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Abstract. We show various examples of torsion-free affine connections which pre-
serve volume elements and have definite Ricci curvature tensors.

1. Introduction. We will show various examples of affine connections with charac-
teristic properties on the Ricci curvature. All connections which we treat in this paper are
torsion-free and have parallel volume elements. We will give projectively flat affine connec-
tions with negative definite Ricci curvature on the torus T n (Proposition 3.1). We will also
give affine connections with positive Ricci curvature on compact parallelizable manifolds of
dimension greater than two (Theorem 3.3). It follows from this result that every compact ori-
entable 3-manifold has an affine connection of positive definite Ricci curvature. In dimension
two, we will give affine connections of negative Ricci curvature on the torus T 2 and Klein’s
bottle RP2#RP2 (Proposition 4.1). In view of an eminent theorem by J. Lohkamp [2], what
remain to be examined about negative Ricci curvature are the sphere S2 and the real projective
plane RP2. We will add an observation on this matter (Proposition 4.6).

2. Preliminaries. For a smooth manifold M we denote by A(M) the space of all
torsion-free affine connections of M that preserve some volume elements. Suppose that ∇ ∈
A(M), n = dimM and ∇dµ = 0, where dµ is a volume element of M . Then the curvature
tensor is defined as R∇(X, Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z. The Ricci curvature
Ric(X, Y ) is defined as the trace of linear transformation; Z ∈ TpM �→ R∇(Z, Y )X ∈ TpM .
Note that Ric∇ ∈ T ∗

pM ⊗ T ∗
pM = Hom(TpM, T ∗

pM). Since ∇dµ = 0, the first Bianchi

identity implies that Ric∇(X, Y ) = Ric∇(Y,X).
Let A = Aij dx

i ⊗ dxj ∈ T ∗
pM ⊗ T ∗

pM = Hom(TpM, T ∗
pM) be a 2-tensor, and ω =

adx1 ∧ · · · ∧ dxn = ωi1···indxi1 ⊗ · · · ⊗ dxin = ωi1···indxi1 ∧ · · · ∧ dxin be (local) volume
form representing dµ. Here we adopt the summation convention for repeated indices. Then,

ωi1···in =



a/n! if (i1, . . . , in) is an even permutation of (1, . . . , n) ,

−a/n! if (i1, . . . , in) is an odd permutation of (1, . . . , n) ,

0 otherwise .
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Note that (dx1 ∧ · · · ∧ dxn)(∂1, . . . , ∂n) = (dx1 ∧ · · · ∧ dxn)(∂1 ∧ · · · ∧ ∂n) = 1/n!, where
∂i = ∂/∂xi.Hence, putω∗ = (n!/a) ∂1∧· · ·∧∂n = ωi1···in∂i1 ⊗· · ·⊗∂in = ωi1···in∂i1 ∧· · ·∧∂in ,
and we have ω(ω∗) = ω∗(ω) = 1, where

ωi1···in =




1/a if (i1, . . . , in) is an even permutation of (1, . . . , n) ,

−1/a if (i1, . . . , in) is an odd permutation of (1, . . . , n) ,

0 otherwise .

The determinant of A with respect to dµ is then defined as†

A∗ω∗ = n!(detdµA)ω .

We note that detdµ A = det(Aij ) if dµ = dx1 · · · dxn. The cofactor tensor Â = Âij ∂i ⊗ ∂j ∈
TpM ⊗ TpM is defined so that

ÂijAik = (detdµA)δ
j
k .

LEMMA 2.1. Notation being as above, we have
(i) ωi1···inAi1j1 · · ·Ainjnωj1···jn = n! detdµ A;

(ii) Âij = 1

(n− 1)!ω
i1···in−1iAi1j1 · · ·Ain−1jn−1ω

j1···jn−1j .

PROOF. By definition, ω∗(A∗ω∗) = n! detdµ A. This shows (i). If j �= k, it is easy to
see that ωi1···in−1iAi1j1 · · ·Ain−1jn−1Aikω

j1···jn−1j = 0. Then (ii) follows from (i). �

COROLLARY 2.2. If Aij ;k = Aik;j , then Âij ;j = 0.

PROOF. Under the assumption we have Ai1j1 · · ·Aikjk;j · · ·Ain−1jn−1ω
i1···jk ···jn−1j = 0.

Since ∇dµ = 0, the assertion follows from (ii) of the above lemma. �

An affine connection ∇ ∈ A(M) is said to be projectively flat if the following conditions
are satisfied:

R∇(X, Y )Z = 1

n− 1
(Ric∇(Y,Z)X − Ric∇(Z,X)Y )(1)

and

(∇ZRic∇)(X, Y ) = (∇YRic∇)(X,Z) .(2)

If n = 2, the equality (1) always holds because of the first Bianchi identity. If n ≥ 3, (1)
implies (2) from the second Bianchi identity. It follows from Corollary 2.2 that div∇ R̂ic = 0
if ∇ is projectively flat.

Now, let ∇̄ ∈ A(M) be a reference connection, and suppose ∇̄dµ = 0. Let (ei) be
a frame of TpM , and (ei) its dual. We say that a (1, 2)-tensor S = Sijk ei ⊗ ej ⊗ ek ∈
Hom(TpM ⊗ TpM, TpM) is symmetric if Sijk = Sikj . We use the following notation:

tr S := S
j
ij e

i , div∇̄ S := Skij |k ei ⊗ ej , S · S := SlikS
k
jl e

i ⊗ ej ,

where | stands for the covariant differentiation with respect to ∇̄.
†The definition in [1; p. 466, l. 6] is incorrect.
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LEMMA 2.3. Suppose ∇̄ ∈ A(M) and ∇̄dµ = 0. Let S be a symmetric (1, 2)-tensor
field, and ∇ = ∇̄ + S, that is, ∇XY = ∇̄XY + S(X, Y ). Then the following hold.

(i) ∇ ∈ A(M) if and only if tr S is an exact 1-form.
(ii) ∇dµ = 0 if and only if tr S = 0.

(iii) The Ricci curvature is given as

Ric∇ = Ric∇̄ + div∇̄ S − S · S − ∇̄trS + (tr S) · S.(3)

This is written in index notation as

Rij = R̄ij + Skij |k − SlikS
k
jl − si|j + skS

k
ij ,

where si = S
j
ij .

PROOF. For a function u, we have ∇(eudµ) = eudµ⊗ (du− tr S). This yields (i) and
(ii) immediately. (iii) is shown by a direct calculation. �

From (i), A(M) itself is an affine space.

LEMMA 2.4. Suppose M is compact. If there is a symmetric (1, 2)-tensor field S with
trS = 0 such that −S · S is positive (resp. negative) definite, then there is a ∇ ∈ A(M) such
that Ric∇ is positive (resp. negative) definite.

PROOF. It follows from (3) that ∇ = ∇̄ + tS has the required property for sufficiently
large t ∈ R. �

3. Ricci curvature of parallelizable manifolds.

PROPOSITION 3.1. Let T n be the n-dimensional torus. If n ≥ 2, there is a ∇ ∈ A(T n)
with the following properties:

(i) Ric∇ is negative definite.
(ii) ∇ is projectively flat.

(iii) det R̂ic∇ is constant and div∇ R̂ic∇ = 0.

PROOF. Let g be the Euclidean metric of Rn, and ∇̄ the standard flat connection. Take
vectors X0, X1, . . . , Xn of Rn such that ∇̄Xi = 0 and

g(Xi,Xj ) =
{

1 , if i = j ,
−1/n , if i �= j .

Then {X1, . . . , Xn} is a basis of Rn. Define covectors ξ0, ξ1, . . . , ξn as

ξi(Xj ) = g(Xi,Xj ) .

Then,
n∑
i=0

Xi = 0 ,
n∑
i=0

ξi = 0 .
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Put

S :=
n∑
i=0

Xi ⊗ ξi ⊗ ξi .

Clearly, this is symmetric and tr S = 0. Furthermore,

S · S =
( ∑

i

Xi ⊗ ξi ⊗ ξi

)
·
( ∑

j

Xj ⊗ ξj ⊗ ξj

)
=

∑
i,j

ξi (Xj )ξj (Xi)ξi ⊗ ξj

=
∑
i=j

ξi ⊗ ξj + 1

n2

∑
i �=j

ξi ⊗ ξj =
(

1 − 1

n2

) ∑
i

ξi ⊗ ξi .

It is easy to see that
∑
ξi⊗ξi = ((n+1)/n)g . Thus, by putting ∇ = ∇̄ +S, we have from (3)

Ric∇ = − (n− 1)(n+ 1)2

n3 g ,

which is negative definite.
Direct calculations show that for i �= j ,

∇XiXi = n2 − 1

n2 Xi , ∇XiXj = −n+ 1

n2 (Xi + Xj) .

By further calculation, we have for mutually distinct i, j , k

R∇(Xi,Xj )Xj = − (n+ 1)2

n4
(nXi +Xj) ,

R∇ (Xi,Xj )Xk = (n+ 1)2

n4
(Xi −Xj) .

From these, (1) follows. A direct calculation also shows (2). Thus ∇ is projectively flat.
For the volume element dµg of the metric g , we have ∇dµg = 0. It is clear that det Ric∇

is constant with respect to dµg . The equality div∇ R̂ic
∇ = 0 follows from (ii) and Corollary

2.2.
Since the connection ∇ is invariant under translations of Rn in the usual sense, it defines

a connection of T n = Rn/Zn. �

REMARK 3.2.
(i) The connection obtained in this proof is not geodesically complete.

(ii) For any t ∈ R \ {0}, ∇ := ∇̄ + tS also has the same properties.
(iii) If n = 3, S := ∂x ⊗ (dy ⊗ dz + dz ⊗ dy)+ ∂y ⊗ (dz ⊗ dx + dx ⊗ dz) + ∂z ⊗

(dx ⊗ dy + dy ⊗ dx) also defines a connection with the same properties.

THEOREM 3.3. Suppose M is compact, n = dimM ≥ 3 and M is parallelizable.
Then there is a ∇ ∈ A(M) such that Ric∇ is positive definite.

PROOF. Let (e1, e2, . . . , en) be a global frame field of the tangent bundle TM , and
(e1, e2, . . . , en) its dual so that ei(ej ) = δij . For a, b ∈ R, which will be determined later,
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define (1, 2)-tensor field S as

S =
n∑
i=1

ei ⊗ (aei−1 ⊗ ei−1 − ei−1 ⊗ ei − ei ⊗ ei−1 + ei ⊗ ei + bei+1 ⊗ ei+1) ,

where we put e0 = en and en+1 = e1. Note that ei−1, ei , ei+1 are mutually distinct as n ≥ 3.
Obviously, S is symmetric, and trS = 0. A calculation shows that

−S · S = 2(b − 1)
n∑
i=1

ei ⊗ ei + (1 − ab)

n∑
i=1

(ei−1 ⊗ ei + ei ⊗ ei−1) .

Therefore, putting a = 2/3 and b = 3/2, we have

−S · S =
n∑
i=1

ei ⊗ ei ,

which is positive definite everywhere. Thus the assertion follows from Lemma 2.4. �

From Stiefel’s theorem that every compact orientable 3-manifold is parallelizable, we
have the following.

COROLLARY 3.4. IfM is a compact orientable 3-manifold, there is a ∇ ∈ A(M) such
that Ric∇ is positive definite.

REMARK 3.5. In the way as in the proof of Proposition 3.1, we get ∇ ∈ A(T n), using
S of the above proof. Then this connection is not projectively flat. Neither (1) nor (2) is

satisfied. In addition, div∇ R̂ic
∇ �= 0, but div∇ div∇ R̂ic

∇ = 0 and det Ric∇ is constant (cf.
[1; Proposition 3.1]).

4. The case of dimension two.

PROPOSITION 4.1. Let M be the torus T 2 or Klein’s bottle RP2#RP2. Then there is
a ∇ ∈ A(M) with the following properties:

(i) Ric∇ is negative definite.
(ii) ∇ is projectively flat.

(iii) det R̂ic∇ is constant, and div∇ R̂ic∇ = 0.

PROOF. Though we have already given a proof for M = T 2, we repeat it. Let x, y be
the standard coordinates of R2, dµ = dxdy and ∇̄ ∈ A(R2) the standard flat connection. Put

S := ∂x ⊗ (dx ⊗ dx − dy ⊗ dy)− ∂y ⊗ (dx ⊗ dy + dy ⊗ dx) ,

and we have tr S = 0 and −S · S = −2(dx⊗ dx + dy⊗ dy). We note that this S is 4/3 times
the S in the proof of Proposition 3.1. Thus from (3) we have for ∇ = ∇̄ + S

Ric∇ = −2(dx ⊗ dx + dy ⊗ dy) ,

which is negative definite. It is easy to check (ii) and (iii).
Since ∇ is invariant under translations of R2 in the usual sense, it descends to T 2 =

R2/Z2. Also it is invariant under transformations: ϕ : R2 → R2; (x, y) �→ (x, y + 1) and



362 O. KOBAYASHI

ψ : R2 → R2; (x, y) �→ (x + 1, 1 − y). Hence it induces a connection of RP2#RP2 =
R2/〈ϕ,ψ〉. �

Now, suppose dimM = 2, and let x, y be local coordinates of U ⊂ M . Define (1, 2)-
tensor fields A, B, C, D on U as follows:




A = ∂x ⊗ (dx ⊗ dx − dy ⊗ dy)− ∂y ⊗ (dx ⊗ dy + dy ⊗ dx) ,

B = ∂y ⊗ (dy ⊗ dy − dx ⊗ dx)− ∂x ⊗ (dx ⊗ dy + dy ⊗ dx) ,

C = ∂x ⊗ dy ⊗ dy ,

D = ∂y ⊗ dx ⊗ dx .

(4)

Any symmetric (1, 2)-tensor field S on U with tr S = 0 can be decomposed as

S = aA+ bB + cC + dD ,

where a, b, c, d ∈ C∞(U). The matrix form of −S · S is given as

−S · S =
(−2(a2 + b2 − bd) ad + bc− cd

ad + bc− cd −2(a2 + b2 − ac)

)
.

LEMMA 4.2. If −S · S is negative definite at p ∈ U , then a(p)2 + b(p)2 > 0.

The following lemma shows that the method of the proof of Theorem 3.3 does not work
in dimension two.

LEMMA 4.3. If −S · S is positive semi-definite at p ∈ U , then S · S = 0 at p.

PROOF. Transform the coordinates x and y by SO(2), if necessary, and we may assume
that ad + bc− cd = 0 at p. Then the proof is easy. �

This lemma does not hold in dimension greater than two. A counterexample is the S in
the proof of Theorem 3.3. A simpler counterexample is given by S = ∂y ⊗ (dx ⊗ dz+ dz⊗
dx)− ∂z ⊗ (dx ⊗ dy + dy ⊗ dx), for which −S · S = 2 dx ⊗ dx is positive semi-definite.

QUESTION 4.4. Let M be a closed surface with χ(M) ≤ 0. Does there exist a ∇ ∈
A(M) such that Ric∇ is positive definite?

It follows from Proposition 4.1 that for a closed surface M with χ(M) ≤ 0 there is a
∇ ∈ A(M) such that Ric∇ is negative definite. Thus the remainning cases to be considered
are those of the sphere and the real projective plane.

QUESTION 4.5. LetM be S2 or RP2. Does there exist a ∇ ∈ A(M) such that Ric∇ is
negative definite?

The following result makes clear the problem involved.

PROPOSITION 4.6. There is no symmetric (1, 2)-tensor field S on the sphere S2 with
trS = 0 such that −S · S is negative definite everywhere.
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PROOF. To the contrary, we assume that there exists such an S on the sphere. We regard
S2 as R2 ∪ {∞}. Let x, y be the coordinates of R2, and

x̃ = x

x2 + y2 , ỹ = y

x2 + y2

be the coordinates of S2 \ {0}. Let A, B, C and D be the tensor fields on R2 defined in (4).
By Ã, B̃, C̃ and D̃ we denote those tensor fields on S2 \ {0} obtained by replacing x, y with
x̃, ỹ in (4). Functions a, b and so on are defined such that

S|S2\{∞} = aA+ bB + cC + dD , S|S2\{0} = ãÃ+ b̃B̃ + c̃C̃ + d̃D̃ .

From Lemma 4.2, we have a2 + b2 > 0 and ã2 + b̃2 > 0. Since being negative definite is
an open condition, we may assume that there is ρ0 ∈ R+ such that a, b, c and d are constant
where x2 + y2 ≤ e−2ρ0 , and that ã, b̃, c̃ and d̃ are constant where x̃2 + ỹ2 ≤ e−2ρ0 .

Define coordinates ρ, θ of R × R/2πZ ∼= S2 \ {0,∞} as

x = eρ cos θ , y = eρ sin θ .

By Â, B̂ , Ĉ and D̂, we denote those tensor fields obtained by replacing x, y with ρ, θ in (4).
â, b̂, ĉ and d̂ are functions such that S|S2\{0,∞} = âÂ+ b̂B̂ + ĉĈ + d̂D̂.

For ρ ∈ R, define a closed curve γρ as

γρ : S1 → R2; θ mod 2π �→ (â(ρ, θ), b̂(ρ, θ)) .

From Lemma 4.2, the closed curves γρ never pass through (0, 0) ∈ R2. We put

ât =eρ
(
a cos 3θ − b sin 3θ + t

2
sin 2θ(c sin θ + d cos θ)

)
,

b̂t =eρ
(
a sin 3θ + b cos 3θ + t

2
sin 2θ(−c cos θ + d sin θ)

)
.

Then by calculations, we have (â, b̂) = (â1, b̂1). Hence, by putting

γρ,t : S1 → R2; θ mod 2π �→ (ât (ρ, θ), b̂t (ρ, θ)) ,

we have γρ = γρ,1. Moreover, since a, b, c, d are constant where ρ ≤ −ρ0, we get

γρ,t

(
θ + π

2

)
= J (γρ,t (θ)) for ρ ≤ −ρ0 ,

where J : R2 → R2; (ξ, η) �→ (−η, ξ). Thus if ρ ≤ −ρ0, the closed curves γρ,t have a
cyclic symmetry of order 4 around (0, 0) ∈ R2. Therefore,

w(γ0, o) = w(γ−ρ0 , o) = w(γ−ρ0,1, o) ≡ w(γ−ρ0,0, o) = 3 (mod 4) ,

where, w(·, o) stands for the winding number around o = (0, 0) ∈ R2.
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On the other hand, direct calculations show that

â = − e−ρ
(
ã cos 3θ − b̃ sin 3θ + 1

2
sin 2θ(c̃ sin θ + d̃ cos θ)

)
,

b̂ =e−ρ
(
ã sin 3θ + b̃ cos 3θ + 1

2
sin 2θ(−c̃ cos θ + d̃ sin θ)

)
.

Hence a similar argument leads to the congruence

w(γ0, o) ≡ −3 (mod 4) ,

which is a contradiction. �

REFERENCES

[ 1 ] O. KOBAYASHI, A variational problem for affine connections, Arch. Math. 86 (2006), 464–469.
[ 2 ] J. LOHKAMP, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), 655–683.

DEPARTMENT OF MATHEMATICS

KUMAMOTO UNIVERSITY

KUMAMOTO 860–8555
JAPAN

E-mail address: o-kbysh@kumamoto-u.ac.jp


