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Abstract. We study the solution of the heat equation with a strong absorption. It is
well-known that the solution develops a dead-core in finite time for a large class of initial data.
It is also known that the exact dead-core rate is faster than the corresponding self-similar rate.
By using the idea of matching, we formally derive the exact dead-core rates under a dynamical
theory assumption. Moreover, we also construct some special solutions for the corresponding
Cauchy problem satisfying this dynamical theory assumption. These solutions provide some
examples with certain given polynomial rates.

1. Introduction. In this paper, we study the following initial boundary value problem
(P) for the heat equation with a strong absorption:

(1.1) Uy =u —uf, 0<x<1, t>0,
(1.2) w0, =0, u(l,ny=k, >0,
(1.3) u(x,0) =up(x), 0=<x=1,

where p € (0, 1), k is a positive constant, and uq is a smooth positive function defined on
[0, 1] such that

(1.4) ug(0) =0, wuo(l) =k, uy(x)>0 forxe[0,1].

Problem (P) has been studied extensively for past years. It arises in the modeling of
an isothermal reaction-diffusion process [2, 11] in which the solution u of (P) represents the
concentration of the reactant which is injected with a fixed amount on the boundary x = +1
(by a symmetric reflection), and p is the order of reaction. It also arises in the modeling of
a description of thermal energy transport in plasma [8, 7]. For more references, we refer the
reader to a recent work of Guo-Souplet [4] and the references cited therein.

In the literature, the region where u = 0 is called the dead-core and the first time when
u reaches zero is called the dead-core time.
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It is shown in [2] that for a large class of initial data ug the solution of (P) develops a
dead-core in a finite time, say, 7. By the following transformation

(1.5) ulx,t) =T —H)%w(y,s), a:=1/1-p),
(1.6) y=x/7T —-t, s=—-In(T —1),

we see that u is a solution of (P) if and only if w is a solution of the following initial and
boundary value problem (Q):

(1.7) wszwyy—wp—i—aw—%ywy, O0<y<R(s), s>,

(1.8) wy(0,5) =0, w(R(s),s) =ke*, s>s0,

(1.9 w(y, s0) = wo(y) := uoOWVT)/ T, 0<y=<1/VT,

where R(s) := 8?2 and so := —InT. Furthermore, it is shown in [4] that, as s — o0,

w(y, s) — U(y) uniformly on compact subsets. Here U (y) := kpyz"‘, kp = [2aQa—-1)]77.
In particular, w(0,s) — 0 as s — oo. Therefore, the exact convergence rate is still not
determined.

The main purpose of this paper is to find the exact convergence rate of w(0, s). For
the same question to different problems, we refer to the reader to the recent works of Dold-
Galaktionov-Lacey-Vazquez [3] and Souplet-Vazquez [10]. The main idea of these two works
is to use a matching of the inner and outer expansions.

For the inner expansion, we enlarge the inner region near y = 0 by a re-scaling. Then
the inner expansion is derived by studying a stabilization problem as the time goes to infinity.

For the outer expansion, we first study the linearized operator of the right-hand side of
(1.7) around the singular steady state U. Then, from the dynamical point of view, we assume
that there exist an integer / > 1 and positive constants €, K, 51 with ¢ sufficiently small such
that

(1.10) lw(y, s) — U(y) — ée” D3¢ (y)| < ge=U=1/2sy 201

for y € [Ke’(l’l/z)s, 1] and s > s; for some nonzero constant ¢;, where ¢; is the [-th
eigenfunction of the linearized operator.
Then, by a matching, the rate of convergence of w(0, s) can be formally derived as

(1.11) {In[w(0, s)]/s} = —2a(l —1/2) + O(1/s) as s — 0.
Note that the estimate (1.11) implies that
u(0,1) ~ (T —)*+2U=12 o 14T,

Hence, under the assumption (1.10), the dead-core rate is at most polynomially. But, it is
faster than the so-called self-similar rate.

Although we are unable to verify the assumption (1.10) for general solutions, motivated
by the works of Herrero-Velazquez [6] and Mizoguchi [9], we can construct some special
solutions for the corresponding Cauchy problem such that the assumption (1.10) is satisfied
by these solutions for any odd integer /.
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We note that the dead-core rate of the solution of (P) should depend on the initial data
uo. We observe from the exact expression of ¢; (see Section 4 below) that there are exact
[ intersections of w(y, s) (constructed in Theorem 6.1 below) and U (y) in (0, co) for any
s > s1. Notice that the number of intersections of w(y, s) and U (y) is the same as the
number of intersections of u(x, ) and U(x) due to the scaling invariance of U under the
scaling (1.6). Also, ast © T~ (or s — 00), the y-domain of w tends to the whole real line.
It is nature to expect that (1.10) is satisfied with an integer / which is related to the number
of intersections of u(x, t) and U (x) in (0, 1). This gives a connection between the initial data
and the assumption (1.10) on the solution.

The paper is organized as follows. In Section 2, we study the structure of steady states
of (P). The inner expansion is given in Section 3. In Section 4, we first study the spectrum
of the linearized operator around the singular steady state U. With this information on the
spectrum, we then give a formal outer expansion. Then, in Section 5, we formally derive the
exact convergence rate of w(0, s) under the dynamical theory assumption (1.10). Finally, to
illustrate the plausibility of the assumption (1.10), we construct some special solutions for the
corresponding Cauchy problem with certain given rates in Section 6. These solutions satisfy
the dynamical theory assumption (1.10). The proof of a key lemma in this construction is
given in Section 7. This involves a quite heavy analysis.

2. Steady states. In this section, we shall study the steady states of (P). For any n > 0,
let U), be the solution of

2.1 W' =uP, u>0 forany y>0; u@) =n, u'(0)=0.
In particular, Up(y) = U(y) = kpyz" for y > 0. Note that, by a re-scaling, we have
(2.2) Uy(y) = nUi(n'P~Y72y)  for any 5 > 0.

Also, by a simple comparison, we have Uy, > Uy, if n1 > n2 > 0. Moreover, U,, — U as
n— 0t.

REMARK 1. For n = 0, there are non-negative solutions in the form
U () = kp(y —e)3°
for any ¢ > 0. Also, these give all the possible non-negative non-trivial solutions of (2.1).
Concerning the asymptotic behavior of U, as n — 07, we have
LEMMA 2.1. Asn — 0T,
(2.3) Uy(x) = Up(x) + k(mx**~' (1 + (1))
for any x > 0, where k(n) := an'=P)/2 for some a > 0.

PROOF. First, we study the asymptotic behavior of Uj(y) as y — oo. For this, we
write U; = Uy + v. Then v satisfies the equation

2 —2-2a 2 “2—da3 4

vV =by v+ 2y V7 + 3y
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for some constants ¢;, i > 2, where b := 2a — 1)(2a — 2). Assume that v(y) ~ y? as
y — oo for some y > 0. Then we must have
y(y =) =b.

By writing y = 2a — §, we obtain that either § = 1 or § = 4o — 2 > 2w, which is impossible.
Hence we obtain that

(2.4) Ui(y) = Up(y) +ay®* (1 +0(1)) as y— o0

for some constant a. The constant a is positive, since Uy > Uj.
Now, for any x > 0, from (2.2) and (2.4) it follows that

Uy(x) = nUi(nP~D72x) = Up(x) + an'=P/2x2* "1 (1 4 0(1)) as n— 0",

The lemma is proved. a

3. Inner expansion. In the sequel, for convenience we denote o (s) := w(0, s5). To
derive the inner expansion, we make the following transformations

N

Bl w(y,s) =o()0E, 1), &:=0(s)P D2y, t:r(s)::/o(r)p_ldr.

50
Then it is easy to check that 9 satisfies the equation

. 1
(3.2) 0, =6 — 0P + [0 7P(s) + g(r)](ae - 556@) ,
where
(3.3) g(r) === = p)a’(s)o(s)7".

Also, 6(0,7) = 1 and 6:(0, t) = O for all T > 0. We shall study the stabilization of the
solution 6 of (3.2).
First, recall from (3.7) of [4] that

0<uy <Cu?V’2 for any x €[0,1], T/2<:t<T,
where C is a positive constant. Hence we have
(B4  0<wy,<Cw?™’2 for any y € [0, R(s)], s> —In(T/2):=s1,
for some positive constant C. Consequently, by an integration, we deduce from (3.4) that
(3.5) w(y,s) < [0+ ey for any y €[0,R(®)], s =1,

for some positive constant c. Using (3.5), (3.1) and wy = O,(l+p)/29‘§, we obtain the following
estimate

(3.6) 0<60(E 1)< (1+c6)™, 0<E6:(E 1) <CI+E)™

forall £ € [0, R(s)o P~ V/2(5)], T > 11 := 1(s1), for some positive constants ¢ and C.
On the other hand, recall from (1.7) of [4] that

3.7 u(x, ) > w0, )7 + cx?®  for any x € [0,1], T/2<t<T,
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for some positive constant ¢. Hence w(y, s) grows at least as fast as y2* for y > 1 and s > 1.

Next, it follows from Hopf’s Lemma that wy (0, s) > 0 and so w,(0, s) > —w” (0, s)
by (1.7). Hence g(t) < 1 — p for all ¢ > 0. In the sequel, we assume, in addition to (1.4),
that ug satisfies the condition

(3.8) ug—ub <0 in [0,1].
It follows from the maximum principle that u; < 01in [0, 1] x [0, T']. From the relation
i, 1) = (T = 0wy (y, 5) — aw(y, s) + ywy(y, 5)/21,

it follows that w; (0, s) < aw(0, s) for all s > so. Hence ¢(7) > —w!'~7(0, s) forall s > sp.
Therefore, g is bounded and lim inf; ., g(t) > 0.
Note that

/oo g(v)dt = —(1 — p) /Ooa*](s)a’(s)ds = 00.
0 50

Hence either lim sup,_, ., g(v) = O or limsup__, ., g(t) > 0. Indeed, the first case holds as
shown in the following useful lemma.

LEMMA 3.1. There holds lim;_~ g(t) = 0.

PROOF. Otherwise, there is a sequence {7,} — oo such that g(7,) - y asn — 00
for some constant y > 0. By using (3.6) and the standard regularity theory, we can show that
there is a subsequence, still denoted by {7,}, such that

&, T+10) — 0(E,T) as n— 00

uniformly on any compact subsets, where & solves the equation
~ ~ ~ ~ 1 -
6; =955—91’+y(o¢9—§§95>, E>0, >0,

with 5(0, t) = 1 and 675 (0, ) = 0. Moreover, it is easy to check that 9} > 0 and 67(5, 7)
grows at most polynomially as & — oo for 7 > 1.
Now, it follows from the so-called energy argument (cf. the proof of Proposition 3.1 in
[4]) that 6 (&, ) — V(&) as T — oo for some V satisfying
4 1 /
1% —V”+y(aV—§§V>=O, £§>0,
V' 0)y=0, V@O =1.
Note that V' > 0 and V grows at most polynomially. Set
W) =y*V/J7).
Then W satisfies
1
W' — WP +aW — EyW’ =0, y>0,
W (0)=0, W@ =y*.
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Since W > 0, W > 0 for y > 0, and taking into account of the polynomial boundedness
of W, it follows from Proposition 3.3 of [4] that either W = U or W = o~*. The first case
is impossible, since U (0) = 0. The second case is also impossible, since 8 is unbounded by
(3.7). Hence the lemma follows. O

Again, by the standard limiting process with the estimate (3.6) and Lemma 3.1, for any
given sequence {1,} — 0o we can show that there is a limit 6 satisfying

O, =0 — 07, £>0, TER,
60,7)=1, 6:0,7)=0,

such that 8(£, T + 1,) — 6(£,7) asn — o0 uniformly on compact subsets of (0, c0) x R.
Since we also have

0=U-Ul, 6(0,7)=U(0), 60,71)=Ups(0),

Hopf’s Lemma and the real analyticity of § — Uy imply that § = U. Indeed, suppose on
the contrary that & % U;. Taking any finite 1o, it follows from the real analyticity of v(&) :=
5(& , T0) — U1 (&) in £ that the zeros of v are isolated. Assume that the smallest positive zero
of v is &y (§y := o0, if there is no finite zero). Without loss of generality we may assume that
v < 0in (0, &). In the connected component

0 ={E1)]E>0,1>1,0—-U <0}

containing (0, &y) x {0}, any point (0, ) with T > 70 is a maximum point. Then Hopf’s
Lemma implies that (5 — U1e(0, 7) < 0, a contradiction. Therefore, we must have o=U 1.

Since this limit is independent of the given sequence {7, }, we see that (&, t) — U (§)
as T — oo uniformly on any compact subsets. Returning to the original variables and using
the relation (2.2), we thus have proved the following so-called inner expansion.

THEOREM 3.2. Ass — 00, we have

w(y, s) = Us(s)(»)(1 + o(1))
uniformly in {0 < o P=V/2(s)y < C} for any positive constant C.

4. Outer expansion. In the matching process, we need to study the following lin-
earized operator

b
Lv=—v + %v’ + v, bi=(Qa—DQa—2)
y

which comes from the linearization of (1.7) around the singular steady state U.
Consider the eigenvalue problem

4.1 Lo=2rp, y>0; ¢'0)=0, ¢@0)=0.
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Set p(y) := exp(—y?/4). We introduce the following weighted Hilbert spaces:

Ly = { ¢ is measurable in R ‘ $() = ¢(yD. /0 $*Mp(dy < oo} ,

_ 2| [T 2 > ¢ (y)
H:=1¢9¢clL, A ¢y (Mp(y)dy < oo, T2 p(y)dy < oo .
Also, we set
[ee) 0o 42
J@) = fo 62 p(»dy + b fo ¢y(2y)p<y)dy,

o
1@)= [ #0000y
0
Then the principal eigenvalue Ag of (4.1) can be characterized by

(4.2) ro :=1inf{J(¢)/1(p) | ¢ € H, I(¢) > 0}.

It is easy to see that Ao > 0. Also, by taking a minimization sequence, we can show that this
Ao can be attained by a function ¢9 € H which is the eigenfunction of (4.1) such that

¢o>0 in (0,00), /O (Go(¥)*p(V)dy = 1.

Moreover, from the standard theory on eigenvalue problem, there is a sequence of eigen-
pairs {(An, ¢n)}n>0 of (4.1) withO < Ag < A; < Az <--- and A, — 00 as n — 00. Since
¢, # 0, without loss of generality we may assume that ¢, > 0 for y > 0 and small. Also, we
take ¢, so that fooo (Dn(»))2p(y)dy = 1. Itis also easy to see that

(4.3) n(y) =dyy"* (1 +o0(1)) as y— 0"

for some positive constant d,,, where y4 := 2« — 1.
To compute the eigenvalues, we set

o) =y H@), n=y*/4.
Then ¢ satisfies (4.1) if and only if H satisfies
(4.4) nH"(n) + (b —nH'(n) —aH @) =0,

where d :=y./2— A and b := v+ + 1/2. This is Kummer’s Equation (cf. [1]) and its general
solution is given by

M@, b,n) + U@, b, )
for some constants ¢ and ¢, where
w M, b,n) pMA+a—b,2-b,n
[F(l Ya—brd r@re-—bh }

with M Kummer’s function and I" the Gamma function.

U@, b,n) = ——
sin bt
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Since H (0) is finite, 1 — b = 3/2 —2a < 0, and M(-,-,0) = 1, it follows that the
solution of (4.4) is given by
H(p) = cM (@, b,n)
for some constant c.
Since b > 0, H(n) is always well-defined. If —a € N U {0}, then M(a, b, n) is a
polynomial of degree —a in n (cf. [1]). Indeed, M = 1 if @ = 0. For n € N, we have
n! 1

n
M(=nb.p) =1+ (=D)" = i
(b =1+ ) ( )(n—m)!m!b...(b+m—l)n
m=1

Otherwise, if —a ¢ N U {0}, then

2 i 2\ ~4 2
w(en ) ~ma(5) (%)
4 r@\ 4 4

asy — oo, where g := y+/2+1/24+ A = o + A. Since ¢ € H, we conclude that the
eigenvalues of L are givenby Ag =a — 1/2and A, = y+/24+n=a+n—1/2forn € N.

Note that ¢o(y) = coly|**~! for some positive constant cg. Since ¢(y) = y"+ H (1), we
have

(4.5) on(3) = ey N1 +o(1)) as y— 0T,
(4.6) Gn(y) = Gy (1 +0(1)) as y— 00,

for some constants ¢, > 0 and (—1)"¢, > Oforalln € N.

In this paper, we are unable to derive a good outer expansion rigorously. Since w — U
as s — 00, from the dynamical theory point of view, we assume instead that there exist an
integer /[ > 1 and positive constants ¢, K, s1 with ¢ sufficiently small such that

.7 [w(y, s) — U(y) — Ge” Mgy ()] < ge™ M5 y20]
fory € [Ke~ %= 1]and s > s; for some nonzero constant ¢;.

5. Rate of convergence. In this section, we shall use the idea of matching to derive
formally the exact convergence rate of o (s) := w(0, s) to zero as s — 00.
We recall from Lemma 2.1 and Theorem 3.2 that for any y € (0, Col=P)/2(5)],C > 0:

(5.1 w(y,s) —U(y) =acT=P2(5)y2* "1 +0(1)) as s— oco.
On the other hand, by (4.7) and (4.3), we have, for y(s) := Ke~ M=%,

(&d) — £)e” 7Dy < w(y(s), 5) — U(y(s))

5.2) R ,
(Grdy + e T2y ()2

A

for all s > s for some / > 1. Consequently, (1.11) can be formally derived under the
dynamical theory assumption (4.7).
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6. Construction of some special solutions. In this section, we shall construct some
special solutions for the problem (CP):

6.1) wszwyy—gwy—i—otw—wp for y >0, s> s],
(6.2) wy(0,5) =0 for s > 51,
(6.3) w(y,s1) = woe(y) >0 for y €[0,00).

By setting v := w — U, (6.1) is equivalent to
(6.4) vy =—Av+ f(v),
where

b
Av = —vyy + %vy + Sv—oav, b:i=Qa—-1DQ2x-2),
y

f(v):=UP — (v+U)P +bv/y>.

First, we fix some notation. For each [ € N, let ¢; be the constant in (4.5) withn = [. Let
k(n) be the constant in (2.3). We choose (for a fix /) two positive constants 11 and 77 so that
k(m) < c < k().

THEOREM 6.1. For each odd ! € N, there exists a positive solution w of (CP) such
that, for some positive constants s1, K, o, € with (A, —a) /A —2a+1) <o < 1/2,51 > 1,
K>1ande < 1,
(6.5) eVSU (ePSy) < w(y,s) < eV Uy, (ePy)
fory € [0, Ke P 1ands > s1, and
(6.6) [w(y,s) = U) —e Pl < ee (! + y?)
fory e [Ke PS¢ and s > 51, where B = Bj := A —aand y =y = 2ap.

Hereafter [ is a fixed odd positive integer so that 8 = A; — « and y = 2af are fixed.
Foragivend := (dy,---,di—1) € R' with the property

(D) Y0l ldal < eePst,

we let w(y, s; d) be the solution of (6.1)—(6.3) with the initial data wo(y) = v(y, s1) + U (y),
where
-1
(6.7) vy, 1) = v(y, s1:d) i= ) duu(y) + ¢ P Gi(y)
n=0
satisfying, for some (fixed) constants 6 and K withé € (0 — a)/(2r — 2o+ 1), 1/2) and
K>1,
-1
VD) Giy) = =P {U(y) —eUPry) + den(y)} . yelo,KeTP,
n=0
where U, is the solution of (2.1) so that k(1) = ¢; in (2.3);
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(V2) i) == (y), y € [Ke P, s
(V3) ¢i(y) is smooth for y > Ke P91 and satisfies the bound

$1(y) < min{gy(y), U(y)} for y >e%*1;

V4) v(y,s1) +U(y) > 0in (0, 00).

Fix a positive constant ¢ <« 1. Take o € (A — @)/(2A; — 2a + 1),6), s1 > 1, and
K > K such that ¢#51/8 < K < ¢f$1/2, Fors, > s; > 0and 6 € (0, 1], let Wfl’sz be the set
of (symmetric) continuous functions w on [0, co) satisfying

lw(y, s) — U(y) — e PSr(y)| < Gee P (y2 =1 4 y24)

(6.8)
if y e [Ke P, e%%), s € [s1,s2].

Define Uy, 5, to be the set of all d € R’ with the property (D) such that w(y, s; d) €

wl Also, we define US] s, to be the closure of Uy, 5,. Hereafter the constant o is fixed.

S1,82°

PROPOSITION 6.1. Lets; > 1 and K > K. Ifd € Uy, 5, with some sy > s1, then
there exists a positive constant 6o € (0, 1) such that

(6.9) (14 80)e 75Uy, (P y) < w(y,s) < (1 —80)e " Uy, (eP*y)

fory €0, Ke’ﬂs] and s € [s1, s2], where w(y, s) := w(y, s; d).

PROOF.  First, we recall from the proof of Lemma 2.1 that, as n?~1/2¢f%y — o0,
(6.10) eV U (P y) = U ) + k(e P y** 11+ 0(1)) .

By assumption, w(y, s) € Wsll’sz, since d € Usl,.gz. By (6.8) and the choices of 11, 12, ¢,

there exists a positive constant §; € (0, 1) such that
(©6.11) (1+80e 7 Uy, (e7y) < w(y, ) < (1= 8 " Uy (e”y)

in D| :={y = Ke P, s € [s1,5]},if K > 1. From (D), (V1) and (V2), by choosing
82 € (0, §1) small enough, we have

(6.12) (1482077 Uy (€71 y) < w(y, s1) < (1 = 82)e 71Uy, (P y)

in Dy := {y € [0, Ke P91, s =51}, if sy > 1 and K > K. Set 80 := 8. From (6.11) and
(6.12), it follows that (6.9) holds in Dy U Dy, if K > K and s1 > 1.
Now, we define

W(y,s) = (1 —380)e " Uy, (),
W(y, s) = (14 80)e " Uy, (ePy).
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Then from a direct calculation we get, for y € [0, K e Bland s € [s1, 521,

Wy —zi)yy+%y&)y —aw + w?

= (1= 80)e T [—1+ (1 = 80)" UL, + 727 By} > 0 if 51> 1,
Wy —zi)yy+%yzi)y —aw + w?
= (1+80)e 7PN [—14+ (1 +80)" UL + e B} <0 if 51> 1,

where B := —(y + a)Up (e#y) + (B + 1/2)(eP y)U; (e y), i = 1,2. Since wy (0, 5) =
0= U,’) (0), the proposition follows by a comparison principle. O
We next derive the estimate in the region {y > ¢?*} as follows.

PROPOSITION 6.2. Lets; > 1 and K > K. Ifd € Uy, 5, with some s > s, then
(6.13) 0<w(y,s)<U®Q)
fory > €% and s € [s1, s2], where w(y, s) := w(y, s; d).

PROOF. Note that, by (V4), it follows from the maximum principle that w > 0. Since
d € Uy, 5,, by (6.8) and (4.6), we have

w(y,s) UG +e P& —2e)y* <U(y) if e <1 and 51> 1,

for y = ¢?* and s € [s1, s2]. Here [ is assumed to be odd and so ¢; < 0. Clearly, (6.13) holds
fory > ¢? and s = s, if s1 > 1, since v(y, s;) < O for y > ¢?°! by using (D), (V2) and
(V3). The proposition follows by a comparison principle. O

Next, we define the operator P(-; s1, s7) from l_]sl, 5, tO R! by
P(d;Sth):(pO:uwplfl)a pn:z(v()’ys%d)a(bn()’))a n:O,...,l_l,

where v(y, s:d) == w(y,s;:d) — U(y) and (f, g) := [~ (g p()dy.

PROPOSITION 6.3. Lets; > 1 and K > K. If there is d € Uy, s, for some sy > s
such that P(d; s1, s2) = 0, then w(y, s; d) € ng for some 6 € (0, 1).

To prove this key proposition, we shall apply an idea of Herrero and Velazquez [6], which
was modified by Mizoguchi [9]. Since it involves rather complicated computations, we shall
postpone its proof at the end of this paper. We continue to prove Theorem 6.1.

PROPOSITION 6.4. Lets; > 1. Ifl_]Sl,Sz # () for some sy > s1, then there exists
de 051,52 such that P(d; s1, s2) = 0.

PROOF. We shall apply the degree theory to prove that
deg (P(d; ST, S2), 01 USl,Sz) = 1 ’

where deg (P (d; s1, 52), 0, Uy, 5,) denotes the degree of P(-; s1, s2) with respect to 0 in the
set Uy, s,. First, we claim that deg (P(d; s1,s1), 0, Uy, 5,) = 1. Note that p,(d; s1, s1) =
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dyn + e Py, dn). Set
h’(d) =((1—-0Id)+tPd;s1,s1),

where I (d) is the identity mapping in R'and 1 € [0, 1]. Through the choice of ¢, for s; >> 1
we have h' (3Uy, 5,) # 0 fort € [0, 1]. By the standard degree theory, deg (k' (d), 0, Uy, s,)
is independent of ¢ € [0, 1]. Hence we obtain that

deg (P(d7 Sl7 sl)a 07 US],S]) = deg (I(d)a 07 US],S]) = 1 .

Moreover, by Proposition 6.3 and Lemma 7.3, we have P(d; s1,s2) # Oforalld € 0Uy, ,,
if 51 > 1. Therefore, it follows from the homotopy invariance of degree theory that
deg (P(d; s1,52), 0, Uy, 5,) = 1. This proves the proposition.

PROPOSITION 6.5. Letsy > 1. Then Uy, 5, # ¥ for all s, > s1.

PROOF. Sets* :=sup{s > s1 | Uy, s # ¥}. From the theory of continuous dependence
on initial data, we see that Uy, s # ¥ for s > s1 with s — 51 < 1. Hence s* > s1. Claim that
§* = oo. If not, then there exists a sequence {s;} with s; < s* < oo such that s; — s* as
J — oo. By Proposition 6.4, there exists d; € 0.91,.9,- such that P(dj; s1,s;) = 0 for each j.
Since {d;} is bounded, without loss of generality, we may assume d; — d* as j — oo for
some d* € R'. Moreover, we have d* € Usl,s* and P(d*; sy, s™) = 0 from the continuity of
P. From Proposition 6.3, there exists 6 € (0, 1) such that w(y, s; d*) € Wﬁ)s*. Hence we get
w(y, s;d*) € Uy, s+4, for some n > 0. This is a contradiction to the definition of s* and the

proposition is proved.
Now, we are ready to prove Theorem 6.1.

PROOF OF THEOREM 6.1. From Proposition 6.5 it follows that there exists a strictly
increasing sequence {s;} C (s1,00) with s; — 00 as j — 00 such that Us, s; # (. By
Proposition 6.4, there exists d; € 051,.9,- such that P(d;; s1,s;) = 0 for each j. Hence, from

Proposition 6.3, we have w(y, s; d;) € Wsll’s

; for each j. Since {d;} is bounded, without loss
of generality we may assume that d; — das j — oo for some d € R'. Let w(y, s; d) be
the solution of (CP) with initial value w(y, s1; d) = v(y, s1; d) + U(y). Since di € Uy, 5, C
0.91,5',- for all k > j for any given j, we have d € 051,.9,- for all j. Therefore, we conclude that

w(y,s; c?) € Ws,ll)oo. O

7. Proof of Proposition 6.3. In the sequel, C denotes a (universal) positive constant,
which may be different from one line to another, depending on p and /.

Recall that f(v) := UP — (v + U)? + bv/y>. Note that, by (V4), w = v+ U > 0 and
so f is well-defined. From

vy =—Av+ f(v) in R x (s1,00),
it follows that (cf. [5])
N

(7.1) v(y,8) = ATy, 1) + / e AT f(u(y, 1))

S1



FINITE TIME DEAD-CORE RATE FOR THE HEAT EQUATION 49

for s > s1. Hereafter s is a very large constant.

LEMMA 7.1. We have
(7.2) 0< f(v) < CUP%?
for some C > 0.

PrROOF. First, since

f) = %p(l — P)(U + D)2
for some 0 between 0 and v, we see that f(v) > 0.
To prove the upper bound, we divide our proof into two cases.
Case 1: —U/2 < v. Applying the mean value theorem, we have
f@)=UP—@+U)" +pUur~'v
=—pU + )’ v+ pUP~lv = —p[(U +61v)"~ ' —UP
=601 p(1 — p)(U + 616,0)P*v?

1 p-2
<61p(l— p)(U - 59192U> v?

1 \"7?
<61p(1— p>(5U> v < CUPT?,

where the constants §; € (0,1),i =1, 2.
Case 2. —U < v < —=U/2. Since —U < v < —-U/2,we have =2 < U/v < —1.
Hence
f=U"—-@w+U)?+pUurly
<UP —(w+U)?P

2 P 2
U v U
”[(v) <U+) <v>}
U2
§2UP2U2<—) <CUP ™22,
v

Combining Case 1 with Case 2, we have proved the lemma.

LEMMA 7.2. Let$ > 1. Ifd € l_]sl,nforsome sy > 81, then

(7.3) 0< f(v) <CK* e 25y=2 for y [0, Ke P,
(7.4) 0< f(v) < Ce 2Py =4 for ye[Ke s,6],
(7.5) 0< f(v) < Ce_zﬁsyd')"_zo‘_2 for y €[8,e%],
(7.6) 0<f(v) <Cy™ % for y=e®

foreachs € [s1, s2], where v :=v(y, s;d) = w(y,s;d) — U(y).
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PROOF. Given any s € [s1, s2]. From (6.9), there exists a constant C > 0 such that
lu(y, s)| < CK*@e2Ps
for y € [0, Ke=P5]. Then (7.3) follows from the definition of f. From (6.8), (4.5) and (4.6),
we have
oy, )| < Ce Pyl if y e [Ke s, 81
lv(y, s)| < Ce_ﬁsy”‘l if yel[s,e’*].
Moreover, from (6.13) it follows that |v(y, s)| < Cy?* for y > ¢°%. Therefore, (7.4) through
(7.6) follow by using (7.2). O

LEMMA 7.3. Suppose that d € 0.8'1,.8'2 such that P(d; s1,s2) = 0. Then for any v €
(0, 1) there exists s; > 1 such that

-1
(1.7) Z |d,| < ve st
n=0

PROOF. Since P(d; s1, s2) = 0, we have (v(y, 52), ¢,) =0forn =0,...,] — 1. Fix
n €{0,...,1 — 1}. Then we get from (7.1) and (6.7) that |d,| < I,,1 + In,2, Where

I = e_ﬁsl |<($ls D)l

52
fha = e O [y g g par
S

1

Since ¢; — ¢; in L% as s; — 00, |(@1, du)| — 0 as s; — oo. Thus for any v € (0, 1) there
exists s1 > 1 such that

I 1 < ie*/ssl

= '

Now, we shall apply Lemma 7.2 to estimate |{ f, ¢, )| for each 7 € [s1, s2]. Recall that
K < ePs1/2_ First, from (7.3) it follows that
Ke Pt
(7.8) ‘ / @G DG () p(dy| < CK*e 2T < Cell=PTePT
0

Next, by (7.4) and (7.5), we have

< Ce 27,

5 e(TT
(7.9) H/ +/ }f(v(y, )Pn () p(y)dy
Ke=pt 8

Finally, by (7.6), we have

o]

F@, ) (¥)p(y)dy

e{)“(

(7.10)

20T o0 2 20T
< Ce— /8/ YR, =8 g < =8
e

p0T

Combining (7.8), (7.9) and (7.10), we could find a constant ¥ > 0 such that
(7.11) (@, 1)), n)| < Ce™PHITif 5> 1.
Hence

V. gy .
Iy < e Bsiif s> 1.
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This completes the proof of the lemma.

Throughout the following, we suppose that d € 051,52 with 1 < s; < s such that
P(d; s1,s2) =0.

7.1. Shorttime. s1 <s <s1+ 1.

Since v =) 2 (v, ¢ )¢, we may rewrite v(y, s1) as

-1 o0
v(y,$1) = Y o+ e PG G n + PG GG+ D e PG )
n=0 n=Il+1

Thus from (7.1) we may write, for s > s1,

v(y,s) = S1(y,s) + S2(y, 5) + S3(y, 5),

where

(7.12)  S1(y,s) == e P (¢, b1) ¢ ,
-1

(713)  Sp(y,8) =y e Wm0y g)e Pg, +7) dyem PTG,

n#l n=0

(7.14)  S3(y,s) = / e A0 £(u(y, T))dT .

81
LEMMA 7.4. Foranyv € (0, 1), there exist s1 > 1 and K > K such that
1520y, 9)| < ve P (27 4 y ),
ifKe’ﬂS <y<e”ands; <s <s;+1,whereo € (0,0).

PROOF. Given any v € (0, 1). Note that S>(y, s) satisfies
1 b
(82)s = (82)yy — E)’(SZ)y +aS — FSz.

Set $>(y, s) = y2*~ 1V (y, s). We have
2Qa —1) y 1
vs=vyy+<f—5 Vy+§V.

Moreover, by setting V = ¢%/2V, we obtain that

_ _ 2Qa—1)  y\ -
Vi =V — — = V,.
K yy + ( y 2 y
From Proposition 6.1 of [1], it follows that

exp ((4a — 3)(s — s1)/4) > ; e~ =50/ 2y
| — e—G—sD A O YT R EEO

2 ,—(s—s1) 2
(da—1)/2  —(4a—3)/2 _Ye T\
r y exp ( TGy V(r,s1)dr,

V(y,s)=cCa
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where 1,,(z) is the modified Bessel function of order u and ¢y, is a positive constant depending

on «. Hence

4o — 1)(s — 51)/4) [®
115 Sa(s) = e 1 SUEE TG [ yis = s Punar
0

1 —e—G—=s1)
where vo(y, s1) == v(y, s1) — e P51 (¢, d1)pi (y) and

e T2y > p(_yze_“_”)+r2) a2

(7.16) H(r,y;s —s1):= I(4a3)/2( 21—ty

2(1 — e=G—s1)

Since
ztet
[, ()| < m,

from (7.15) we have fors; <s <s; + 1

Cy20(7] 00 12
1S2(y, 9)I = ﬁ/ T(r, y; s —sOr'?lvoldr == 21 + S22,
1—e Y Jo
where
_ K e P51
CyZa 1 Ke 12
Sz’]._m/o T(r,y;s —sp)r /' “voldr,

Cy2a—1 [ee) 12
Srpi=———— T(r,y;s —spr voldr ,
22°= T =) /ke—ﬂn (r,y Dr ol

(ef(sfmﬂry/z(l _ e*(S*Sl)))(4a73)/2
T (14 e 6=0/2ry/2(1 — e~ G=sD))20-1

exn [ — lye=(=s0/2 — p2 —a+3/2
- €Xp o y .
M1 — e G

Firstly, we consider S> 1. Using (V1) and (6.10), for s1 > 1 we have
(7.17) lvo(y, s1)| < CK*®e™2F1 for y € [0, Ke F*1].
From (7.17), we have

CIZZa€72aﬁsl y2a7]

Ke Ps1
R 172
S009) = S [ T = sor

For y > Ke Psandr < I%e_ﬁsl, we have (using s1 < s <s1+ 1)
yef(sfsl)/2 —r>r if K>2KePt1/2,

Hence we obtain

CkZae—Zaﬁsl Ke Psi 1’2
SZ,] (yv S) E (1 _ e*(S*S]))l/z /(\) exp ( - 4(1 _ e(ssl))>dr *
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Sett =r/(1 —e~=50)1/2 We then have

~ 00 t2
$2.1(y,5) < CK?>@e™ P51 / exp ( — Z)dt
0
< CI%Zae—Zaﬁsl y2a—l(Ke—ﬁs)_2a+1
<ve Pyl if K > K.

Secondly, we consider S 2(y, s). From Lemma 7.3, (4.5) and (4.6), for the given v €
(0, 1) there exists s; > 1 such that

(7.18) vo(y, s < ve P12 42 for Ke P <y < e
Moreover, it also holds
(7.19) vy, sl < Cy? for y = €™
From (7.18) and (7.19), for s; > 1 we can estimate > 2> by
$22 <5, + 55,455,

where

C 200—1 00
Szl)z = =y / T@r,y;,s— sl)r1/2+2kldr,

1 —e=6=sD [z
Cl)eiﬁsl yZa—] o0
S2 — —/ T r,y;s —=s r2017]/2 1 + r2k172a+] d}" ’
S e G ST (ry 1 ( )
- — —(s—s1)/2
Cve /BSIyZOC 1 2ye” =51
2= T o ey l/2(] 4 22t
S2,2_ 1 _e—(S—S]) /(; T(r, y; s Sl)r (1 +r )d}"
Since

r— yef(sf‘”)/2 >r(l — ef‘”(&fa)) >r/2 ifr> %51, y<e’ and 51 > 1,

we have

Cy2e-! 00 , (4a=3)/2 2
1 =y - - 1/242x;
$32 < 1 — o—(G—s1) /6551 2(1 — e=G—s1) exp 16(1 — oG- r dr

— (4a—3)/2
- CyZa 1 eiem] - 00 , a—3)/
Tl —eG-sD) 51 \2(1 — e—(5=s1)

2
cexp( = —— )22y,
32(1 — e~G—50)

Sett =r/(1 — e ©=5)1/2 Then
S212 <Cyza—1e—Ce2f'”1 /mt2a+2xl—1e—z2/3zdt
o 0

< ve_ﬁsyz‘)‘_1 if s1>1.
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2 .
For 52!2, since

r— ye_(s_sl)/2 >r/2 if r> 2ye_(s_sl)/2 ,

) Cve—ﬂsl y2a—l o0 r (4a=3)/2
ST — -
227 ] e fy e \ 2(1 — e=6-s0)

2
-r 20—1/2 20 —20+1
exp <—16(1 — e—(s—ﬁ)))r A+ )dr .

Sett =r/(1 —e =S0)1/2 Then

we have

00
2
S%,Z < Cve_ﬁsl y2a—1 / [4"‘_28—t /16(1 + t2kl—2a+l)dt

< Cveiﬂsyz"‘*] if s1>1.
Finally, since
e*(sfsl)/Zry > r2/2 if r< 2ye_(5_5')/2,

we have

5 Cl)e_ﬁsl yza_l 2ye~(—51)/2 r (4a—3)/2 }"2 12«
S, < — - I —
22= G, 2(1 — e=G—s1)) 4(1 — e=G—s1)

|ye T2 — 2 2a—1/2 2h—20+1
- exp ( — 30 = e=6=) r 1+r )dr

— 20— —(s—s1)/2 2
< 46‘”6 ﬂS]y ot a+ y2A1—2a+l) Ooexp . |ye (s=s/2 r| dr
(- e*(S*SI))]/2 0 4(1 — e*(S*SI))

< Cve Pyl 4y i s> 1.
This completes the proof.
LEMMA 7.5. Foranyv € (0, 1), there exist s1 >> 1 such that
1S3, )] < we P (2 Py
ifKe P <y<e®™andsy <s <s;+1,where o € (A —a)/(Qr — 20 + 1), ).
PROOF. Let Z(y,s) = e~ A6~ f(u(y, 1)), 51 < T < s. Then

b
ZS=—AZ:Zyy—§Zy—FZ+aZ

Following the same reasoning as in the proof of Lemma 7.4, we have
4o — 1)(s —
1 —e G-
where H is defined in (7.16). Therefore, we obtain

S3(y,s) = Cy**~! /S exp (o = Dis — 1)/4) /oo H(r,y;s —r' 2 fu(r, v))drdr .
0

S1 I —e=6=D

Z(y.s) = Cyre1 &2 /%) / H(r,yis — Or' 2 f (. ))dr
0
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Thus
s 1 o0 ef(sfr)/2ry —2a+1
200—1 -z
s 0 =0 [ e | (1+ 55—
Iye—(s—‘r)/Z _ rIZ 1
. Cxp(—m r |f(U(r,T))|drdT
<851+ 8.2+ 833,
where

s Le Bt —2a+1
C
Spp = Cyz"‘*]/ (s — T)fza+1/2/ <1 L Cry )
S1 0 S—T

—(=1)/2 _ .12
. exp <—Cu>r2“_1|f(v(r, )ldrdz

s§—T

e(IT

s Cry —2a+1
S30:= cyz‘H/ (s — r)—z‘”l/zf <1 + )
S1 Le—B7 s§—T

—(s—1)/2 _ V|2
- exp <—C—

lye
s —T

) —2a+1
§ o0 Cr
S$3.3:= cyZ‘H/ (s — r)—2“+1/2/ <1 + y)
51 et §=T

—(s—1)/2 _ |2
. exp <—Cu>r2"‘] | f ((r, ) |drd |

sS—T

>r2“—1|f(u(r, t)ldrdr,

byusing (s —7)/e <1 —e D <(s—1)fors —7 €[0,1]. Here | « L < K.

I. Estimate of S3,;. By the same way of estimating (7.3), we have

s
S3)] E CLZaef2aﬁsly2a71 / (S _ T)720(+1/2
51

Le Pt —(s—1)/2 2
e —r
. / exp <—Cu>r2"‘_3d;’dt.
0 s§—T

Since y > Ke PSandr < Le P7, we get
~(6=1)/2 _ 2 (2 4 2
e
exp (_Cu) < exp (M)
s—T s—T
Setu =r/(s — 7)1/2. Then we obtain

s
531 = CLzae_zaﬁS'yza_l/ (s — r)“"‘”ze—cyz/(s—r)/
S1 0

Le P7)/s—
—Cu? _
ey 3 dudr .

Sett = y2/(s — 7). Then

[e's)
S3,l < CLZae—Za/SS|y2a—l /

00
2
ta—3/2€—Cty—2a+l / e—Cu uza_3dudt )
¥2/(s=s1) 0
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Since y > K e P5, we obtain that
S3 | < CL2aef2aﬁsl yZa—] (Ke—ﬁs)72a+l < ve*ﬁsl yZa—] if K > L.

II. Estimate of S3,2. From (7.4), (7.5) and Proposition 6.1, we have S35 < S31 2—i—S32 2
where

s o7 Cry —2a+1
S31,2 = Ce 2P yz‘)‘_1 (s — r)_2“+1/2/L y (1 + )
e T

S sS—T
—(s—1)/2 _ .2
- exp <—Cu>r4“5drdt ,
sS—T
’ 00T —2a+1
s e C
S?%z = Ce—zﬁS] yZa—I/ (S _ T)—ZDHrl/Z\/ (1 + Vy )
’ s Le—Bt sS—T
—(s—1)/2 _ |2
e r
- exp <—Cu>r4)"3drdf.
S—T

Firstly, we consider S31’2. Note that S31’2 < 53121 + S31§ where

s 4y C —20+1
Sé:; — C672ﬂsly2a71/ (s — T)72a+1/2/L (1 4 ry )
s1

e~ BT S—T
—(s—1)/2 _ .2
e r
- eXp (—Cu>r4a‘_5d}’dt s
s§—T
—20+1
N o Cr
S:;,g:: Ce—ZﬂS]yza—l/ (S _ I,)—Zl)l-i-l/Z/ (1 + y )
' S1 4y § =T
—(s—1)/2 _ .2
e r
- €Xp (—Cu>r4a_5dl’df .
§—T

Consider Sy’5. Since ry > r2/4,if r < 4y, we have

11 s 4y Cr2 —20+1
S3,2 S Ce—zﬁS] y2a—1 (S _ ‘L’)_ZDH_I/Z/ (1 + )
’ s Le—Bt sS—T

—(s—1)/2 _ |2
- exp <—Cu>r4“5drdf.

sS—T

Setu = r/(s — t)'/2. Then

s
S;:zl < Ce—zﬁflyza—lf (s — 'C)_3/2

51

( ‘ye—(s—r)/Z
-exp| —Cl————u

§—T

4y/s—1
/ (1 + CMZ)—206+1
(

Le=Pv)/\/s—t

2
>u4°‘5dudt.
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To estimate S;; , we divide it into two cases and define

b { . |:Leﬁf 4y } yef(sfr)/2 . ye(sr)/Z}
=u 3 ; —u| = 3
: =T JS—T S —T 28 — 1T
b . Le Pt 4y yef(sfr)/2 - yef(sfr)/Z
=1u , ; —u| < ———¢.
2 ST JSs—T S —T 28 — 1T
Since
—(s—17)/2 2
(1 + Cu?)2et] exp(—C e —u >u4°‘5du
D, s—T
4y//s—T
< / e’cyz/("*”u““*sdu < Ce’cyz/("*”(yz/(s . T))2a72’
0

by setting t = y?/(s — ), we have

s
S;,zl,l = C672ﬁ51y2a7] / (S _ 7:)73/2 (1 + Cu2)72a+]
’ 51 D]

ye= (=12

- eXp (—C‘ﬁ —Uu

o0
< C€—2ﬁ5| yZa—Z/ t20{—5/2€—ctdt
0

2
)u40‘_5dudr

C€72ﬁ51y2a7](K€7ﬁs)71
< ve_ﬁs'yzo‘_l if K> 1.

IA

Moreover, for any a € (0, 1/8), we have

ye~G6=D/2 |2

—u
§ =T

(1 + Cu2)720(+] exp <_C

> u4a75du
D,

</ wheIa(] 4 o) 2mal2 () 4 oy 2) 1 /2Ha2, 2y,
Dy

E/ w2 edy < Cy~1 e (s — ¢)l/2Ha2.
D,

since

—(s—1)/2 3 —(s—1)/2
X cu<Z— ifueD,.
28 — T 28 — 1
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Hence, by noting that K € (e’ss'/s, 6/35'/2),

N
S;,zl.,z = Cefzﬂslyzafl / (S _ T)73/2 (1 + Cu2)720(+]
’ S D2

—(s—1)/2

-exp(—C‘yei—u
N

s
S Cefzﬂslyzaflyflf(l/ (S _ T)*1+a/2d_’:
5]

2
>u4°‘_5dudt

Ce—zﬁS] y2a—l(Ke—/Ss)—l—a
vefﬂ“'lyz"‘*1 if s1>1.

IA

IA

We conclude that

200—1

S3:; < ve_/ss'y if s1>1.

Consider 5315 . Since
lye C7D/2 —p12 >y 4 122 if r > 4y,
we have
531:5 < o1 y2a=1 /S(s _ pyaty2 /Oo o= O /(=) ,—Cr2/(s—1) da—5 g1
51 4y

Setu = r/(s — 7)!/2. Then

o0

S
S3’§ < Cefzﬁ“yzail/ (s — r)73/2/ e P
’ S1 4y//s—t

Sett = y2/(s — 7). Then we get
g2 o 02851 201 —1 *
3p=te y y
y2/(s=s1)
< Ce s1y2al(gemhsy=l < pemhoy2e-l if Ko 1.

© 2
t71/267Ct/ e*Cu u4a75dudt
4/t

Secondly, we consider S32’2. Note that Siz < 53221 + S§§ where

4y —20+1
53221 — C672ﬂs1y2a71 /S(s . T)72a+1/2/ Y (1 n Cry )
’ 51 L

e—BT S —T
—(s—1)/2 _ 2
e r
- exp (—Cu»’“l%drdr ,
s—7T
—2a+1
s o Cr
§22 .= Ce—ZﬁslyZa—l/ (s — T)—2a+l/2/ (1 L )
' S1 4y §—=T

—(s—1)/2 _ .2
- €Xp (_C—Iye 7| >r4)"3drdf.
S§—T
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Consider Sgg Since ry > r2/4, if r < 4y, we have

. s 4y Cr2 —2a+1
S3,2 S Cef2ﬁsly2a71 / (S _ 7:)720(4“]/2/ (1 + )
’ S L

e— BT S —T

—(s—1)/2 _ 2
e
- exp (—Cu)r4)"_3drdr .

§—T

Setu =r/(s — t)l/z. Then we have

s
S§>21 S C€—2ﬁ5|y2a—l/ (S _ ,L_)ZAI—Za—l/Z
S

4y/s—t e*(S*’f)/2
. / exp (—Cl—y — u|2>u4kl4°‘]dudt
LeFt) /5=t Vs—t
s 4 4r—da
< Ce2Bs1y2a-1 / (s — T)le—za—1/2(7y> dr
5 s—T

5 Cefzﬁsly“lizai] < Cefﬂsly2)»1(e*ﬂsleﬂ(ﬂ/*%t*l)s)
< ve—ﬁﬂynl if st > 1.
Consider S32§ . Since
lye= D2 2 > y2e 7 4 42/2 if r > 4y,
we have

S o0
§22 < Com2hs1 y2o / (s — 1)72014»]/2/ o= CY2 /=) y=Cr2 /(=0 143 g g v
’ 5] 4y

Setu =r/+s/s — 7. Then

N o
5325 < Ce—2/35|y2a—1/ (s — t)ZAI—Za—l/Ze—C)'Z/(S—r)/ e—Cu2u4Al—3dudr
’ S1 4y/s—1

72;‘351})20{71

<Ce <ve Pyl if o> 1.

III. Estimate of S3.3. From (7.6), we have

—2a+1
N o0 C
Sia Scyzaq/ (s _T)72a+1/2/ (1 n r)’)
5] Pl S§—T

—(s—1)/2 _ .2
- exp (_C—Iye 7] )r4°‘_3drdr.

To estimate S3 3, we divide it into two cases: y < ¢’*/4and y > ¢?° /4.
Case 1: y <e°%/4. Since

—(5=7)/2 _ 12
e r
exp <—cu

§—T

20T 2/ .
> < e CeeTCr 6T i > 69T and y < €9/4,
s—T
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we have

$ o 20T 2
53’3§Cy2a71/ (S_t)72a+]/2/ o= CETT =Cr2 (=) da—3 g g
S1 e

0T

Setu =r/+/s — t. Then we get

s 00
_ _ _ 20T _ 2 _
S3,3§Cy2a 1/ (s —1) ]/2/ e e 3 qudr
S1 et/ s—1

< Ce—CeZ(”l y2a—1 < ve—,BS]yZa—l if 51> 1.

Case 2: y > ¢°%/4. Note that S3 3 = S31!3 + S32’3, where

s 4y Cr —2a+1
S:)}!?) = CyZa—I/ (S _ t)—2a+1/2/ (1 + y )
s1 0T §—T

—(s—1)/2 _ .12
- exp (—Cu)r4a3drdr ,

§s—T
—2a+1
§ o Cr
§24i= Cyzaq/ (S_t)72a+]/2/ (1+ y)
51 4y § =T
—(s—1)/2 _ .12
e
- exp (—C—ly r| )r4°‘_3drdr .
§s—T

Consider S} 5. Since ry > r?/4,if r < 4y, we have

K 4y CV2 —2a+1
S33 < Cyz‘“/ (s — r)‘z"“”/ (1 + ) re=3grdr .
51 e

o0 T sS—T

Setu = r/+/s — 7. Then we have

s 4y//s—T
S31)3 < Cy?-! / (s — r)71/2/ uVdudr
51 e

N =
s oT 7]
4y
<C 2"‘_1/ s—T _1/2( ¢ ) ( >dr
==Y S1( ) Js—1 Js—1
< CyZaefosl

< Ce™Psi yZ)nleﬁS1+U(—2)»1+201—1)Sl

20

< veiﬂ‘”y if sp>1,

where the assumption o > (A — o)/ (2A; — 2« + 1) is used.
Consider 532 5- Since

lye T2 — 2 =y 4 22 if r = 4y,
we have

s (.¢]
5323 < Cy2e-! / (s — t)—2a+1/2/ o= Cr?/(s=1) ,=Cy?/(s—1) Jda=3 g, 10
’ S1 4y
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Setu =r/+/s — t. Then we get
oo

S
2, < Cy2a—l/ (s — T)—I/Z/ o Cu? b3 g
' s1 4y/s—t
< Cy2a—l < Ce—ﬁS] y2k1eﬁs1+a(—2A1+2a—l)s1
<ve Py if 5> 1,
where the assumption o > (A; — ) /(2X; — 2 + 1) is used.
Putting together all the above estimates, the lemma is proved.

7.2. Longtime: sp > s1 + 1.
Since P(d; s1, s2) = 0, we have

dn=—eﬂ“@hw>—/me%“%““*wau»¢Mdr

51

forn =0,1,...,] — 1. From (7.1) we may write

v(y,s) = 1i(y,s) + L(y,s) + I3(y,s) + 14(y, 5) ,

where
(7.20) L= e PG, ¢)or
(7.21) b= Z e*(knfa)(sfsl)(q;l’ ¢n>€*ﬂsl¢n ,
n=I[+1
(7.22) I; = Z /5 e_()‘”_“)(s_f)(f(v(t)), ) pnd |
n=0""1
-1 s
(7.23) == 3 [ o). gl
n=0"51

Notice that I3 = Sz and S = I, + 4.
LEMMA 7.6. Foranyv € (0, 1), there exists s1 > 1 such that
14 (y, $)| < ve P2 4y
forally >0ands; +1<s <s).

PROOF. From (4.5), (4.6) and (7.11), we get

s
|I4| S C(yZa—l +y2)q)/ 26_(A.n—a)(s_r)€_(ﬁ+’().[dr
S1

s
— Ce P (y2! +y2x,)/ ze(kli)\")(sir)eiﬁdt
51

E Ce*,BS (y2a71 + y2)nl)e*KSl
< ve—ﬁs (y20[—1 + yZA.]) if $1>> 1 ,

forany y > Oand s € [s; + 1, s2]. O
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From now on, we shall fix R > 1.

LEMMA 7.7. Foranyv € (0, 1), there exists s1 > 1 such that

|L(y, 5)| < ve Pyt

forKe’ﬁS <y<Randsi+1<s <s.
PROOF. Fix s > s + 1. Since ¢; — ¢y in L% ass; — oo, {1, dn)| — 0ass; — 0o

uniformly on n for n > [ + 1. Moreover, we have e~ A= G=5D p=fs1 — o=Bs g=(n=h)(s=51)
Hence for a given v € (0, 1) there exists s; > 1 such that

o
L@y, ) <ve 3" e Dig, |
n=[+1

Since [ 1¢n(MI*0(0)dy = 1 and @, (y) = cuy** ' M(—n, 2a — 1/2; y?/4), we have
o
2. 24‘**2/ £29732678 (M (—n, 20 — 1/2;£))%dE = 1.
0

Making use of
[F(@)1PT(n+1)
(@ +n)

3

o0
/ ' "le™ (M (=n, &; £))%dx =
0
we have

/0052%3/2675(]”(_” 2o — 1/2: ))dE = (I Qa—1/2)1PT(n+1) '
0

Qo +n—1/2)

Hence
5 I'Ca+n—1/2)
T YA Qe — 1P+ 1)
Since we know that I"(x) ~ V2me *x* 12 a5 x — o0, we get
I'Qa+n—1/2)
( '(n+1)

1/2
) ~Cn*3* forn>1.

Thus
(7.24) Cqn~Cn® 3% forn>1.
Moreover, since
M(=n20 —1/2:y*/4) =1~ "2T Qa — 1/2)e” (o +n — 1/4)y /41>~

VAo +an —1
0S 2

uniformly for y € [0, R], there exits a positive constant C = C(R) such that
(7.25) M (—n, 20 —1/2; y*/4)| < Cn'/*™® for y € [0,R] and n>> 1.
From (7.24) and (7.25), we obtain

(7.26) |pnl < Cy** 'n=1* for y €[0,R] and n > 1.

y—(a— 1/2)7T>(1 +o(l)) as n— oo
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Since

00
Z e < 0,
n=I+1
it follows that there exists s > 1 such that
1L (y,5)| < ve Pyt
This proves the lemma.
LEMMA 7.8. Foranyv € (0, 1), there exists s1 > 1 such that
1y, )| < ve P (27 4 )
forKe_ﬁS <y<Randsi+1<s <s.

PROOF. Givenany v € (0, 1), note that I3 = I3 ] + I3, where

-1
SEDY / 0O (£ (u(0), BT
n=1"Y"1

ha= Y [ OO o) ppdr
n=I 51

By the same reasoning as the proof of Lemma 7.6, it follows immediately that

3.1 < ve PS (2l 432y if 51> 1.

We write I35 = I, + I3, where
o s
Lo=Y / e~ Un=06=D (£ (y(7)), §)ndlT
=l s—1

00 s—1
Iy=) / e” P @ETDE (0(1)), ) prdT .
n=l v51

Since

K -1 L
Iy, = f le_A“_”f(v(r))dr—Z / 1e—“"—“)“—”<f(v(r>),¢n>¢ndr,
T n=0"5"

by the same arguments as the proofs of Lemma 7.5 and the estimate of /3 1, we get
Ly <ve P2 4y f s> 1

For 1322, we have

s—1 o
I3, = / e PO N " e GG f (0 (1)), ) pudT -
S1

n=lI

63
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Thus

s °° V2 S F @), ¢a)lF)
|,§2|5/S eﬁ(st)(Zez(A”M)(‘Yr)|¢n|2)\i> (Z = n > it
1 n=lI

n=I
From (7.26), we have forn > 1 and t € [s1,5 — 1]
e—z(kn—lj)(s—f)lqbnlzkgl E Ce—2nn3/2y4a—2 .

Since 322, e=2"'n3/2 < 0o, we obtain

00 1/2
(ZE_Z(An_A])(S_T)l(ban)‘%) S Cy2a—1 .

n=I[

Moreover, from (7.26)

@) ¢ P) e 00 D), )
w )

0:3 o0 —r2/4
<y Jo If G, Ti)ﬂll(ﬁnle dr

n=lI
174

<CZ —1/24n /Oolf(v(r, o)lr2ete ar

00 2
<c / i, P e
0

since Y02, n™3/% < 0o. Hence we have

s—1 00
(7.27) 1I5,] < Ccy* ! / e*ﬁ“*f)/ |f u(r, ) r2 e A drdr |
51 0
From Lemma 7.2, we have the estimate
o0
/ |F G, NP e dr < Ty + Jh + i,
0
where
Ke Pt )
Jl = CKZozef2aﬁt / r20{73efr /4dr ,

0

oT

e
_ _ i, PV 1 2
Jr = Ce Zﬁr/ (P04 4 =22y 2 A
Ke= Pt

J3 = Ce 2PT /OO pe 3 gy
eﬂf

By a similar argument to the proof of Lemma 7.3, we have

o0
f F @, O)r e Adr < e BT if 5> 1.
0
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Plugging into (7.27), we obtain

15 ,] <ve PSy? =1 if 51> 1.

This proves the lemma.

LEMMA 7.9. Foranyv € (0, 1), there exists s1 >> 1 such that

|y, s)| < ve P (2=t 4y

fory € {Ke’ﬁs <y=<ein{y > e("'*“'l)/z} andsi+1<s <.

PROOF. Since I = S» — I4, by Lemma 7.6, we only need to estimate S5.

65

From (7.17), (7.18) and (7.19), we could easily find that for a given v € (0, 1) there

exists s > 1 such that

(7.28) lvo(y, s1)| < ve PS1(y20=l 432y if Ke P <y < e,
(7.29) lvo(y, s1)| < CK**e™ 251 if y < Ke P51,
(7.30) luo(y, s1)| < Cy?if y > %91,

Moreover, from (7.15) and Lemma 7.2, we have | S| < S; + S% + S3, where

e—Bs1

K
S; = CK2O(6720(/351yl/ze(4a71)(5751)/4/ r1/2dr’

0

oS

S% - Cve—ﬁﬂyza—le(s—ﬂ)/zf (1 + Ce—(S—S|)/2ry)—2a+l

Ke Ps1

. eXp(—C|y€_(S_SI)/2 _ r|2)r20z—l(r20l—l + VZAl)dr ;

o0
Sg = Cy20(*1€(.8'7.8'1)/2\/\ r2k[+20{7] 6Xp(—C|y€7(Sisl)/2 _ V|2)dr .

€%

First, for Szl, since y > e=30/2 and K € (eﬂsl/g, 6/35'/2), we have

S; < Cefﬂsynl {K2a672a/3s1y72)\/+1/2eﬁse(4afl)(.97.3'1)/4(Ke7/3sl)3/2} ;

< veiﬂsynl if s1>1.

Next, we consider S%. Define

Dy = {lye” "2 —r| <52}, Dyi={lye V2 —r| = 12},

and write S% = Sé’l + Sg’z, where

S§,1 = Cve—ﬁS] yza—le(S—S|)/2 (1 + Ce—(S—S|)/2ry)—2a+l

D,

. eXp(_6~|ye—(S—S|)/2 _ r|2)r2a—l(r2a—l + VZM)dV ;

S%,Z = Cve—ﬁS] yza—le(S—S|)/2 (1 + Ce—(S—S|)/2ry)—2a+l

Dy

. eXp(_6~|ye—(S—S|)/2 _ r|2)r2a—l(r2a—l + VZM)dV )
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Since e~/ 2py > 12 /2 if |ye=CTD/2 — p| < r/2. We get

s2 < CvefﬁslyZafle(sfsl)/Z/ exp(—Clye=C—D/2 _ p2)(1 4 p2=2041y g,
Dy

< Cvefﬁsly2a7]e(s7s1)/2[1 + (yef(sfsl)/2)21172a+l]
< Cvefﬁsyml{e(ﬁ+]/2)(sfs1)[y72)»/+2a71 + 67(2)472a+])(s7s1)/2]}

< Cve_ﬁsy”" .

Moreover, we get

S;,z S Cve—/sS] yza—le(S—S])/Z/ exp(_CrZ)rzol—l(rZ(x—l + rZAl)dr
Dy
< Cve_ﬁsyn’ [e(ﬁ+l/2)(S—Sl)y—2)»1+20c—1]

< Cveiﬁsym’ .

Finally, we consider S;. Since r — ye’(s’sl)/2 > Crifr > e%! and y < e, we have

o0
53 < Cyza_le(s_s‘)/zf rPr2=l oxp(—Cr?)dr ,

e(IS

— _ (208
SCyZOt le(s S])/Ze Ce=%%1 i
s 2A1

§ve7ﬁy if 51> 1.
This completes the proof of the lemma.
LEMMA 7.10. Foranyv € (0, 1), there exists s1 > 1 such that
|3(y, 5)| < ve Psy?H
forye{Ke P <y<e™}n{y=el™ V2 andsy +1<s < s5.
PrROOF. By Lemma 7.5, we only need to prove that
By, 5)| < ve Py,
where

s—1
B(y,s) = f AT £ (u(y, T))dT .
s1

Following the same argument as the proof of Lemma 7.5, we have

s—1 00
B(y. )| §Cy2°‘*1/ e(sft)/Z/ (1 4 Ce=6=0)/2py)=20+1
0

5]
- exp (—Clye ™2 — 2271 £ (u(r, v))|drd
=0 +5+1,
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where

s—1 Ke F?
131 = CyZa—I/ e(S—T)/Z/(; (1 + Ce—(S—T)/Zry)—zol-‘rl
S

-exp (=Clye” 2 —ryr2 ! f()ldrdz

oT

s—1
132 — CyZOt—l/ e(s—r)/Z/[; ) (1 + Ce—(s—r)/Zry)—Za-H
e~ T

51
- exp (—=Clye” 02 —pHr2* | £ (v)|drd
1
1= Cy! /S S50/ /Oo(l + Ce=D/2yy) 20t
51 0T

cexp (=Clye~ 67972 — r2yr22 1 f(v)|drd .
Consider 131 . From (7.3) we have

s—1 Ke Pt
131 < CKZozeontﬂslyZafl / e(sfr)/Z/ r2a73d’,d7’,
0

S1

s—1
— CKZae—ZaﬁS] y2a—l / e(s—r)/Z(Ke—ﬁr)Za—ZdT
51
—1
< CK404—2€—201/351 y2a—les/2 /S e—(l/2+ﬁ(2a—2))1dr
51
< Ce—ﬂsyZAl {K4a—2y—2)q+2a—le(/3+1/2)se—(2aﬁ+/3(2a—2)+1/2)s] }

< ve*ﬂ"y”" if 51> 1 and y > e6—51/2,

Consider 132. From (7.4) and (7.5) we get 132 < 132’1 + 132’2, where

0T

s—1 e
132,1 — CyZa—l / e—Zﬂre(s—r)/Z/ (1 + Ce—(s—r)/Zry)—Za-H
S1 Ke Pt

- exp (=Clye “=/2 —r )4 =Sdrdr

oT

s—1
132,2 — CyZOt—l / e—Zﬂre(s—r)/Z/ (1 + Ce—(s—r)/Zry)—Za-H
S1 K

e Pt

- exp (—=Clye= ™2 — |13 drde .
Firstly, we consider 132 I Define

Dy = {lye "2 — | <r/2}, Dyi={lye T2 —r| > r/2},

67
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and write 132’] = 132’1’] + 132’]’2, where

s—1
132,1,1 = Cy2a—1 / e—Z,Bre(s—r)/Z (1 + Ce—(s—r)/Zry)—Za-H
S1 Dl

- exp (—Clye /2 —r )% Sdrdr

s—1
132,1,2 — Cy2a—1 / e—Z,Bre(s—r)/Z (1 + Ce—(s—r)/Zry)—Za-H
S1 Dz

exp (=Clye 6792 _p 12y %=Sqrdr

Consider 132’1’1. If r € D1, we have

r/2 < ye ST <3r)2.

Hence
2,1,1 sl
I3 §Cy2°‘_1/ e_zﬁre(s_r)/zf r3drdt
S1 D,
s—1
< Cy2a—l / 6—2/31e(s—r)/Z(ye—(s—r)/Z)—Zdt
51
s—1
< Cy2a—3/ e—Zﬁr€3(s—r)/2dt
S1
< Ce—ﬁSyZ)»z [y—211+2a—3€(ﬁ+3/2)se—(2/3+3/2)S1]
< ve_ﬁsyn’ if s1>> 1 and y > e$—50/2,
2,1,2

For I;°77, we have

s—1
_ _ _ o de
1212 < oy 1/ o= 2BT s r)/Z/ o= Cr? ha=S g, 1
S1 Dy

s—1
< CyZOt—l / e—Z,Bre(s—r)/ZdT
s

1
< Ce—ﬁSyZ)nl(y—2)~z+201—le(ﬂ+1/2)5e(—2/3+1/2)sl)
<ve Py if 51> 1 and y > eC0/2,

Secondly, we consider 132’2 and as before we write 132’2 = 132’2’1 + 132’2’2, where

s—1
221 Cyzaq/ et [ (| 4 Com=D/2py) 20t
S1 D

-exp (—Clye” 72— yr*M 3 drdr,
s—1
132,2,2 — CyZa—l/ e—Zﬁre(S—r)/Z (a+ Ce—(s—r)/zry)—za.g.]
S1 D>
cexp (—=Clye” D2 — | Sdrdr
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For 132’2’ ! , by the same reasoning as the case of 132’2’] , we obtain

S
132,2,15Cy4)\/72a71/ 2B = QM =2a—1/2)(s 1) 4.
51

< CefﬂsyZ)Ll (yZMontf]e(*k/+a+l/2)sefs1/2)
< ve_ﬂsy”" if 51> 1 and y <e€°°.
2,2,2 . 2,1,2
For 13", by the same reasoning as the case of 15" '~, we also get

132,2,2 <ve Py if g1 > 1 and y > e6S/2,

Now, we consider 133. Since r — ye= /2> Crifr > e,y <e® andt < s — 1,it
follows from (7.6) that

s—1 0
1< Cyzaq/ e(sft)/Z/ T
51 e

oT

s—1
< Cem et / S5—0/2,
51

< Ce—/f‘syZMe—Cez”l (y—2)»1+20é—le(ﬁ+1/2)se—51/2)
§ve*ﬁsy2)" if s1>> 1 and y > e6—5D/2,
This proves the lemma.

PROOF OF PROPOSITION 6.3. By Lemmas 7.4 and 7.5, it suffices to consider the case
when sy > s; + 1. Fix §; such thats; + 1 < §; < s7. Let R = e®1750/2 Set

v (Y, 8) =v(y,s) — e P (G, 1) .

Note that vo(y,s) = Sa(y,s) + S3(v,s) = L(y,s) + I3(y,s) + 14(y, s). We easily see
that (7.29) and (7.30) are true if s; is replaced by s for any s € [s1, s2]. Moreover, from
Lemmas 7.6, 7.7 and 7.8, we have

(7.31) lvo(y, )| < ve P (y2 71 4 y2)
for Ke Ps < y < R,s € [s1 + 1, s2]; and from Lemmas 7.6, 7.9 and 7.10, we have
(7.32) lvo(y, $)| < ve P (y22 =1 4 y2)

forR <y <e%, s € [s1+1, 51]. Hence (7.28) is true if 51 is replaced by s forany s € [sy, §1].
Lets € [51,51 +2logR]. If R < y < ¢°%, then we have y > ¢“~5)/2, Hence, by the
same arguments as Lemmas 7.6, 7.9 and 7.10, we have

(7.33) |L(y, )|+ 1By, )| + [a(y, )| < ve PS(y2* =1 4 y241)

forR <y <e’ ands; + 1 <s <5+ 2log R. Moreover, by the same arguments as those
of Lemmas 7.4 and 7.5, we obtain

(7.34) 1S2(y, $)| + 1S3(y, 5)| < ve P (y2l 4 y241)
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for Ke P5 < y <e’ ands; <s <51+ 1. From (7.33) and (7.34), we have
(7.35) 1Ly, )+ 130y, )| + [1a(y, )] < ve P (2~ + y?)

for R <y < e’ and5s; <s < 51 + 2logR. Continuing to set 5 = 51 + 2log R, 53 =
52 +2logR, ..., and following the same argument as above, we have

(7.36) 1Ly, )|+ 1By, )|+ [1a(y, 5)| < ve P (y22 =1 4 y24)

forR <y <eands; <s < s.
Combining (7.31), (7.32) and (7.36), with the help of Lemmas 7.4 and 7.5, we have

(7.37) 00y, 8) — e P, gl < ve P2 4y

for Ke P < y <e’ ands; <s < s7. Since (q;l, ¢1) — 1 ass; — 0o, we get
0(y,5) —e Pl < 20e (2 4y

for Ke P <y < ¢ ands; <s < s,. Hence we have proved Proposition 6.3.
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