×I \{(m, u)}.
Similarly, for each (m, u) in R∗− × I , let Gm,u

− denote the set of maps j : R∗− × I → Z such
that min(l−2, 1) ≤ j (m, u) < l and j (m′, u′) ∈ {0, l} for every (m′, u′) in R∗− ×I \{(m, u)}.
We then put

G+ =
⋃

(m,u)∈R∗+×I
Gm,u

+ , G− =
⋃

(m,u)∈R∗−×I
Gm,u

− .
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For each pair (j, j ′) in (G+ × F−) ∪ (F+ × G−), we define

Â(j, j ′) =
∑
u∈I

u

( ∑
m∈R∗+

(1 + pn)m+1j (m, u)+
∑
m∈R∗−

(1 + pn)mj ′(m, u)
)
,

whence

Â(j, j ′) ≡
∑
u∈I

u

( ∑
m∈R∗+

j (m, u)+
∑
m∈R∗−

j ′(m, u)
)

(mod pn) .

We also define

B̂(j, j ′) =
∑
u∈I

( ∑
m∈R∗+

(l − j (m, u))+
∑
m∈R∗−

(l − j ′(m, u))
)
.

Let d be any integer. For each (m, u) ∈ R∗+ × I , let Pm,u+ (d) denote the set of (j, j ′) in
Gm,u

+ × F− such that

Â(j, j ′) ≡ d (mod pn+1) .

For each (m, u) ∈ R∗− × I , let Pm,u− (d) denote the set of (j, j ′) in F+ × Gm,u
− such that

Â(j, j ′) ≡ d (mod pn+1) .

In the case l > 2, we put

s+(w1, w2 ; d) =
∑
u∈I

(
w1

∑
(j,j ′)∈P0,u

+ (d)

(−1)j (0,u)+B̂(j,j ′)j̃ (0, u)

+w2

∑
m∈R+

∑
(j,j ′)∈Pm,u

+ (d)

(−1)j (m,u)+B̂(j,j ′) ˜j (m, u)
)
,

s−(w1, w2 ; d) =
∑
u∈I

(
w1

∑
(j,j ′)∈P0,u

− (d)

(−1)j
′(0,u)+B̂(j,j ′) ˜j ′(0, u)

+w2

∑
m∈R−

∑
(j,j ′)∈Pm,u

− (d)

(−1)j
′(m,u)+B̂(j,j ′) ˜j ′(m, u)

)

for each (w1, w2) ∈ Z × Z ; here, for each integer g relatively prime to l, g̃ denotes the
positive integer smaller than l such that g̃g ≡ 1 (mod l). In the case l = 2, we put

s+(w1, w2 ; d) =
∑
u∈I

(
w1|P0,u

+ (d)| +w2

∑
m∈R+

|Pm,u+ (d)|
)
,

s−(w1, w2 ; d) =
∑
u∈I

(
w1|P0,u

− (d)| +w2

∑
m∈R−

|Pm,u− (d)|
)
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for each (w1, w2) ∈ Z ×Z. Further, put ι = 1 or ι = 0, according to whether p ≡ 1 (mod 4)
or p ≡ 3 (mod 4). Take a pair (c1, c2) of integers for which

c1 > 0 , 2c1 ≥ c2 ≥ 0 ,

and l divides the integer

c2
1 − c1c2 + 1 − (−1)(p−1)/2p

4
c2

2 .

We can now restate [6, Lemma 10] as follows.

LEMMA 5. Assume that [F : Q] = 2 and l divides hn/hn−1. Take any pair (d, d ′) of
integers with d ≡ d ′ (mod pn). Then either

s+(c1 − c2, c2; d) −s−(c1 − ιc2, c2; d)
≡ s+(c1 − c2, c2; d ′)− s−(c1 − ιc2, c2; d ′) (mod l)

or

s+(c1,−c2; d) −s−(c1 + (ι− 1)c2,−c2; d)
≡ s+(c1,−c2; d ′)− s−(c1 + (ι− 1)c2,−c2; d ′) (mod l) .

PROOF OF THEOREM 2. In virtue of [4, Proposition 1], we may suppose that l ≡ g
(mod 25) for some g ∈ {4, 9, 14, 19}, namely, F = Q(

√
5). We then find that

ν = 1 , O = {a + bξ2
1 + bξ3

1 ; a, b ∈ Z} ,
and that, in the group ring of Γ over Z,

(1 − γ )(a + bγ 2 + bγ 3) = a − aγ + bγ 2 − bγ 4 for a, b ∈ Z .

In particular, |S∗| = 4. Since V = {1, i}, it follows that

N

( ∑
δ∈V

ψ(δ)δ − 1

)
= (ψ(1)− 1)2 + ψ(i)2

for every map ψ in Φ. The definition of M therefore gives M < 32l2. Hence Lemma 3 (or
[6, Lemma 8]) shows that 5n < 32l2, i.e., 5n/2/(4

√
2) < l if l divides hn/hn−1. Furthermore,

by [6, Lemma 6], we have

l <
(
√

5 + 1)4

2
√

5

(
(n+ 1) log 5 − logπ + π2/1250

log 2

)2

if l divides hn/hn−1. Now, let P be the set of pairs (n′, l′) such that n′ is a positive integer, l′
is a prime number congruent to either 4, 9, 14 or 19 modulo 25, and

5n
′/2

4
√

2
< l′ <

(
√

5 + 1)4

2
√

5

(
(n′ + 1) log 5 − logπ + π2/1250

log 2

)2

.

Every (n′, l′) ∈ P then satisfies

n′ ≤ 14 , l′ ≤ 26959 .
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Suppose next that (n, l) belongs to P . To complete the present proof, let us see that l does
not divide hn/hn−1. Let u0 be the positive residue of 25n modulo 5n+1. As 2 is a primitive
root modulo 25, we can take as p the prime ideal of Q(i) generated by 5 and i − u0, so that
we have I = {1, u0}. In addition, R∗+ = {0, 1} and R∗− = {0, 4}. Therefore, for each (j, j ′)
in (G+ × F−) ∪ (F+ × G−),

Â(j, j ′) = (1 + 5n)(j (0, 1)+ u0j (0, u0))+ (1 + 5n)2(j (1, 1)+ u0j (1, u0))

+ j ′(0, 1)+ u0j
′(0, u0)+ (1 + 5n)4(j ′(4, 1)+ u0j

′(4, u0)) .

Hence, given an integer d , we know for instance that to determine P0,1
+ (d) is none other than

to solve the congruence

(1+5n)(y1+u0y2)+(1+5n)2(y3+u0y4)+y5 + u0y6+(1+5n)4(y7+u0y8) ≡ d (mod 5n+1)

in eight variables y1, . . . , y8 under the conditions

y1 ∈ {1, . . . , l − 1} , y2, . . . , y8 ∈ {0, l} .
Meanwhile,

B̂(j, j ′) ≡ j (0, 1)+ j (0, u0)+ j (1, 1)+ j (1, u0)

+ j ′(0, 1)+ j ′(0, u0)+ j ′(4, 1)+ j ′(4, u0) (mod 2)

for each (j, j ′) in (G+ × F−) ∪ (F+ × G−). Since 5 is a quadratic residue modulo l, there
exist just two positive integers z < l satisfying z2 − z− 1 ≡ 0 (mod l). Let z0 be the smaller
one of such z. We may let (c1, c2) = (z0, 1). Put, for each d ∈ Z,

s1(d) = s+(z0 − 1, 1; d)− s−(z0 − 1, 1; d) , s2(d) = s+(z0,−1; d)− s−(z0,−1; d) .
By Lemma 5, it now suffices for our proof to find a pair (d, d ′) of integers with d ≡ d ′
(mod 5n) such that

s1(d) 
≡ s1(d
′) (mod l) , s2(d) 
≡ s2(d

′) (mod l) .

However, using Mathematica on a personal computer, we have determined Pm,u+ (1),
Pm,u+ (1 + 5n) for all (m, u) ∈ R∗+ × I and Pm,u− (1), Pm,u− (1 + 5n) for all (m, u) ∈ R∗− × I ;
further, with the help of the computer again, we have computed s1(1), s1(1 + 5n), s2(1),
s2(1 + 5n), and verified that

s1(1) 
≡ s1(1 + 5n) (mod l) , s2(1) 
≡ s2(1 + 5n) (mod l)

unless (n, l) is equal to either (1, 59), (2, 19) or (4, 929). Similarly to the above, we have also
checked that

s1(2) 
≡ s1(2 + 5n) (mod l) , s2(2) 
≡ s2(2 + 5n) (mod l)

if (n, l) is equal to either (1, 59), (2, 19) or (4, 929). In passing, when (n, l) = (1, 59),

s1(1)− s1(1 + 5) ≡ 0 (mod 59) , s2(1)− s2(1 + 5) ≡ 47 (mod 59) ,

s1(2)− s1(2 + 5) ≡ 32 (mod 59) , s2(2)− s2(2 + 5) ≡ 46 (mod 59) ;
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when (n, l) = (2, 19),

s1(1)− s1(1 + 52) ≡ 4 (mod 19) , s2(1)− s2(1 + 52) ≡ 0 (mod 19) ,

s1(2)− s1(2 + 52) ≡ 16 (mod 19) , s2(2)− s2(2 + 52) ≡ 15 (mod 19) ;
when (n, l) = (4, 929),

s1(1)− s1(1 + 54) ≡ 304 (mod 929) , s2(1)− s2(1 + 54) ≡ 0 (mod 929) ,

s1(2)− s1(2 + 54) ≡ 914 (mod 929) , s2(2)− s2(2 + 54) ≡ 360 (mod 929) .

The theorem is thus proved; but we finally add a lemma which is useful in our calculations of
s1(1)− s1(1 + 5n) and s2(1)− s2(1 + 5n) modulo l. Let Y denote the set of all pairs (x1, x2)

in

({1, . . . , 4l − 1} \ {l, 2l, 3l})× {0, l, 2l, 3l, 4l}
or in

{0, l, 2l, 3l, 4l} × ({1, . . . , 4l − 1} \ {l, 2l, 3l})
satisfying

x1 + u0x2 ≡ 1 (mod 5n) .

Obviously (1, 0) belongs to Y .

LEMMA 6. Assume that (n, l) ∈ P , and take any integer n′ in {1, . . . , 14}. Then the
condition that Y = {(1, 0)} if n = n′ implies that

s1(1) 
≡ s1(1 + 5n) (mod l) , s2(1) 
≡ s2(1 + 5n) (mod l)

whenever n ≥ n′.

PROOF. Letting

P(d) =
( ⋃
(m,u)∈R∗+×I

Pm,u+ (d)

)
∪

( ⋃
(m,u)∈R∗−×I

Pm,u− (d)

)

for each d ∈ Z, take any (j1, j
′
1) ∈ P(1) and any (j2, j

′
2) ∈ P(1 + 5n), so that

j1(0, 1)+ j1(1, 1)+ j ′
1(0, 1)+ j ′

1(4, 1)+ u0(j1(0, u0)+ j1(1, u0)+ j ′
1(0, u0)+ j ′

1(4, u0))

≡ 1 (mod 5n) ,

j2(0, 1)+ j2(1, 1)+ j ′
2(0, 1)+ j ′

2(4, 1)+ u0(j2(0, u0)+ j2(1, u0)+ j ′
2(0, u0)+ j ′

2(4, u0))

≡ 1 (mod 5n) .

Assume that n ≥ n′ and that Y = {(1, 0)} if n = n′. The definition of Y as well as the choice
of u0 then induces Y = {(1, 0)} in the case n > n′. Hence we easily see that

j1(R
∗+ × I) = j ′

1(R
∗− × I \ {(0, 1)}) = {0} , j ′

1(0, 1) = 1 ,

j2(0, 1) = 1 , j2(R
∗+ × I \ {(0, 1)}) = j ′

2(R
∗− × I) = {0} ,
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P(1) = P0,1
− (1) = {(j1, j

′
1)} , P(1 + 5n) = P0,1

+ (1 + 5n) = {(j2, j
′
2)} .

Thus

s1(1)=−(z0 − 1)(−1)1+B̂(j1,j
′
1)=−z0 + 1 , s1(1 + 5n)=(z0 − 1)(−1)1+B̂(j2,j

′
2) = z0−1 ,

s2(1) = −z0(−1)1+B̂(j1,j
′
1) = −z0 , s2(1 + 5n) = z0(−1)1+B̂(j2,j

′
2) = z0 .

In particular, since z0(z0 − 1) ≡ 1 (mod l), both s1(1 + 5n) − s1(1) = 2(z0 − 1) and
s2(1 + 5n)− s2(1) = 2z0 are relatively prime to l. �

REMARK 3. With Mathematica, to find whether Y = {(1, 0)} or not is much easier
than to find, for every (j, j ′) in (G+ × F−)∪ (F+ × G−), whether Â(j, j ′) ≡ 1 (mod 5n+1)

or not. Moreover, Y almost always coincides with {(1, 0)} if n is relatively large; for instance,
in case (n, l) ∈ P and n ≥ 12, one has Y 
= {(1, 0)} if and only if (n, l) = (12, 8839) or
(n, l) = (13, 8839).

PROOF OF THEOREM 3. By [4, Proposition 2], we may only consider the case where
F = Q(

√−7), namely,

l ≡ g (mod 49) for some g ∈ {2, 4, 9, 11, 16, 23, 25, 32, 37, 39, 44, 46} .
In this case,

ν = 1 , O = {a + bξ1 + bξ2
1 + bξ4

1 ; a, b ∈ Z} ,
and, in the group ring of Γ over Z,

(1 − γ )(a + bγ + bγ 2 + bγ 4) = a + (b − a)γ − bγ 3 + bγ 4 − bγ 5 for a, b ∈ Z .

Let ω = eπi/3, so that V = {1, ω, ω2}. As |S∗| = 5, it follows for any ψ ∈ Φ that

N

( ∑
δ∈V

ψ(δ)δ − 1

)

= (ψ(1)−1 + ψ(ω))2−(ψ(1)−1 + ψ(ω))(ψ(ω) + ψ(ω2))+ (ψ(ω) + ψ(ω2))2

≤ 1

2
((ψ(1)− 1 + ψ(ω))2 + (ψ(ω)+ ψ(ω2))2) < 100l2 .

Hence we have M < 100l2. This implies, by Lemma 3 (or [6, Lemma 8]), that 7n < 100l2,
i.e., 7n/2/10 < l if l divides hn/hn−1. Let P be the set of pairs (n′, l′) for which n′ is a positive
integer, l′ is a prime number congruent to some integer in {2, 4, 9, 11, 16, 23, 25, 32, 37, 39,
44, 46} modulo 49, and

7n
′/2

10
< l′ <

144√
21

(
(n′ + 1) log 7 − logπ + π2/4802

log 2

)2

.

Then each (n′, l′) ∈ P satisfies

n′ ≤ 13 , l′ ≤ 44543 ,

and [6, Lemma 6], together with an argument above, shows that (n, l) belongs to P if l divides
hn/hn−1.



THE IDEAL CLASS GROUP OF THE Zp-EXTENSION OVER THE RATIONALS 569

Now, assume (n, l) to be in P . Let u0 be the positive residue of 37n modulo 7n+1. Since
3 is a primitive root modulo 49, we may take as p the prime ideal of Q(ω) generated by 7 and
ω − u0. We then see that I = {1, u0, u0 − 1}. Furthermore, R∗+ = {0, 2, 4} and R∗− = {0, 4}.
Hence, for any (j, j ′) in (G+ × F−) ∪ (F+ × G−),

Â(j, j ′) = (1 + 7n)(j (0, 1)+ u0j (0, u0)+ (u0 − 1)j (0, u0 − 1))

+ (1 + 7n)3(j (2, 1)+ u0j (2, u0)+ (u0 − 1)j (2, u0 − 1))

+ (1 + 7n)5(j (4, 1)+ u0j (4, u0)+ (u0 − 1)j (4, u0 − 1))

+ j ′(0, 1)+ u0j
′(0, u0)+ (u0 − 1)j ′(0, u0 − 1)

+ (1 + 7n)4(j ′(4, 1)+ u0j
′(4, u0)+ (u0 − 1)j ′(4, u0 − 1)) ,

B̂(j, j ′) ≡ l + j (0, 1)+ j (0, u0)+ j (0, u0 − 1)+ j (2, 1)+ j (2, u0)

+ j (2, u0 − 1)+ j (4, 1)+ j (4, u0)+ j (4, u0 − 1)+ j ′(0, 1)

+ j ′(0, u0)+ j ′(0, u0 − 1)+ j ′(4, 1)+ j ′(4, u0)+ j ′(4, u0 − 1) (mod 2) .

Noting that −7 is a quadratic residue modulo l, we may let (c1, c2) = (z0, 1)where z0 denotes
the smallest positive integer such that z2

0 − z0 + 2 ≡ 0 (mod l). Let us put, for each d ∈ Z,

s1(d) = s+(z0 − 1, 1; d)− s−(z0, 1; d) , s2(d) = s+(z0,−1; d)− s−(z0 − 1,−1; d) .
As in the proof of Theorem 2, with Mathematica, we have computed s1(1), s1(1 + 7n), s2(1),
s2(1 + 7n), and checked that

s1(1) 
≡ s1(1 + 7n) (mod l) , s2(1) 
≡ s2(1 + 7n) (mod l)

unless (n, l) ∈ {(2, 23), (3, 107), (4, 23), (4, 37)}. We have also verified that

s1(2) 
≡ s1(2 + 7n) (mod l) , s2(2) 
≡ s2(2 + 7n) (mod l)

if (n, l) ∈ {(2, 23), (3, 107), (4, 23), (4, 37)}. Hence, by Lemma 5, l does not divide hn/hn−1

and consequently the theorem is proved.
Similarly to Lemma 6 for the proof of Theorem 2, the following supplementary lemma

is quite useful in our calculations of s1(1)− s1(1 + 7n) and s2(1)− s2(1 + 7n) modulo l; the
proof of the lemma is almost the same as that of Lemma 6.

LEMMA 7. Assume that not only (n, l) ∈ P but l > 2. Let n′ be any integer in
{1, . . . , 13}, and let Y ′ denote the set of triplets (x1, x2, x3) of non-negative integers for which

x1 + u0x2 + (u0 − 1)x3 ≡ 1 (mod 7n)

and either (x1, x2, x3), (x2, x3, x1) or (x3, x1, x2) belongs to

({1, . . . , 5l − 1} \ {l, 2l, 3l, 4l})× {0, l, 2l, 3l, 4l, 5l} × {0, l, 2l, 3l, 4l, 5l} .
Then the condition that Y ′ = {(1, 0, 0)} if n = n′ implies that

s1(1) 
≡ s1(1 + 7n) (mod l) , s2(1) 
≡ s2(1 + 7n) (mod l)

whenever n ≥ n′.
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REMARK 4. In the case p = 7, S∗ is the union of {m+ 1 ; m ∈ R∗+} = {1, 3, 5} and
R∗− = {0, 4}, so that

A(j) = Â(j+, j−) , B(j) ≡ B̂(j+, j−) (mod 2)

for each j ∈ H, where j+ denotes the restriction of j to {1, 3, 5} × I and j− the restriction of
j to {0, 4} × I .

Note added. After the submission of a manuscript of this paper, Professor K. Komatsu
informed us that Propositions 2 and 3 hold without our additional assumptions, namely, if
p = 2 and if l ≡ 7 (mod 16) or l ≡ 9 (mod 16), then the l-class group of B∞ is trivial (for
the details, cf. Fukuda and Komatsu [2]).

Acknowledgment. The authors express their thanks to the referee who made helpful comments on
the paper.
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