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INFLECTION POINTS AND DOUBLE TANGENTS
ON ANTI-CONVEX CURVES
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Abstract. A simple closed curve in the real projective plane is called anti-convex if
for each point on the curve, there exists a line which is transversal to the curve and meets the
curve only at that given point. Our main purpose is to prove an identity for anti-convex curves
that relates the number of independent (true) inflection points and the number of independent
double tangents on the curve. This formula is a refinement of the classical Möbius theorem.
We also show that there are three inflection points on a given anti-convex curve such that
the tangent lines at these three inflection points cross the curve only once. Our approach is
axiomatic and can be applied in other situations. For example, we prove similar results for
curves of constant width as a corollary.

Introduction. Let P 2 denote the real projective plane. We assume curves to be param-
eterized and C1-regular. A simple closed curve in P 2 is said to be anti-convex or satisfying
the Barner condition if for each point p on the curve, there exists a line which is transversal
to the curve and meets the curve only at p. This condition is the n = 2 case of a condition
introduced by Barner in [3] for simple closed curves in the real projective n-space Pn for
n ≥ 2. An anti-convex curve is automatically not contractible.

Let γ1 and γ2 be two arcs in some affine plane A2 ⊂ P 2. We say that γ1 crosses γ2 in
a closed arc α if α is a maximal common arc of γ1 and γ2 and there is an open subarc α̃ of
γ1 containing α such that the two components of α̃ − α do not lie on the same side of γ2 (but
might not be disjoint from γ2). The arc α can of course consist of a single point. If γ1 meets
γ2 transversally in a point p, then γ1 of course crosses γ2 in p. Examples of crossing curves
are shown in Figure 1.

An inflection point p of a curve γ will be called a true inflection point if the tangent
line of γ at p crosses γ in an arc containing p. Two inflection points are called independent
if they are not contained in an arc of γ consisting of true inflection points. (The inflection
points on the curve γ2 on the right in Figure 1 are not independent. On the other hand, the
three inflection points in Figure 4 are independent.) We will denote the maximal number of
independent true inflection points on γ by i(γ ).
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FIGURE 1. Crossing curves.

FIGURE 2. Two types of independent double tangent.

FIGURE 3. Dependent double tangents.

A double tangent of a curve γ is roughly speaking a line L that is tangent to γ at the
endpoints of a nontrivial arc α of γ contained in an affine planeA2 ⊂ P 2 in such a way that α
is locally around its endpoints on the same side of L∩A2. (A precise definition will be given
in Section 4.) We call α a double tangent arc. A set of double tangent arcs α1, . . . , αk is said
to be independent if any two of the arcs are either disjoint or one is a subarc of the other; see
Figures 2 and 3.

We will denote the number of elements in a maximal set of independent double tangent
arcs by δ(γ ). It will follow from Theorem A, which we now state, that δ(γ ) is independent of
the choice of a maximal set of independent double tangent arcs on γ .

THEOREM A. Let γ be a C1-regular anti-convex curve in P 2 which is not a line. If the
number i(γ ) of independent true inflection points on γ is finite, then so is the number δ(γ ) of
elements in a maximal set of independent double tangents, and

(∗) i(γ )− 2δ(γ ) = 3

holds. In particular, the number δ(γ ) does not depend on the choice of a maximal set of
independent double tangents if i(γ ) is finite.
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Formula (∗) is reminiscent of the Bose formula for simple closed curves in the Euclidean
plane saying that s − t = 2, where s is the number of inscribed osculating circles and t is
the number of triple tangent inscribed circles. This formula was proved for convex curves by
Bose in [4] and in the general case by Haupt in [8]. Our method to prove Theorem A will be
similar to the one used by the second author to prove the Bose formula in [20]. The authors
do not know whether Formula (∗) holds for non-contractible simple closed curves which are
not necessarily anti-convex.

There is a well-known formula for generic closed curves in the affine plane A2 due to
Fabricius-Bjerre relating the numbers of double points, inflection points, and double tangents;
see [5]. When the curves have no inflection points, Ozawa [13] gave a sharp upper bound on
the number of double tangents. Formulas for real algebraic curves in P 2 go at least back to
Klein; see the paper [21] of Wall.

We will also prove the following theorem.

THEOREM B. Let γ be a C2-regular anti-convex curve in P 2 which is not a line. Then
γ has at least three inflection points with the property that the tangent lines at these inflection
points cross γ only once.

The theorem is optimal. An inflection pointp is called clean if the tangent line at p meets
the curve in a connected set. A clean inflection point is a typical example of an inflection
point as in Theorem B. An anti-convex curve is called generic if it meets each line in at
most finitely many components. If the curve γ in Theorem B is generic, one can improve
the conclusion and prove that γ has even three clean inflection points. (See Theorem 2.10.)
The noncontractible branch of a regular cubic in P 2 has three clean inflection points. Möbius
proved that a simple closed noncontractable curve in P 2 has at least three (true) inflection
points. Several proofs of this result are known; see [9], [7] and [14]. One can show with
examples that none of these has to be a clean inflection point; see Figure 4.

A similar result is proved in [18] and [19] for clean sextactic points on a strictly convex
curve in the affine plane. It says that such a curve has three inscribed osculating conics
and three circumscribed osculating conics. It should also be remarked that the Tennis Ball
Theorem ([1] and [2]), the theorem of Segre on space curves in [15], and the refinement of the

FIGURE 4. A simple closed curve with no clean inflection points.
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Four-Vertex Theorem in [17] can be considered as generalizations of the Möbius Theorem;
see [17].

In the proof of Theorem B we use an approach that goes back to Kneser’s proof of
the four vertex theorem; see [10], [20] and also [17], [16]. (A further development of this
approach is also crucial in the proof of Theorem A.)

The theorems will be proved in later sections. Here we would like to explain some of the
basic ideas in the proofs. Let π̂ : S2 → P 2 be the universal covering of P 2. Since γ is not
contractible, it lifts to a simple closed curve γ̂ that double covers γ . Through every point p
on γ̂ , there is a great circle L̂p on S2 (which is the double cover of the line Lp) that meets γ̂
only at p and the antipodal point T (p) = −p. The parametrization of γ̂ and the orientation
of S2 give us a tangent vector field and a normal vector field along γ̂ respectively. We will
assume the normal direction to be on the left side of the curve. We define the positive rotation
direction along the curve by rotating the normal vector towards the tangent vector. Notice
that the positive rotation direction is the clockwise direction. Let us now rotate the circle L̂p
around p as far as possible in the positive direction through circles which only meet γ̂ at p
and T (p). We denote the limiting great circle by Cp. There are two possibilities. The first
is that π̂(Cp) only meets γ in one component. Then p is a clean inflection point. The other
possibility is that π̂(Cp) meets γ in more than one component; see Figure 5. In this case p
may or may not be an inflection point, but it is of course not a clean inflection point. We define
a closed subset F(p) by setting

(1) F(p) = Cp ∩ γ̂ .
We identify S1 with the image of the curve γ̂ and introduce on S1 a cyclic order that

agrees with the orientation of the curve. We will first assume that no line meets γ at infinitely
many points and then discuss the general case. If p in S1 is not an inflection point, we let δ
denote the distance from p to the next point q ∈ F(p) in (p, Tp), where (a, b) denotes the
interval from a ∈ S1 to b ∈ S1 with respect to the cyclic order of S1 and F(p) is defined
in Equation (1). Let p1 be the midpoint of the interval [p, q]. The subset F(p1) lies in the
interval [p, q] ∪ [Tp, T q]. If p1 is not a clean inflection point we let δ1 denote the distance to
the point q1 closest to p1 in F(p1) ∩ (p1, Tp1). Notice that δ1 ≤ δ/2. Iterating this process,
we either arrive at a point pn which is a clean inflection point, or get a sequence (pn) that
converges to a clean inflection point. As we will see in Section 2, this approach leads to the

FIGURE 5. The projection of limiting great circle.
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FIGURE 6. The supporting function.

existence of at least three inflection points. In the proof of Theorem B we only use a few
axiomatic properties of the family {F(p)}p∈S1 of closed subsets in S1. It can therefore be
applied to different situations.

In Section 5, we apply the above method to convex curves of constant width.
Let γ be a strictly convex curve in R2. For each t ∈ [0, 2π), there is a unique oriented

tangent line L(t) of the curve which makes angle t with the x-axis. Let h(t) be the distance
between a fixed point o in the open domain bounded by γ and the line L(t); see Figure 6.
Note that t gives a parametrization of the strictly convex curve γ , which we will use from
now on. The function h is called the supporting function of the curve γ with respect to o. A
strictly convex curve has constant width d if and only if h(t)+ h(t + π) = d holds.

We now fix a curve γ of constant width d . For each point p on the curve, there exists a
unique circle Γp of width d such that Γp is tangent to γ at p, that is, Γp and γ meet at p with
multiplicity at least two. Since Γp is the best approximation of γ at p among the circles of
width d , we call Γp the osculating d-circle at p. Generically, the osculating d-circle of γ at
p does not cross γ at p.

We will prove the following theorem in Section 5.

THEOREM C. Let γ be a C3-regular strictly convex curve of constant width d , which
is not a circle. Then there exist at least three osculating d-circles which cross γ exactly twice,
both times tangentially. Moreover, these circles coincide with the osculating circles (in the
usual sense) at each of their crossing points on γ .

The above theorem is a refinement of the fact that there are six distinct points on γ whose
osculating circles have radius d/2. (Basic properties of curves of constant width can be found
in [22].) In Figure 7 we indicate the three osculating circles of diameter d of the curve of
constant width whose supporting function is (d/2)+ sin 3t .

We will also prove a formula analogous to the one in Theorem A for curves of constant
width in Section 5.

The authors would like to thank the referee for the careful reading and the valuable
comments.
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FIGURE 7. The three osculating circles.

1. Intrinsic line systems. In this section, we shall derive some basic properties of the
family of closed subsets {F(p)}p∈S1 defined in Equation (1) in Introduction. We shall then
use these properties to define what we will call an ‘intrinsic line system’.

Let γ : P 1 → P 2 be a C1-regular anti-convex curve in P 2, where P 1 is a closed
circle considered as a projective line. We assume that the image of γ is not a line in P 2. Let
π̂ : S2 → P 2 and π : S1 → P 1 be the canonical covering projections. Then there exists a
simple closed curve γ̂ : S1 → S2 such that

π̂ ◦ γ̂ = γ ◦ π .
Moreover, for each pointp on γ̂ , there exists a great circle L̂p on S2 such that π̂(L̂p) = Lπ(p).
By rotating L̂p in the clockwise direction through great circles that only meet γ̂ at p and the
antipodal point Tp, we arrive at the limiting great circle Cp as in Introduction. Let Dγ̂ be

the domain on the left hand side of γ̂ . We orient L̂p such that it passes into Dγ̂ after going

through p. The orientation of the great circle L̂p induces an orientation on the limiting great
circle Cp.

If C is an oriented great circle, we denote by H+(C) (resp. H−(C)) the closed hemi-
sphere on the left (resp. right) hand side of C. By applying a suitable diffeomorphism to S2,
we can map γ̂ onto the equator andDγ̂ on the upper hemisphere. If we compose this with the

stereographic projection into the plane, γ̂ and H+(L̂p) look as in Figure 8. Though γ̂ may
not be star-shaped in general, we shall frequently use this kind of sketches of γ̂ to simplify
the figures.

The following assertion is obvious.

PROPOSITION 1.1. The arc of γ̂ : S1 → S2 from p to Tp (resp. from Tp to p) lies in
H−(L̂p) (resp. H+(L̂p)).

PROPOSITION 1.2. The limiting great circle Cp has the following properties:
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FIGURE 8. FIGURE 9.

(a) The arc of γ̂ from p to Tp (resp. from Tp to p) lies in H−(Cp) (resp. H+(Cp)).
(b) The set F(p) has at least three connected components, if Cp is not the tangent line

of γ̂ at p.

PROOF. Since Cp is the limit of circles like L̂p, Property (a) follows from Proposition
1.1. To prove (b), we suppose that Cp is not a tangent line of γ̂ at p ∈ S1. Then Cp meets
γ transversally at p and Tp. Hence, if Cp meets γ̂ only at these two points, one can rotate it
slightly in positive direction through curves that are transversal to γ̂ in p and Tp and meet γ̂
only at these two points. This contradicts the definition of Cp. Thus there exits a point q in
F(p) = Cp ∩ γ̂ which is distinct from both p and Tp. Since γ̂ is not a great circle, p and
Tp belong to different connected components of F(p). Since both Cp and γ̂ are symmetric
with respect to T , it follows that Cp is neither a tangent line at p nor at Tp. If q is in the
same connected component of F(p) as p (or Tp), Cp contains the segment of γ̂ between
p and q (or Tp and q), which implies that Cp must be the tangent line at p (resp. Tp),
a contradiction. �

Conversely, we have the following

PROPOSITION 1.3. If a great circle C through p and Tp satisfies the following two
properties, then C coincides with Cp.

(a) The arc of γ̂ from p to Tp (resp. from Tp to p) lies in H−(C) (resp. H+(C)).
(b) C is tangent to γ̂ at all points in C ∩ γ̂ different from p and Tp. Moreover, if C is

not tangent to γ̂ at p and Tp, then C ∩ γ̂ contains a point different from p and Tp.

PROOF. Since C is tangent to γ̂ at all points in C ∩ γ̂ different from p and Tp, we can
rotate C slightly in negative direction into a great circle which meets γ̂ transversally in p and
Tp and does not have any further points with it in common. It now follows from the definition
of Cp that C = Cp. �

We will denote by F0(p) the connected component of F(p) = Cp ∩ γ̂ containing p for
each point p on S1.
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FIGURE 10.

PROPOSITION 1.4. Suppose that γ : P 1 → P 2 is an anti-convex curve which is not
a line and meets each line in P 2 in at most finitely many connected components. Then the
corresponding family {F(p)}p∈S1 of subsets of S1 satisfies the following properties:

(L1) p ∈ F(p).
(L2) F (p) is a closed proper subset of S1 and has finitely many connected components.
(L3) If q ∈ F(p), then T q ∈ F(p) where T : S1 → S1 is the restriction of the

antipodal map on S2 to γ̂ .
(L4) Suppose p′ ∈ F(p) and q ′ ∈ F(q) satisfy

p ≤ q ≤ p′ ≤ q ′(≤ Tp)

or
p ≥ q ≥ p′ ≥ q ′(≥ Tp) ,

where ≥ and ≤ denote the cyclic order of S1. Then F(p) = F(q).
(L5) If π(F(p)) = π(F0(p)), then π(F(Tp)) �= π(F0(Tp)), where π : S1 → P 1

denotes the canonical projection.
(L6) q ∈ F0(p) if and only if F(p) = F(q).
(L7) Let (pk) be a sequence in S1 that converges to an element p in S1, and let (sk) be

another sequence in S1 such that sk ∈ F(pk) and lim sk = s. Then s ∈ F(p).
PROOF. (L1) is obvious. (L2) is a trivial consequence of the assumption that γ and a

line meet in at most finitely many connected components. (L3) follows from the fact that γ̂
and L̂p are both symmetric with respect to the antipodal map T .

We now prove (L4). If Cp and Cq are great circles which meet at two points which
are not antipodal, then Cp must be equal to Cq . Suppose p′ ∈ F(p) and q ′ ∈ F(q), and
p ≤ q ≤ p′ ≤ q ′(≤ Tp) or p ≥ q ≥ p′ ≥ q ′(≥ Tp) holds. Then the subarc of Cq between
q and q ′ must meet Cp twice. One is between p and p′, and the other is between p′ and Tp
on Cp. (See Figure 10 for the case p ≤ q ≤ p′ ≤ q ′.) Thus Cp = Cq holds.

Now we prove (L5). If π(F(p)) = π(F0(p)), then F(p) consists of two connected
components. By Proposition 1.2 (b), Cp is a tangent line at p. The great circle CTp coincides
with the great circle which we get by rotating Cp in negative direction through great circles
meeting γ̂ only at p and Tp until it hits γ̂ . The great circles Cp and CTp cannot coincide,
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FIGURE 11. Negatve inflection and positive inflection.

since γ is not a line. It follows that CTp is not tangent to γ̂ at p and hence also not at Tp. By
Proposition 1.2 (b), F(Tp) contains at least three components, two of which consist of p and
Tp, since the intersection between CTp and γ̂ is transversal at these points. Hence π(F(Tp))
is not connected and we see that π(F(Tp)) �= π(F0(Tp)).

We now prove (L6). Suppose q ∈ F0(p). We may assume that q �= p. Then F0(p) is
a closed interval and Cp must be the tangent line both at p and q . It follows that Cp must
be equal to the great circle Cq by Proposition 1.3. This implies F(p) = F(q). Now we
assume that F(p) = F(q). We let A denote the set of points r in F(p) = F(q) such that the
tangent great circle of γ̂ at r contains F(p) = F(q) and r is not a true inflection point. Let
B denote the complement of A in F(p) = F(q). By Proposition 1.2 the set B coincides with
F0(p) ∪ T (F0(p)) = F0(q) ∪ T (F0(q)). Now note that a set T (F0(r)) cannot coincide with
a set F0(s) for any r and s in S1, since the curve γ̂ crosses Cr from right to left in F0(r) and
Cs from left to right in F0(s); see Figure 11.

Finally, we prove (L7). We may assume that s is neither p nor Tp. After replacing (pk)
by a subsequence if necessary, we may also assume that Cpk converges to a great circle C.
Since Cpk satisfies Properties (a) and (b) in Proposition 1.3 for all k, so does C, and it follows
that C = Cp holds. Hence s ∈ F(p). �

DEFINITION 1.5. We call a family {F(p)}p∈S1 of closed subsets of S1 an intrinsic line
system if it satisfies Properties (L1) through (L7) in Proposition 1.4.

This definition is an analogue of the somewhat simpler intrinsic circle systems, see [20]
and [17], which are useful, e.g., in proving the existence of two inscribed (resp. circumscribed)
osculating circles of a given simple closed C2-regular curve in the Euclidean plane.

An inflection point of a curve γ̂ is called positive if the tangent great circle crosses γ̂
from right to left, and negative if the tangent great circle crosses γ̂ from left to right. Since
the sign of an inflection point is reversed by the antipodal map, the notion is meaningful for
γ̂ but not for γ .

DEFINITION 1.6. Let {F(p)}p∈S1 be an intrinsic line system. A point p ∈ S1 satisfy-
ing

π(F(p)) = π(F0(p)) (resp. π(F (Tp)) = π(F0(Tp)))

is called a positive c-inflection point (resp. a negative c-inflection point).

We defined clean inflection points on anti-convex curves γ in Introduction. A clean
inflection point corresponds to a c-inflection point of the intrinsic line system associated to γ .
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2. Clean inflection points. In this section we prove Theorem B in Introduction. The
crucial point is that we only use properties (L1)–(L6) of intrinsic line systems to prove the
theorem under the assumption that γ meets each line in at most finitely many components.
We call such γ generic. It is only in the last step where we remove this assumption by ap-
proximating a given non-generic anti-convex curve by a generic one.

LEMMA 2.1. Let p ∈ S1. Suppose that q ∈ F(p)∩(p, Tp). Let r be a point in (p, q).
Suppose that r is not contained in F0(p). Then

π(F(r)) ⊂ π((p, q))

holds.

PROOF. Suppose that π(F(r)) contains an element a �∈ π((p, q)). Let {â+, â−} be the
preimage of a under π . Without loss of generality, we may assume that â+ ∈ (p, Tp]. Since
a �∈ π((p, q)), we have â+ ∈ (q, Tp]. Hence we have the inequality

p < r < q ≤ â+ ≤ Tp .

By (L4), we have F(p)=F(r). In particular, r ∈F0(p) by (L6), which is a contradiction. �

With similar arguments we can prove the following lemma.

LEMMA 2.2. Let p ∈ S1. Suppose that q ∈ F(p)∩(Tp, p). Let r be a point in (q, p).
Suppose that r is not contained in F0(p). Then

π(F(r)) ⊂ π((q, p))

holds.

Next we prove the following lemma.

LEMMA 2.3. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (p, Tp) and (p, q) ∩ F0(p) = ∅.
Let r be the midpoint of (p, q). Then at least one of the following three cases occurs:

(i) r is a positive c-inflection point.
(ii) There exist p1, q1 ∈ F(r) ∩ (r, q) such that p1 ∈ F0(r) and (p1, q1) ∩ F0(r) = ∅.
(iii) There exist p1, q1 ∈ F(r) ∩ (p, r) such that p1 ∈ F0(r) and (q1, p1) ∩ F0(r) = ∅.

PROOF. Assume that r is not a positive c-inflection point. Then there exists a point
b ∈ π(F(r)) such that b �∈ π(F0(r)). Let {q1, T q1} be the points such that π(q1) = b.
Since (p, q) ∩F0(p) = ∅, we have r �∈ F0(p). Thus by Lemma 2.1, we have b ∈ π(F(r)) ⊂
π((p, q)). So we may assume that q1 ∈ (p, q)without loss of generality. Since b �∈ π(F0(r)),
we have q1 �∈ F0(r). There are two possibilities, one being q1 ∈ (r, q) and the other being
q1 ∈ (p, r).

First, we consider the case q1 ∈ (r, q). Since F0(r) is a proper subset of S1, it is a
linearly ordered set with respect to the restriction of the cyclic order of S1 and one can define
its supremum and infimum. We set

p1 := sup(F0(r)) .
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Since F0(r) ⊂ (p, q) and r ∈ F0(r), it holds that p1 ∈ [r, q]. On the other hand, since
q1 �∈ F0(r) and q1 ∈ (r, q), we have

r ≤ p1 < q1 < q .

This is Case (ii).
Next, we consider the case q1 ∈ (p, r). We set

p1 := inf(F0(r)) .

Since F0(r) ⊂ (p, q) and r ∈ F0(r), it holds that p1 ∈ [p, r]. On the other hand, since
q1 �∈ F0(r) and q1 ∈ (p, r), we have

r ≥ p1 > q1 > p .

This is Case (iii). �

Similarly, we get the following lemma.

LEMMA 2.4. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (Tp, p) and (q, p) ∩ F0(p) = ∅.
Let r be the midpoint of (q, p). Then at least one of the following three cases occurs:

(i) r is a positive c-inflection point.
(ii) There exist p1, q1 ∈ F(r) ∩ (r, p) such that p1 ∈ F0(r) and (p1, q1) ∩ F0(r) = ∅.
(iii) There exist p1, q1 ∈ F(r) ∩ (q, r) such that p1 ∈ F0(r) and (q1, p1) ∩ F0(r) = ∅.

We use Lemma 2.3 and Lemma 2.4 to prove the following proposition.

PROPOSITION 2.5. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (p, Tp) and (p, q) ∩
F0(p) = ∅. Then there exists a positive c-inflection point s in (p, q) such that π(F(s)) ⊂
π((p, q)).

PROOF. Suppose that there are no positive c-inflection points in (p, q). Let δ be the
length of the interval (p, q). Let r denote the midpoint of the interval (p, q). By Lemma 2.3
or Lemma 2.4, there are two points p1, q1 ∈ (p, q) satisfying the following properties:

(1) q1 ∈ F(r) and p1 ∈ F0(r).
(2) (p1, q1) ∩ F0(r) = ∅ if q1 > p1 and (q1, p1) ∩ F0(r) = ∅ if q1 < p1.
(3) The length of the interval between the two points p1 and q1 is less than or equal to

δ/2.
Since p1 ∈ F0(r), we have F(r) = F(p1) by (L6). So we have:
(1′) q1 ∈ F(p1).
(2′) (p1, q1) ∩ F0(p1) = ∅ if q1 > p1 and (q1, p1) ∩ F0(p1) = ∅ if q1 < p1.
We can repeat this argument replacing {p, q} by {p1, q1}. Applying Lemma 2.3 and

Lemma 2.4 inductively, we find sequences (pn) and (qn) satisfying the following properties:
(a) pn lies in the interval beteen pn−1 and qn−1, and qn ∈ F(pn).
(b) (pn, qn) ∩ F0(pn) = ∅ if qn > pn and (qn, pn) ∩ F0(pn) = ∅ if qn < pn.
(c) The length of the interval between the two points pn and qn is less than or equal to

δ/2n.
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It follows from Lemma 2.1 and Lemma 2.2 that

π(F(pn)) ⊂ π(pn−1, qn−1) .

In particular, the length of π(F(pn)) is less than δ/2n−1. We set

y = limpn = lim qn .

The limit y lies between pn and qn for all n.
We now prove that π(F(y)) = {π(y)}. Suppose that π(F(y)) does not consist only of

π(y). Then there is a point z ∈ F(y) such that Ty > z > y. For sufficiently large n, we either
have

Tpn > z > qn > y > pn

or

Ty > T qn > z > pn > y .

In both cases (L4) implies that F(y) = F(pn). In particular, y ∈ F0(pn), which contradicts
(qn, pn) ∩ F0(pn) = ∅. Thus we can conclude that π(F(y)) = {π(y)}, which implies that y
is a positive c-inflection point. This is a contradiction. Hence there is a positive c-inflection
point s in (p, q). By Lemma 2.1, we have π(F(s)) ⊂ π((p, q)). �

By reversing the orientation of S1, Proposition 2.5 implies the following

PROPOSITION 2.6. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (Tp, p) and (q, p) ∩
F0(p) = ∅. Then there exists a positive c-inflection point s in (q, p) such that π(F(s)) ⊂
π((q, p)).

COROLLARY 2.7. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (p, Tp) and q �∈ F0(p).
Then there exists a positive c-inflection point s in (p, q) such that π(F(s)) ⊂ π((p, q)) and
F(s) ∩ F0(p) = ∅.

PROOF. We set

p′ = supF0(p) .

Since q �∈ F0(p) and F0(p
′) = F0(p), we have

q > p′ ≥ p , (p′, q) ∩ F0(p
′) = ∅ .

Applying Proposition 2.5 to the pair (p′, q), we find a positive c-inflection point s in (p′, q) ⊂
(p, q). We have F(s) ∩ F0(p) = ∅, since π(F(s)) ⊂ π((p′, q)). �

Similarly, we get the following corollary.

COROLLARY 2.8. Let p ∈ S1. Suppose that q ∈ F(p) ∩ (Tp, p) and q �∈ F0(x).
Then there exists a positive c-inflection points in (q, p) such that π(F(s)) ⊂ π((q, p)) and
F(s) ∩ F0(p) = ∅.

Applying Corollary 2.7 and Corollary 2.8, we get the following
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COROLLARY 2.9. Suppose that q ∈ F(p) satisfies q �= Tp and q �∈ F0(p). Let J be
the open interval bounded by p and q . Then there exists a positive c-inflection point s in J
such that π(F(s)) ⊂ π(J ) and F(s) ∩ F0(p) = ∅.

Theorem B in Introduction is a consequence of the following theorem if the curve γ
meets each line in at most finitely many components.

THEOREM 2.10. Let {F(p)}p∈S1 be an intrinsic line system. Then there exist three

positive c-inflection points s1, s2, s3 in S1 such that

s1 < T s3 < s2 < T s1 < s3 < T s2(< s1) .

Moreover, the sets F(s1), F (s2), F (s3) are mutually disjoint.

PROOF. Take a point p which is not a c-inflection point. Then there exists a point
q ∈ F(p) such that q �∈ F0(p). By Corollary 2.9, there is a c-inflection point s1 between p
and q . By (L5), we have π(F(T s1)) �= π(F0(T s1)). Then there exists a point u ∈ (s1, T s1)
such that u ∈ F(T s1) but u �∈ F0(T s1). Then, by Corollary 2.9, we find a c-inflection point
s2 on (u, T s1) ⊂ (s1, T s1). Notice that T u ∈ F(T s1) and T u �∈ F0(T s1). Hence we find
another positive c-inflection point s3 on (T s1, T u) ⊂ (T s1, s1) by Corollary 2.9. The sets
F(s3) and F(s2) are disjoint, since F(s2) ⊂ (u, T s1) and F(s3) ⊂ (T s1, T u).

Suppose that F(s2) ∩ F(s1) �= ∅. Since F(s2) = F0(s2) and F(s1) = F0(s1), we
have F(s2) = F(s1) by (L6). Then T s1 ∈ F(s2), contradicting F(s2) ⊂ (u, T s1). Thus
F(s2) ∩ F(s1) = ∅. Similarly, we show F(s3) ∩ F(s1) = ∅. �

Until now, we have assumed that γ meets each line in at most finitely many components.
We now prove Theorem B in the general case, using that such curves are generic in the set of
anti-convex curves. In the proof we will need that the curve γ is C2. So far we only used that
it is C1.

PROOF OF THEOREM B. Let γ be an arbitrary anti-convex curve on P 2 that we assume
to be π-periodic, that is, γ (t) = γ (t + π) for t ∈ R. A point p ∈ R3 \ {0} determines a
point [p] in P 2, where [p] denotes the line in R3 spanned by p. There is a π-anti-periodic
C2-regular map F : R → R3 such that

γ (t) = [F(t)] ∈ P 2 ,

where a map F(t) is called π-anti-periodic if it satisfies F(t + π) = −F(t) for all t ∈ R.
The map F has the Fourier series expansion

F(t) = a0 +
∞∑
n=1

(an cos(2n+ 1)t + bn sin(2n+ 1)t) ,

where a0, a1, b1, ... are vectors in R3, and this series converges uniformly to F(t). We set

FN(t) = a0 +
N∑
n=1

(an cos(2n+ 1)t + bn sin(2n+ 1)t) .
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One can easily show that γN(t) = [FN(t)] is also anti-convex regular curve for sufficiently
large N , since γ is C2. Moreover γN is generic, that is, it meets each line at at most finitely
many components, since it is real analytic. We set

γ̂N(t) = FN(t)

|FN(t)| : R → S2 .

Then the spherical curve γ̂N is a double cover of the curve γN in P 2. By Theorem 2.10, there
exists three positive c-inflection points s1(N), s2(N), s3(N) on γ̂N (t) such that

0 ≤ s1(N) < s3(N)− π < s2(N) < s1(N)+ π < s3(N) < s2(N)+ π < 2π .

By taking a subsequence, we may assume that sj (N) converges to sj for j = 1, 2, 3. Since
γ̂ is not a great circle, positive c-inflection points do not accumulate to negative c-inflection
points. Thus we have

0 ≤ s1 < s3 − π < s2 < s1 + π < s3 < s2 + π < 2π .

These six points may not be clean inflection points. However, the tangent great circles at
these six points topologically cross γ̂ exactly twice. Hence the corresponding tangent lines of
γ only cross γ once. �

3. Further properties of intrinsic line systems. In this section we derive some prop-
erties of intrinsic line systems, which will be used in the next section to prove Theorem A
in the introduction. Throughout this section we will assume that an intrinsic line system
{F(p)}p∈S1 is given.

For a point p ∈ S1, we set

Y (p) := F(p) \ (F0(p) ∪ T F0(p)) ,

Y+(p) := Y (p) ∩ [p, Tp] , Y−(p) := Y (p) ∩ [Tp, p] ,
F+(p) := Y+(p) ∪ F0(p) , F−(p) := Y−(p) ∪ T (F0(p)) .

For example, in the case of Figure 12, we have

F0(p) = {p} , Y+(p) = {q1, q2, q3} , Y (p) = {q1, q2, q3, T q1, T q2, T q3} .

FIGURE 12. Definition of Y(p). FIGURE 13. Definition of µ±(p).
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FIGURE 14. Definitions of µ−(a) and µ+(b).

DEFINITION 3.1. An open interval (a, b) is said to be admissible if b ∈ (a, T a) and
there are no positive c-inflection points in (a, b).

Let (a, b) be an admissible interval. Then Y+(p) is non-empty for all p ∈ (a, b). So we
set (see Figure 13)

µ−(p) := inf
(p,Tp)

Y+(p) , µ+(p) := sup
(p,Tp)

Y+(p)

for p ∈ (a, b). For example,

µ−(p) = q1 , µ+(p) = q3

holds in the case of Figure 12. Moreover, we set

µ−(a) : =
{

inf[a,T a] Y+(a) if a is not a positive c-inflection point ,

inf[a,T a] T F0(a) if a is a positive c-inflection point ,

µ+(b) : =
{

sup[b,T b] Y+(b) if b is not a positive c-inflection point ,

sup[b,T b] F0(b) if b is a positive c-inflection point .

Figure 14 explains the definitions of µ−(a) and µ+(b) when a and b are c-inflection points
and neither F0(a) nor F0(b) reduces to a point. The left and the right of the figure corre-
spond to the definition of µ−(a) and µ+(b) when a and b are positive c-inflection points,
respectively.

These definitions have analogues in the theory of intrinsic circle system; see p. 190 in
[20] by the second author. The results in this section correspond to Lemma 1.3, Theorem 1.4
and Theorem 1.6 in [20].

REMARK 3.2. Let S1
rev be the circle S1 with the reversed orientation. Then

{F(p)}p∈S1
rev

gives another intrinsic line system. An admissible interval (a, b) of {F(p)}p∈S1

corresponds to the admissible interval (b, a) of {F(p)}p∈S1
rev

, and µ−(p) for p ∈ (a, b) with
respect to {F(p)}p∈S1 coincides with µ+(p) with respect to {F(p)}p∈S1

rev
.
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FIGURE 15. The case µ+(b) ≥ T a. FIGURE 16. The case µ−(a) ≤ b.

LEMMA 3.3. Let (a, b) be an admissible interval. Then we have the inequalities

b ≤ µ+(p) < T a

for all p ∈ (a, b] and
b < µ−(p) ≤ T a

for all p ∈ [a, b).
PROOF. We first assume that p ∈ (a, b). Then p is not a positive c-inflection point and

Y+(p) is non empty. We fix q ∈ Y+(p) arbitrarily. Then, by Corollary 2.9, there is a positive
c-inflection point r on (p, q). Since (a, b) is an admissible arc, we have q > r > b. Suppose
that

(T b > Tp) > q ≥ T a .

Then we have
b > p > T q ≥ a .

Since T q ∈ Y−(p), there is a positive c-inflection point on (T q, p) ⊂ (a, b) by Corollary
2.9, which contradicts the fact that (a, b) is an admissible arc. Thus we have T a > q , which
implies q ∈ (b, T a). Since q is arbitrary, we have

b < µ−(p) ≤ µ+(p) < T a

for all p ∈ (a, b).
Next, we consider the case q = b. If b is not a positive c-inflection point, then µ+(b) ∈

Y+(b) and the above arguments yield b < µ+(b) < T a. So we assume that b is a positive
c-inflection point. Then b ≤ µ+(b) holds by definition. Suppose now that µ+(b) ≥ T a.

(See Figure 15.) Then T (µ+(b)) �∈ F0(b) and µ+(b) �= T b. Therefore there is a positive
c-inflection point between (T (µ+(b)), b) by Corollary 2.9, which is a contradiction, since
T (µ+(b)) ∈ (a, b) and (a, b) is admissible. Thus we have µ+(b) < T a.

Finally, we consider the case q = a. If a is not a positive c-inflection point, µ−(a) ∈
Y+(a) and the above arguments yield b < µ−(a) < T a. So we assume that a is a positive
c-inflection point. Then µ−(a) ≤ T a holds by definition. Suppose now that µ−(a) ≤ b. (See
Figure 16.) Then µ−(a) �= T a. Since µ−(a) �∈ F0(a), there is a positive c-inflection point
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between (a, µ−(a)) by Corollary 2.9, which is a contradiction, since T (µ−(a)) ∈ (a, b) and
(a, b) is admissible. Thus we have b < µ−(b). �

PROPOSITION 3.4. Let (a, b) be an admissible interval. Then we have the inequalities

(b ≤)µ+(b) ≤ µ+(p) ,
µ−(p) ≤ µ−(a)(≤ T a)

for all p ∈ (a, b).
PROOF. In the previous lemma, we already proved that

b < µ+(p)

for all p ∈ (a, b). Suppose now that µ+(p) ∈ (b, µ+(b)). Applying Lemma 3.3 to (p, b), we
get b ≤ µ+(b) < Tp. Thus

p < b < µ+(p) < µ+(b)(< Tp)

holds. Since p,µ+(p) ∈ F+(p), we have F(b) = F(p) by (L4). Thus b is like p not a
positive c-inflection and

µ+(b) = µ+(p) ,
contradicting the assumption µ+(p) < µ+(b). So we have µ+(p) ≥ µ+(b).

By Lemma 3.3, we have µ−(p) < T a. Now we suppose

µ−(a) < µ−(p) < T a .

Applying Lemma 3.3 to (a, p), we get p < µ−(a). Thus

p < µ−(a) < µ−(p) < T a(< Tp)

holds. Since p,µ−(p) ∈ F+(p), we have F(a) = F(p) by (L4). Then a is like p not
a positive c-inflection point. Thus we have µ−(a) = µ−(p), contradicting the assumption
µ−(a) < µ−(p). So we have µ−(p) ≤ µ−(a). �

COROLLARY 3.5 (Monotonicity Lemma). Let (a, b) be an admissible arc and p, q ∈
(a, b). Suppose that p < q . Then we have

µ−(p) ≥ µ−(q) , µ+(p) ≥ µ+(q) .

Moreoverµ−(p) > µ+(q) holds when F(p) �= F(q), andµ−(a) > µ+(b) if there are points
p and q in (a, b) such that F(p) �= F(q).

PROOF. The first two inequalities follow directly from Proposition 3.4.
We now prove that µ−(p) > µ+(q) when F(p) �= F(q). Assume that F(p) �= F(q)

and µ−(p) ≤ µ+(q). By Proposition 3.4 we have

(a <)p < q < µ−(p) ≤ µ+(q) < T a ,

which implies by (L4) that F(p) = F(q), a contradiction. Hence µ−(p) > µ+(q).
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Finally, we prove the inequlity µ−(a) > µ+(b) under the assumption that there are
points p, q ∈ (a, b) such that p < q and F(p) �= F(q). It follows from Proposition 3.4 and
the inequality we have just proved that

µ+(b) ≤ µ+(q) < µ−(p) ≤ µ−(a) ,
which proves the claim. �

PROPOSITION 3.6 (Semi-continuity). Let (a, b) be an admissible arc. Then

lim
x→a+0

µ−(x) = µ−(a) , lim
x→b−0

µ+(x) = µ+(b) .

PROOF. We prove the first formula. The second formula can be proved similarly. (See
Remark 3.2.) When there is a point p ∈ (a, b) such that p ∈ F0(a), the assertion is obvious.
So we may assume that (a, b)∩F0(a) = ∅. Let (rn) be a strictly decreasing sequence in (a, b)
converging to a. There are points pn and qn in the interval (a, rn) such that F(pn) �= F(qn),
since otherwise the closed set F(q) would contain the interval [a, rn] for all q ∈ (a, rn) and it
would follow that [a, rn] ⊂ F0(a). Hence, by Proposition 3.4 and Corollary 3.5, we have that

µ+(b) < µ−(rn) < µ−(rn+1) < µ−(a)
holds. So the sequence µ−(rn) has a limit s. Since µ−(rn) ∈ F(rn), (L7) implies that

s ∈ F(a) .
Since b < µ+(b), we have b ≤ s ≤ µ−(a). Since (a, b)∩F0(a) = ∅, we have that (a, µ−(a))
is disjoint from the set F(a). Thus we have s = µ−(a), since s ∈
F(a). �

THEOREM 3.7. Let (a, b) be an admissible arc. Then, for any q ∈ (µ+(b), µ−(a)),
there exists a point p ∈ (a, b) such that

µ−(p) ≤ q ≤ µ+(p) .

PROOF. We set
Bq := {x ∈ (a, b) ; µ+(x) ≤ q} .

By Proposition 3.6 we have that limx→b−0 µ+(x) = µ+(b) + 0. Thus a point x ∈ (a, b)

sufficiently close to b belongs to Bq . Since Bq is non-empty, we can set

p := inf[a,b](Bq) .

Since µ−(a) > q , we have p ∈ (a, b). By the definition of p, there exists a sequence (rn) in
Bq such that limn→∞ rn = p + 0. By the definition of Bq , we have

µ−(rn) ≤ µ+(rn) ≤ q .

Since limn→∞ µ−(rn) = µ−(p) by Proposition 3.6, we have

µ−(p) ≤ q .

On the other hand, let (sn) be a sequence such that limn→∞ sn = p − 0. By the definition of
Bq , we have q < µ+(sn). Since limn→∞ µ+(sn) = µ+(p), we have q ≤ µ+(p). �
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4. Double tangents. We will assume throughout this section that γ : P 1 → P 2 is an
anti-convex C1-regular curve whose number i(γ ) of true inflection points is finite. It follows
from the last assumption that each line in P 2 meets the curve γ in at most finitely many
components.

LEMMA 4.1. Let γ : P 1 → P 2 be an anti-convex curve. Suppose that γ meets a line
L at γ (a) and γ (b), and denote one of the closed intervals on P 1 bounded by a and b by
[a, b]. Then one of the two closed line segments L1 and L2 on L bounded by γ (a) and γ (b),
say L1, has the property that γ ([a, b]) ∪ L1 lies in an affine plane and γ ([a, b]) ∪ L2 is not
homotopic to a point. The curve γ ([a, b]) ∪ L1 bounds a contractible domain having acute
interior angles at γ (a) and γ (b) if it is free of self-intersections.

We call L1 the chord with respect to the interval [a, b] and denote it by γ (a)γ (b).

PROOF. We choose a point c �∈ [a, b]. Then there is a line Lc which meets γ only at
γ (c). Then Lc meets L at one point which we assume to be on the line segment on L bounded
by γ (a) and γ (b) that we denote by L2. Then γ ([a, b]) ∪ L1 lies in the affine plane P 2\Lc.

Since L is not null-homotopic, either γ ([a, b]) ∪ L1 or γ ([a, b]) ∪ L2 is not null-
homotopic. So γ ([a, b])∪ L2 is not homotopic to a point.

Assume γ ([a, b]) ∪ L1 is free of self-intersections and let D denote the contractible
domain in the affine plane bounded by γ ([a, b]) ∪ L1. If its interior angle at γ (a) or γ (b) is
not acute, any line passing through the point meets γ , which contradics the anti-convexity of
γ . �

The following assertion is one of the fundamental properties of anti-convex curves.

PROPOSITION 4.2. Let γ : P 1 → P 2 be an anti-convex curve. Let [a, b] be a closed
interval on P 1 and suppose γ ([a, b])meets a line L in an affine planeA2 at γ (t1), γ (t2), . . . ,
γ (tn) with

a = t1 < t2 < · · · < tn = b .

Then

γ (t1) , γ (t2) , . . . , γ (tn)

lie on γ (a)γ (b) in this order.

PROOF. Assume that the claim is not true. Then there is a smallest i such that γ (ti) lies
on γ (a)γ (ti−1). Then any line passing through γ (ti ) must meet γ ((t1, ti )), which contradicts
the anti-convexity of γ . �

By Lemma 4.1, γ ([a, b]) and the chord γ (a)γ (b) lie in an affine plane A2. We define a
new curve γ1 : P 1 → P 2 by setting

γ1(t) :=
⎧⎨
⎩
γ (b)(t − a)+ γ (a)(t − b)

b − a
for t ∈ [a, b] ,

γ (t) for t �∈ (a, b) ,
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which is the curve one gets by replacing γ ([a, b]) by γ (a)γ (b). Notice that the vector opera-
tions in the definition of γ1 depend on the affine plane A2. We call γ1 the reduction of γ with
respect to the interval [a, b].

An interval [a, b] on P 1 is called an inflection interval if a is a true inflection point and
γ ([a, b]) is the connected component of γ ∩ La , where La is the tangent line of γ at a.

DEFINITION 4.3. Let γ : P 1 → P 2 be an anti-convex curve. A nonempty proper
open subinterval (a, b) on P 1 is called a double tangent interval if

(1) the chord γ (a)γ (b) is tangent to γ at γ (a) and γ (b),
(2) there is a point in γ ([a, b]) which is not contained in γ (a)γ (b),
(3) [a, b] is not an inflection interval of γ1, where γ1 is the reduction of γ with respect

to the interval [a, b].
By Lemma 4.1, the following assertion is obvious.

COROLLARY 4.4. If (a, b) is a double tangent interval of an anti-convex curve γ ,
then the orientations of the tangent lines of γ at γ (a) and γ (b) induce the same direction on
γ (a)γ (b).

REMARK 4.5. If (a, b) is a double tangent interval, then the same cannot be true for
(b, a) = P 1 \ [a, b]. In fact, the reduction γ2 of γ with respect to the interval [b, a] has [b, a]
as an inflection interval which violates Property (3) in Definition 4.3. This phenomenon is
explained in Figure 17, where the two sketches indicate the same curve γ in different affine
planes.

DEFINITION 4.6. Let γ : P 1 → P 2 be an anti-convex curve. Two double tangent
intervals (a1, b1) and (a2, b2) are called independent if they are disjoint or if the closure of
one is contained in the other.

We now begin the proof of Theorem A in Introduction.

PROOF OF THEOREM A. To prove Formula (∗), we will start with a double tangent
interval (a, b) and introduce the following reductions of γ . We let γ1 be the reduction of γ
with respect to the double tangent interval [a, b], and γ2 be the reduction of γ with respect to
the interval [b, a]; see Figure 18. By our construction, γ1 and γ2 are both C1-regular curves
in P 2.

FIGURE 17. The same curve γ in different affine planes.
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FIGURE 18. γ1 and γ2.

We now bring a couple of lemmas and propositions that will be needed to finish the proof
of Theorem A.

LEMMA 4.7. The curves γ1 and γ2 are both without self-intersections.

PROOF. We will prove the claim for γ1. Suppose that γ (P 1 \ [a, b]) meets the chord
γ (a)γ (b) at γ (c). By Proposition 4.2, the points γ (a), γ (b), γ (c) must lie on the segment
γ (a)γ (c) in this order, since a < b < c. This is a contradiction. It follows that γ1 does not
have self-intersections. One can similarly prove that γ2 does not have self-intersections. �

The following is a key to prove Formula (∗).
PROPOSITION 4.8. The curves γ1, γ2 are both anti-convex and the identity

(2) i(γ ) = i(γ1)+ i(γ2)− 1

holds.

PROOF. We first show that γ1 is anti-convex. We may assume that γ ([a, b]) lies in an
affine plane A2. For a point x ∈ P 2, the pencil of lines passing through x is a projective line
in the dual space of P 2 that we denote by P 1(x). For a point t ∈ P 1, we define a subset
Bγ (t) of P 1(γ (t)) such that each line L in Bγ (t) meets γ only at p and L is transversal to the
tangent line at p. Since γ (t) is an anti-convex curve, Bγ (t) is non-empty for all t ∈ P 1. One
can easily prove that Bγ (t) is an open interval in P 1(x). We will call Bγ (t) the Barner set of
γ .

We have that Bγ (t) is contained in the Barner set Bγ1(t) of γ1 for every t �∈ [a, b], since
no line L ∈ Bγ (t) can meet the chord γ (a)γ (b). So it is sufficient to show that Bγ1(t) is not
empty for t ∈ (a, b). Suppose γ : P 1 → P 2 meets the chord γ (a)γ (b) at

a = t1 < t2 < · · · < tn = b .

By Proposition 4.2, we have that

γ (t1) , γ (t2) , . . . , γ (tn)

lie on γ (a)γ (b) in this order.
Suppose now that there exists a point x ∈ γ (a)γ (b) such that the Barner set of γ1 at x is

empty. Then there exists a positive integer i where 1 ≤ i ≤ n− 1 such that x ∈ γ (ti)γ (ti+1)

and x �= γ (ti ), γ (ti+1).
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FIGURE 19.

We now set

I := [ti , ti+1] .
In the following argument we work in A2 that we equip with the orientation such that
γ (ti)γ (ti+1) lies on the left hand side of γ (I) as in Figure 19. We define continuous non-
vanishing vector fields α and β along γ |I as follows:

(1) Both α(t) and β(t) point the left hand side of γ for every t ∈ I ,
(2) α(t) lies on the chord γ (t)x,
(3) β(t) generates a line in Bγ (t).

We set

IL := {t ∈ I ; α(t),β(t) is a positive frame} ,
IR := {t ∈ I ; α(t),β(t) is a negative frame} ,

that is, IL (resp. IR) consists of those t with the property that the Barner direction β(t) is on
the left of (resp. right of) γ (t)x.

Notice that α(t) and β(t) are linearly independent for all t ∈ I , since the Barner set of
γ1 at x is empty. Hence the sign of det(α(t),β(t)) is either positive or negative, implying that
either IL or IR is empty. By Corollary 4.4 the tangent lines of γ at γ (a) and γ (b) induce the
same direction on γ (a)γ (b). Hence it follows that ti ∈ IL and ti+1 ∈ IR , and thus that neither
IL nor IR is empty. This is a contradiction and we can conclude that the Barner set of γ1 at
a point x ∈ γ (a)γ (b) is not empty. This finishes the proof that γ1 is anti-convex. The proof
that γ2 is anti-convex is analogous.

Next we prove Formula (2). Let I1 and I2 be the number of independent inflection points
of γ on S1 \ [a, b] and [a, b], respectively. By definition, it is obvious that

(3) i(γ2) = I2 + 1 .
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In fact, [b, a] is an additional inflection interval on γ2. This phenomenon was explained in
Remark 4.5 and Figure 17 above. On the other hand, we have

(4) i(γ1) = I1 .

By (3) and (4), we hence have

i(γ1)+ i(γ2) = I1 + I2 + 1 = i(γ )+ 1 ,

which proves (2). �

COROLLARY 4.9. If i(γ ) = 3, then there are no double tangent intervals on γ .

PROOF. Suppose that there is a double tangent interval. Then we can consider the anti-
convex curves γ1 and γ2 as in Proposition 4.8. Since both i(γ1) and i(γ2) are at least 3 by
Theorem 2.10, we have

i(γ ) = i(γ1)+ i(γ2)− 1 ≥ 3 + 3 − 1 = 5 ,

which contradicts i(γ ) = 3. �

We are assuming in this section that the number i(γ ) is finite. This has a consequence
for number of elements in a set consisting of independent double tangent intervals as the next
corollary shows.

COROLLARY 4.10. The number of elements in a set of independent double tangent
intervals is finite.

PROOF. We assume that this number is infinite. Let n be an arbitrary positive integer.
Then we can find independent double tangent intervals (a1, b1), (a2, b2), . . . , (an, bn). We
order the intervals such that (ai, bi) does not contain (aj , bj ) for i < j . We can associate to

(a1, b1) two anti-convex curves γ (1)1 and γ (1)2 as was done before Lemma 4.7. Then we use

the same construction to associate to (a2, b2) and γ (1)1 two new anti-convex curves γ (2)1 and

γ
(2)
2 . In this way we can get a finite sequence of pairs of anti-convex curves γ (k)1 and γ (k)2 for
k = 1, ..., n. By Proposition 4.8 we have

i(γ ) = i(γ
(n)
1 )− n+

n∑
k=1

i(γ
(k)
2 ) .

Since i(γ (k)1 ), i(γ
(k)
2 ) ≥ 3, we have i(γ ) ≥ 3 − n + 3n = 3 + 2n. Since n is arbitrary, this

contradicts the fact that i(γ ) is finite. �

The proof of the next proposition relies on the results of Section 3.

PROPOSITION 4.11. If there are no double tangent intervals on γ , then i(γ ) = 3
holds.

Let γ̂ : S1 → S2 be the lift of γ to a closed curve on S2. We will need the following
lemma in the proof of the proposition.



172 G. THORBERGSSON AND M. UMEHARA

LEMMA 4.12. Let (a, b) be an admissible interval on S1 in the sense of Definition
3.1. Suppose that there are no double tangent intervals on γ . Then there are no true inflection
points on (µ+(b), µ−(a)).

PROOF. Let {F(p)}p∈S1 be the intrinsic line system associated to the lift γ̂ . Suppose
that there is a true inflection point c ∈ (µ+(b), µ−(a)). By Theorem 3.7, there exists a point
p ∈ (a, b) such that

µ−(p) ≤ c ≤ µ+(p) .
Since c is a true inflection point, the limiting great circle Cp cannot pass through γ̂ (c). This
implies that there is a double tangent interval on γ . This contradiction proves the claim. �

PROOF OF PROPOSITION 4.11. By Theorem 2.10, there are at least three positive c-
inflection intervals [a1, a2], [b1, b2] and [c1, c2] on S1, some of which may of course reduce
to points. We assume that

a1 ≤ a2 < b1 ≤ b2 < c1 ≤ c2

and that there are no positive c-inflection points on (a2, b1) and (b2, c1).
By Lemma 4.12, there are no inflection points on (c2, T b1), since (b2, c1) is an admissi-

ble arc and µ+(c1) = c2, µ−(b2) = T b1. Since π((c2, T b1)) = π((T c2, b1)), there are no
inflection points on

(5) A := (c2, T b1) ∪ (T c2, b1) .

There are also no positive c-inflection points on [a2, b1]. Applying Lemma 4.12 to the
interval (a2, b1), we conclude that there are no inflection points on

(6) C := (b2, T a1) ∪ (T b2, a1) .

In particular, there are no positive c-inflection points on

(c2, a1) = (c2, T b1) ∪ (T b1, T b2) ∪ (T b2, a1) .

Applying Lemma 4.12 to the interval (c2, a1), we conclude that there are no inflection points
on

(7) B := (a2, T c1) ∪ (T a2, c1) .

Now it follows from (5), (6) and (7) that there are no inflection points on

S1 \ ([a1, a2] ∪ [T c1, T c2] ∪ [b1, b2] ∪ [T a1, T a2] ∪ [c1, c2] ∪ [T b1, T b2]) = A ∪ B ∪ C,
and hence that i(γ ) = 3. �

We can now finish the proof of Theorem A. Let δ(γ ) denote the number of elements in a
maximal set of independent double tangent intervals. The number δ(γ ) is finite by Corollary
4.10. It will follow from the proof that δ(γ ) does not depend on the maximal set that was used
to define it.

We prove Formula (∗) by induction on i(γ ). When i(γ ) = 3, (∗) holds, since δ(γ ) = 0
by Corollary 4.9. So we assume that (∗) holds when i(γ ) ≤ n − 1 and n ≥ 4 and prove it
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for i(γ ) = n. Since i(γ ) ≥ 4, there exists at least one double tangent interval I = (a, b) by
Proposition 4.11. There exist non-negative integers i and j such that

(1) {I, I1, . . . , Ii , J1, . . . , Jj } is a maximal family of independent double tangent in-
tervals.

(2) I1, . . . , Ii are subets of I ,
(3) J1, . . . , Jj lie on ⊂ P 1 \ (a, b).

Then we get two anti-convex curves γ1, γ2 with respect to I = [a, b]. By the induction
assumption, δ(γ1) and δ(γ2) do not depend on the choice of the set of independent double
tangent intervals. Since {I1, . . . , Ii} and {J1, . . . , Jj } are maximal sets of independent double
tangent intervals on γ1 and γ2, respectively, we have

i + j + 1 = δ(γ2)+ δ(γ2)+ 1 .

By (2), we have

i(γ )− 2(i + j + 1) = (i(γ1)− 2δ(γ1))+ (i(γ2)− 2δ(γ2))− 3 .

By the induction assumption,

i(γ1)− 2δ(γ1) = i(γ2)− 2δ(γ2) = 3 .

Thus we have

i(γ )− 2(i + j + 1) = 3 ,

which implies that the number i + j + 1 of the independent double tangent intervals is in-
dependent of the choice of I, I1, . . . , Ii , J1, . . . , Jj . Thus we have δ(γ ) = i + j + 1. This
finishes the proof.

5. Anti-periodic functions and curves of constant width. Before giving a proof of
Theorem C in Introduction, we explain some properties of periodic and anti-periodic func-
tions, which we will need. We denote by Cr(R), where r = 1, 2, . . . ,∞, the vector space of
r times continuously differentiable real valued functions on R. We define the following finite
dimensional linear subspaces of Cr(R):

A2n+1 :=
{
a0 +

n∑
k=1

(ak cos kt + bk sin kt) ; a0, a1, . . . , an, b1, . . . , bn ∈ R

}
,

A2n :=
{ n∑
k=1

(ak cos(2k − 1)t + bk sin(2k − 1)t) ; a1, . . . , an, b1, . . . , bn ∈ R

}
,

where n is any natural number. Let f be a Cr -function and m ≤ r some natural number. For
each point p on R, there exists a unique function ϕp in Am such that

f (p) = ϕp(p) , f
′(p) = ϕ′

p(p) , f
′′(p) = ϕ′′

p(p) , . . . , f
(m−1)(p) = ϕ(m−1)

p (p) ,

namely, ϕp is the best approximation of f at p in Am. We call ϕp the osculating function of

order m or Am-osculating function at p. In general, the m-th derivative ϕ(m)p (p) at p is not
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equal to f (m)(p). If, however, ϕ(m)p (p) = f (m)(p) holds for p, then p is called a flex of f of
order m.

Consider the following differential operators on R:

L2n+1 := D(D2 + 1)(D2 + 22) · · · (D2 + n2) ,

L2n := (D2 + 1)(D2 + 32) · · · (D2 + (2n− 1)2) ,

where D = d/dt . Then Am is the kernel of the operator Lm. The following proposition is
proved in the appendix of [19], p. 135.

PROPOSITION 5.1. A point p is a flex of f of order m if and only if (Lmf )(p) = 0.

A function f : R → R is called π-anti-periodic if it satisfies f (t + π) = −f (t). We
now introduce the concept of clean flexes for 2π-periodic and π-anti-periodic functions.

DEFINITION 5.2. Let m be an integer that we first assume to be odd. Let f be a 2π-
periodic Cr -function, where r ≥ m − 1. A point p is called a clean flex of order m if the set
of zeros of the difference function f − ϕp is connected in R/2πZ.

We next assume that m is an even integer and f a π-anti-periodic Cr -function, where
r ≥ m − 1. Then a point p is called a clean flex of order m if the set of zeros of f − ϕp is
connected in R/πZ.

REMARK 5.3. One should notice that f does have only to be Cm−1 in the definition
of a clean flex of orderm, but we neededCm-regularity in the definition of a flex of orderm. If
f is Cm, then a clean flex of order m is a flex of orderm in the sense of the former definition.
It is crucial for many of our arguments to allow low differentiability. Examples for this are
constructions like the reductions of curves with respect to an interval in Section 4.

In [19] the authors proved the following: Let m be a positive odd integer and let f be a
2π-periodic Cm−1-function. Then f has at least m+ 1 clean flexes of order m in a period.

In [19] only the case wherem is odd is dealt with. One can expect that a generic π-anti-
periodic Cm−1-function has at least m + 1 clean flexes in a period. An indication for this is
the fact that such a function of class Cm has at least m+ 1 possibly not clean flexes, as can be
easily proved; see the appendix of [18]. In this section we give an affirmative answer for the
problem if m = 2, and leave the general case as an open question. Our result is stated in the
next theorem.

THEOREM 5.4. Let f : R → R be a π-anti-periodic C1-function not belonging to
A2. Suppose that the zero set of f −ψ is discrete for every ψ in A2. Then f has at least three
clean flexes t1 < t2 < t3 of order 2, where t3 < t1 + π , with the property that f − ϕt1 and
f − ϕt3 change sign from negative to positive in t1 and t3, respectively, and f − ϕt2 changes
sign from positive to negative in t2.

The theorem is optimal, since f (t) = sin 3t has exactly three clean flexes at t = 0, π/3,
2π/3 in [0, π); see Figure 20. The theorem implies the well-known existence of three (usual)
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FIGURE 20. Three clean osculating functions for sin 3t .

flexes of order 2, which can be proved by integration by parts; see [6] and the appendix of
[19].

We start with some lemmas needed to prove Theorem 5.4. In the following f will be
a π-anti-periodic C1-function as in the theorem. For a point p we define a one-dimensional
subspace Vp of A2 = {a cos t + b sin t ; a, b ∈ R} by setting

Vp := {ψ ∈ A2 ; ψ(p) = f (p)} .
The osculating function ϕp at p belongs to Vp. For a given s ∈ R, there is a unique ψ ∈ Vp
such that ψ ′(p) = s, since A2 is the kernel of the operator L2. We will denote this function
by ψp,s . Thus we may write Vp = {ψp,s ; s ∈ R}. For sufficiently large s, the function ψp,s
has the following properties:

(1) ψp,s(t) is greater than f (t) on (p, p + π) and
(2) ψp,s(t) is less than f (t) on (p − π, p).

Let s0 be the infimum over the set of real numbers s such that ψp,s satisfies (1) and (2), and
set

ψp := ψp,s0 .

We will call ψp the limiting function of f at p.

LEMMA 5.5. The limiting function ψp(t) of f at p has the following properties:
(a) ψp(t) ≥ f (t) for t ∈ (p, p + π).
(b) ψp(t) ≤ f (t) for t ∈ (p − π, p).
(c) If ψp is not the A2-osculating function of f at p, then there exists a point q on

(p, p + π) such that ψp(q) = f (q).
Conversely, a function ψ ∈ Vp satisfying (a), (b) and (c) must coincide with the limitting
function at p.

PROOF. The lemma is an analogue of Proposition 1.2 and Proposition 1.3, and follows
directly from the definition of ψp. �

Now we identify

S1 = R/2πZ , P 1 = R/πZ ,
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and denote by

π : S1 → P 1

the canonical projection. We will consider f and the limiting functions ψp as functions on
S1. We now set

F(p) = {t ∈ S1 ; f (t) = ψp(t)} .
LEMMA 5.6. A point p is clean flex of order 2 if and only if F(p) consists of exactly

two points.

PROOF. If p is a clean flex, then ψp = ϕp by Property (c). Since the zero set of f −ψ

is discrete for every ψ in A2, F(p) consists of exactly two points. Conversely, suppose that
F(p) consists of exactly two points. Then ψp = ϕp by Lemma 5.5 and p is a clean flex. �

PROPOSITION 5.7. Let f be as in Theorem 5.4. Then the associated family of closed
subset {F(p)}p∈S1 is an intrinsic line system.

PROOF. We have to show that Properties (L1) through (L7) in Proposition 1.4 are satis-
fied.

(L1) is obvious. (L2) follows from the fact that f does not belong to A2. (L3) holds,
since f is π-anti-periodic. (L4) follows from the fact that the functions in A2 have at most
one zero on [0, π). (L6) is obvious since the zeros of f −ψ(ψ ∈ A2) is descrete. (L7) holds,
since the limit of a sequence of limiting functions is a limiting function. �

PROOF OF THEOREM 5.4. We have associated an intrinsic line system {F(p)}p∈S1 to
f in Proposition 5.7. Now Theorem 5.4 implies that f has at least three clean flexes of order
2 and it is easy to see that they can be chosen as claimed in the theorem. �

DEFINITION 5.8. A nonempty proper open subinterval (a, b) on P 1 is called an A2-
double tangent interval of f if there is a function ϕ in A2 such that

(1) the values of f and ϕ coincide in a and b,
(2) the derivatives of f and ϕ coincide in a and b,
(3) there is a point in t ∈ (a, b) such that ϕ(t) �= f (t),
(4) the function f −ϕ has either local maxima at both a and b, or local minima at both

a and b.

If (a, b) is a double tangent interval, then the same cannot be true for (b, a) =
P 1 \ [a, b], since Condition (4) fails. (If we consider (a, b) to be an interval of R, then
P 1 \ [a, b] corresponds to (b, a + π).) The function ϕ in the definition of an A2-double tan-
gent interval is uniquely determined. We will call it the double tangent function with respect
to (a, b).

DEFINITION 5.9. Let f : R → R be an anti-periodic C1-function. Then two A2-
double tangents (a1, b1) and (a2, b2) are said to be independent if they are disjoint or if the
closure of one is contained in the other.

Using the same method as in Section 4, we get the following:
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THEOREM 5.10. Let f : R → R be a π-anti-periodic C1-function not belonging to
A2. Suppose that the zero set of f −ψ is discrete for every ψ in A2. Then the number i(f ) of
flexes of order 2, and the number δ(γ ) of elements in a maximal set of independent A2-double
tangent intervals are both finite and δ(γ ) is independent of the choice of the maximal set of
double tangent intervals. Moreover,

i(γ )− 2δ(γ ) = 3

holds.

PROOF. Let (a, b) be an A2-double tangent interval and ϕ the corresponding double
tangent function in A2. Without loss of generality, we may asuume that 0 ≤ a < b < π .
Then we set

f1(t) :=
⎧⎨
⎩ϕ(t) for t ∈ [a, b] ,
f (t) for t ∈ [0, π) \ [a, b] ,

and extend f1 to R as a π-anti-periodic function. Then f1 is a C1-function that we call the
reduction of f with respect to [a, b]. Similarly, we set

f2(t) :=
⎧⎨
⎩f (t) for t ∈ [a, b] ,
ϕ(t) for t ∈ [0, π) \ [a, b] ,

and extend f2 to R as a π-anti-periodic function. Then f2 is a C1-function that we call the
reduction of f with respect to [b, a]. We now use the functions f1 and f2, as we used the
reductions γ1, γ2 in Section 4, to prove Theorem A in Introduction by induction. �

Finally, we come to the applications of Theorem 5.4 and Theorem 5.10 to convex curves
of constant width in the Euclidean plane R2.

We first describe the connection between strictly convex curves and periodic functions,
where we mean by a strictly convex curve a convex curve with the property that the tangent
lines at different points are different. Let o be a point in the open domain bounded by a strictly
convexC2-regular curve γ in R2. For each t ∈ [0, 2π), there is a unique oriented tangent line
L(t) of the curve that makes angle t with the x-axis. Let h(t) be the distance between o and
the line L(t). The C1-function h is called the supporting function of the curve γ with respect
to o. Set e(t) = (cos t, sin t) and n(t) = (− sin t, cos t). Then

γ (t) = h′(t)e(t) − h(t)n(t)

gives a parametrization of the curve γ . The following lemma follows immediately.

LEMMA 5.11. Let γ1 and γ2 be two strictly convex C2-regular curves having a com-
mon point o in their interior, let h1(t) and h2(t) be their supporting functions with respect to
o, and let γ1(t) and γ2(t) be their parametrizations as above. Then the difference h2(t)−h1(t)

does not depend on the choice of the origin o. In particular, if γ2 is a circle, then the point
γ1(t) lies in the interior of γ2 if and only if h2(t)− h1(t) > 0 holds.

Note that a convex curve has constant width d if and only if h(t)+ h(t + π) = d holds.
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Let γ be a C2-regular strictly convex closed curve of constant width d > 0 and h its
supporting function which is of class C1. The function fγ defined by

fγ (t) = h(t)− d

2
is π-anti-periodic, since γ is of constant width. If γ is a circle of diameter d , the supporting
function ψ can be written as

h(t) = d

2
+ b cos t + c sin t ,

where (c,−b) is the center of the circle.
For a point p on a curve γ of constant width d , there exists a unique circle Γp of width

d such that Γp is tangent to γ at p, that is, Γp and γ meet at p with multiplicity at least
two. Since Γp is the best approximation of γ at p by a circle of width d , we call Γp the
osculating d-circle at p. When Γp meets γ with multiplicity higher than two at p, we call p
a d-inflection point.

PROPOSITION 5.12. Let γ be a C3-regular convex curve of constant width d and h
the supporting function of γ . Then the following properties are equivalent :

(1) A point p = γ (t0) is a d-inflection point.
(2) h′′(t0)+ h(t0) = d/2.
(3) The osculating d-circle Γp at p is an osculating circle in the usual sense, that is,

the curvature radius of γ at p is d/2.

PROOF. The supporting fuction h is a C2-function because γ is C3-regular. Since the
radius of the osculating circle of γ at t is given by r = h′′(t) + h(t), the last two properties
are equivalent. It is therefore sufficient to prove the equivalence of the first two properties.

Let

h0 = d

2
+ b cos t + c sin t

be the supporting function of a circle Γ . Then Γ is the d-osculating circle at p if and only if

h0(t0) = h(t0) , h′
0(t0) = h′(t0) .

Moreover, Γ and γ meet with multiplicity higher than two at p if and only if the curvature
radius of them coincide. Since the radius of the osculating circle of γ at t is given by r =
h′′(t)+ h(t), the circle Γ is a d-inflection point if and only if

r = h′′(t0)+ h(t0) = h′′
0(t0)+ h0(t0) = d

2
.

This proves that the first two properties are equivalent. �

If Γp ∩ γ consists of exactly two connected components, p is a d-inflection point which
we will call a clean d-inflection point.

We can now prove Theorem C in Introduction as an application of Theorem 5.4.

PROOF OF THEOREM C. We first consider the special case that γ meets each circle at
most finitely many points. As explained above, the supporting function h can be written in
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the form

h(t) = d

2
+ fγ ,

where fγ is a π-anti-periodic function. Since we are assuming that γ meets each circle at
at most finitely many points, fγ − ψ has a discrete zero set for every ψ in A2. Hence, by
Theroem 5.4, the function fγ has at least three clean positive flexes t1, t2, t3 of order 2 on the
interval [0, π]. By Proposition 5.1, f ′′

γ + fγ vanishes at t1, t2 and t3, that is,

h′′(t)+ h(t) = d

2
holds for t = t1, t2, t3, t1 + π , t2 + π and t3 + π . By Proposition 5.12, these six points are
d-inflection points. Moreover, since these six points are clean flexes, Lemma 5.11 implies
that they clealy turn out to be six clean d-inflection points. Notice that the corresponding
osculating d-circles meet γ exactly twice in ti and ti + π . This finishes the proof of the
special case.

Next we consider the general case in which γ can meet circles infinitely many times. We
consider the Fourier series expansion

h(t) = d

2
+

∞∑
n=1

(an cos(2n+ 1)t + bn sin(2n+ 1)t)

of h and set

hN(t) = d

2
+

N∑
n=1

(an cos(2n+ 1)t + bn sin(2n+ 1)t) .

Then the convex curve γN(t) with the supporting function hN(t) is a regular curve of constant
width forN sufficiently large. Moreover, γN meets each circle at at most finitely many points,
since it is real analytic. Now we apply the same argumants as in the proof of Theroem B in
Section 2 to find three distinct osculating d-circles as a limit of those of γN(t). �

One can of course define the double d-tangent intervals of a curve γ of constant width as
the double tangent intervals of the corresponding function fγ . We translate this into geometric
properties of γ as follows.

A nonempty proper open interval (a, b) of S1 = R/2πZ is a double tangent interval of
γ if there is a circle Γ which coincides with the osculating d-circles at γ (a) and γ (b), and
has the property that there is a t in (a, b) such that γ (t) �∈ Γ . We assume furthermore that Γ
is locally, around γ (a) and γ (b), on the same side of γ . Notice that (a+π, b+π) is a double
tangent interval if (a, b) is such an interval.

Two double tangent intervals (a1, b1) and (a2, b2) are independent if they are not antipo-
dal on S1 and if they are disjoint or the closure of one is contained in the other.

Since A2-double tangent intervals correspond to the d-double tangent intervals, Theorem
5.10 implies the following theorem.

THEOREM 5.13. Let γ be a convex C3-regular curve of constant width d . Suppose
that the curve meets each circle at at most finitely many points. Then the number i(γ ) of
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independent d-inflection points and the number δ(γ ) of elements in a maximal set of indepen-
dent d-double tangent intervals are both finite, and δ(γ ) is independent of the choice of the
maximal set used to define it. Moreover, we have the identity

i(γ )− 2δ(γ ) = 3 .
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