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1. Introduction. Let M be a compact and orientable 3-dimensional
manifold of class C°°. Let ^ be the set of all Riemannian metrics g
on M such that the total volume Vol (M, g) = 2π2. Since dim M = 3,
g e ^£ is an Einstein metric, if and only if (M, g) is a space of constant
curvature. We consider a deviation function F on ^ from Einstein
metric defined by

(1.1) F(g) = \ [ZRiiRr.g
irg* - S2]dM ,

JM

where dM, (Rij), and S denote the volume element, the Ricci curvature
tensor, and the scalar curvature with respect to g = (gr̂  ). F(g) is the
integral of 3| G\2 = SGrsG

rs, where G = (Grs) = (Rrs - (S/3)grs). F(g) = 0
holds if and only if g is an Einstein metric.

In the case of 3-dimensional C°°-manifolds, the famous Poincare pro-
blem is equivalent with the following: If M is a compact and simply
connected 3-dimensional C°°-manifold, does ^ contain an Einstein metric
(i.e., constant curvature metric)?

Since F(g) is non-negative, gz^£ such that F(g) = 0 is a critical
point of F. Problems are as follows:

(1) Can F have a critical point g such that F(g) ^ 0 ?
(2) If there is some critical point g e ^ such that F(g) Φ 0, then

what is typical property of (M, #)?
(3) If F has no critical point such that F{g) Φ 0, then, (3-α): is it

possible to show existence of g0 e ^£ such that F(g0) = 0 by deforma-
tions? or (3-6): is there any counter example to (3-α)?

We calculate the necessary conditions for g e ^/ί to be a critical
point of F (cf. Proposition 2.1). Next we obtain the following theorems.

THEOREM A. Let g e ^ he a critical point of F. Assume that the
scalar curvatures S of (M, g) is positive and g is not so much deviated
from Einstein metric, i.e.,
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holds on M. Then G = 0 and g is itself an Einstein metric.

If we assume, furthermore, constancy of S, then the restriction on
G is weakened. That is, we obtain

THEOREM B. Let g e ^£ he a critical point of F. Assume that S
is positive and constant, and that g is not so much deviated from
Einstein metric, i.e., \G\2 ^ (1/26)S2 holds on M, or more generally

F(g) ^ (3/13)ττ2S2 .

Then F(g) = 0 and g is an Einstein metric.

2. Preliminaries. Let g(t) = (g(t)iό) be a (local) 1-parameter family
of Riemannian metrics on a compact and orientable Riemannian manifold
(M, g), g = g(0). Since we are going to calculate only the first derivative
of the variation (F(t) = F(g(t))), we can put

(2.1) g{t)ίβ = gi5 + thiS + [f]

in a local coordinate neighborhood [/(of), where h = (fê  ) is a symmetric
(0, 2)-tensor field on M and [t2] denotes the terms of order ^ 2 in t. Then
it is classical that

(2.2) (g(t)-T - g(t)jk = gjk - tg^hr8g
sk + [f] ,

(2.3) τ/\g(m = V\ϊ\ + (ll2)tVW\grshrs + [f] ,
where | g \ and | g(t) \ denote the determinants of g — {gtύ) and g(t) =
(^(0ϋ) The ChristoffeΓs symbols are related by

(2.4) Γ(t))k = Γ)k + (l/2)ί gir(Γhhri + Vόhrk - Vrhjlc) + [t2] ,

where V denotes the covariant derivation with respect to g. We define
a (1, 2)-tensor field W(t) for each t by

w(t)U = r(t))k - r% .

Then curvature tensors are related by

(2.5) R{tγm = Rm + FιW(t)U - VkW(t% + [t2] ,

(2.6) R(t)jk = Rjk + VrW{tyjk - FkW(tyjr + [t2] ,

(2.7) S(t) = S - tRr8hr8 + t(PΨ8hrs - FΨrh
s

s) + [t2] .

Now we assume dim ikf — 3 and consider the function F(t):

(2.8) Fit) = \ [3R(t)i3R(t)r8g(tyrg(tYs - S\t)]VW)\dx' A dx2 A dx* ,

where (x1, x2, xz) is compatible with the fixed orientation of M. By a
straightforward calculation using (2.2) ~ (2.7), we get
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(2.9) i^I
dt

where we have put

(2.10) Lti = [~(9/2)RrtR
r' + (l/2)FΎrS

+ 17 J7 Cf _j_ 1 Q Dr "D QΓ7 f7r E> T O D

and we have used VrB\ = (l/2)FtS and

dYόl(M, g(t))/dt\0 = 0 holds, if and only if

(2.11) ( [g"hr.]dM=0.
JM

PROPOSITION 2.1. Let (ikf, g) be a compact and orientable ^-dimen-
sional Riemannian manifold. Assume that g is a critical point of F
for any deformation g(t) (g(0) = g) such that d Vol (M, g(t))/dt |0 = 0. Then
there exists a constant C such that

(2.12) 5Rr8R
r° - S2 + FrF

rS + 6C = 0

and we have

(2.13) [-4Rr8R
r8 + (2/3)FrrS + (7/3)5*]^^

+ ΓtΓjS + 12RlRrj - 2FrF
rBid - 7SBid = 0 .

The converse is also true.

PROOF. Let h = (hti) be an arbitrary symmetric (0, 2)-tensor field
satisfying (2.11). By (2.9) and the classical Lagrange lemma we have
Lt. = Cgtί for some constant C. Transvecting (2.10) with gij we obtain
(2.12). Next we eliminate C from Li3 = Cgί3- and (2.12) to get (2.13).
The proof of the converse is easy.

REMARK 2.2. (2.12) is also written as

(2.14) 3 |G| 2 - [Vol CM, g)]-1 \ 3\G\2dM= JS
JM

or 3|G| 2 - [Vol(ilf, g)]~ιF{g) = AS, where Δ denotes the Laplacian on

(M, g).

REMARK 2.3. For a deformation g(t) = g + th + [ί2], h satisfying
(2.11), g(t) = [Vol (M, g)/Yol (M, g(t))]2/3g(t) is the equivalent deformation
of constant volume (i.e. ^(ί) = g(t) mod t2, and Vol (M, g(t)) = Vol (M, g)).

3. Proof of Theorem A. Let M be a compact and orientable 3-
dimensional C°°-manifold. Let ^£ be the set of Riemannian metrics
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explained in the introduction. If g is a critical point of F defined by
(1.1), by Proposition 2.1 we have (2.12) and (2.13). We analyze these two
identities. First we prove

PROPOSITION 3.1. If gz^€ is a critical point of F and if S Φ 0,
then (M, g) is irreducible.

PROOF. Assume that (M, g) is reducible. Let C/faO = U^x*) x U2(xz)
be a canonical coordinate neighborhood of the local product structure,
where (α, 6, c) = (1, 2). Since S Φ 0, Vγ is not flat. By *g we denote
the induced metric on E7Ί from g, and the corresponding geometric objects
are denoted by (*). Then (2.13) gives

(3.1) [-4*i2o6*i2αδ + (2/3)*Fβ*Fβ*S + (7β)*S2]*gab

+ *Fα*F6*S + 12*Rc

a*Rcb - 3*Γβ*Fβ*Λβ6 - 7*S*Λα6 = 0 .

Since dim U, = 2, we have *i2α6 = (*S/2)*^α6 on U,. Therefore (3.1) is
written as

(3.2) -(1/6)(*S2 + 5*Fc*Fc*S)*0αδ + *Fα*F6*S - 0 .

Transvecting (3.2) with *gab, we get

(3.3) -(1/3)[*S2 + 2*Γβ*Γ'*S] = 0 .

(3.3) on Uι implies

(3.4) S2 + 2VrV
rS = 0

on U = Uγ x U2. Integrating (3.4) on M we obtain \S2dM= 0. This con-

tradicts S Φ 0.

LEMMA 3.2. Assume that g e ^£ is a critical point of F. Let (XL ^
λ2 ^ λ3) be continuous functions which are eigenvalues of the Ricci curva-
ture tensor. If (2/3)λx ^ λ3 holds on M, (M, g) is an Einstein space.

PROOF. Transvecting (2.13) with.3jB*y, we get

(3.5) / - 9RijFrF
rRi3 + 2SFrF

rS + ZBisFtFsS = 0 ,

where we have put

(3.6) / = -33SRrsR
rs + 7S3 + S6RrsR

8tRϊ .

(3.5) is written as

/ + WrR^R1* - (Ί/2)FrSFrS - Fr{$RijFrRi5 - 2SFrS - SR'ΨjS) = 0 .

Integrating the last equation on M we get
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(3.7) ί [2/ + V&FrRi5F
rR{ί - 7FrSFrS]dM = 0 .

JM

(3.7) is transformed to

(3.8) ( [2/ - FrSFrS + 2HrijH
rij]dM = 0

JM

where we have put Hrί3 = 3FrRid - FrSgi3. Multiplying (2.12) by S and
integrating the result on M, we get

(3.9) f [3SRrsR
rs - S3 - FrSFrS + 6CS]dM = 0 ,

JM

where 6C = — [Vol(ikf, g)\~ιF(g) and 6C is non-positive. Then eliminating
FrSFrS from (3.8) and (3.9), we obtain

(3.10) f [(2/ - 3SRrsR
r° + S3) - 6CS + 2HrijH

rij]dM = 0 .

We show that K = 2/ - SSRrsR
r8 + S3 ^ 0. By S - Σ λ,, ^rSi2 r s = Σ λ?

and (3.6) we get

(3.11) ί: = 18 Σ λ3 +

- 24[λ1

2(λ2 + λ3) + λ*(λ2 + λ3) + λKλi + λ2)] .

Let p be an arbitrary point of M. If λx = 0 at p, then the assumption
(2/3)λx ^ λ3 implies λ3 = 0 at p and hence K = 0 at p. λx < 0 at p
gives a contradiction. Hence we prove for the case X1 > 0 at p . We
put λj. = α, λ2 = αa? and λ3 = ay. Put P = K(p)/6a\ Then P = P(#, y) and

P = 3(ί»3 + yz + 1) + 15a?3/ - 4[α? + 2/ + x2 + 2/2 + xy(x + 2/)] .

( i ) For x + y = k = constant, we have

P(x, k - x) = (13fc - 23)(a? - k/2)2 - (l/4)(k - 2f(k - 3) .

This means that, for 23/13 < k < 3, only (x = 1 and Λ = 2) satisfies P(x,
]c — x) = 0; otherwise P(#, & — x) > 0.

(ii) For x = 1, we have P(l, y) = (y - 1)2(3?/ - 2).
(iii) For y = 2/3, we have Pfo 2/3) = (1/9) (x - 1)(27#2 - 33^ + 5).

The solutions of 27a;2 - 33a; + 5 = 0 is (11 ± 7.8 )/18.
(iv) P ( - l , 0) = 0 and P(0, - 1 ) = 0.

From these we see that P(x, y)^0 for (x, y) such that 1 ^ x ^ y ^ 2/3.
Hence, we have K(p) ^ 0 and K ^ 0 on M. Since (2/3)λ! ^ λ3 shows also
S ^ 0, we get -6CS ^ 0. Then (3.10) shows K = 0, 6CS = 0 and Hrij =
0. By girHrij = 0, we get 3Fri2j - F, S = (3/2 - 1)F3 S = 0. Consequently,
F3S = 0 and S = constant.
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If S = 0 on M, (2/3)λ1 ^ λ3 implies that all λ, = 0 on ikf.
If S Φ 0, by 6CS = 0 we get C = 0 and J%) = 0. Therefore (Af, fir)

is an Einstein space.

LEMMA 3.3. // S is positive and if

\G\2 = RrsR
r* - (1/3)S2 ^ (1/114)S2

holds at p, then (2/3)λx <̂  λ3 holds at p.

PROOF. Let λx = α, λ2 = α# and λ3 = α# at p as before. Then the
assumption is 3i2RrsR

r* ^ 117S2 and is written as

225(1 + x2 + 2/2) ^ 234(# + y + xy) .

The set [(», y): W(x, y) = 225(1 + x2 + y1) - 234 (^ + y + 5 )̂ = 0] is an
ellipse in R x R, the axis being on the line x = y. We see that

( i ) the ellipse is tangent to the line y = 2/3 at (13/15, 2/3),
(ii) TF(l, l)<0.

Since the point (x, y) is inside of the ellipse, we get y ^ 2/3.

PROOF OF THEOREM A. Since S is positive and |G| 2 <* (1/114)S2 on
My we have (2/3)λL <̂  λ3 on M by Lemma 3.3. Next by Lemma 3.2,
(M, g) is an Einstein space.

4. Proof of Theorem B.

LEMMA 4.1. Assume that g e ^^ is a critical point of F and S is
positive and constant. If continuous functions (λx ^ λ2 ^ λ3) which are
eigenvalues of the Ricci curvature tensor satisfy (2/5)λ1 5j λ3 on M, then
AJI — ΛJ 2

 Z=Z Λ J 3 .

PROOF. By (3.7) and S = constant we get

(4.1) ( [/ + 9FrR8tΓRst]dM - 0 .

We show that / ;> 0. By (3.6) we get

(4.2) / = 10 Σ λj + 42X^8

- 12[λf(λ2 + λ3) + λftλi + λ3) + λKλi + λ2)] .

At an arbitrary point p we put \ = α, λ2 = ax and λ3 = ay. Put Q —
f(p)/2a\ Q = Q(x, y):

Q = 5(1 + x* + i/3) + 21xy - 6(x + y + x2 + y2 + xy(x + y)) .

It suffices to show that Q ^ 0 in the range (x, y) e R x R such that 1 >̂
^ ^ 2 / ^ 2 / 5 . This is seen by the following observation:

( i ) For x + y = & = constant, we get
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Q(x, k-x) = S(7k - U)(x - k/2)2 - (l/4)(fc - 2)2(k - 5) .

This means that, for 11/7 < k < 5, only (x = 1 and k = 2) satisfies Q(x,
k — x) = 0; otherwise Q(#, A; — #) > 0.

(i i) For a; = 1, Q(l, y) = (y- l)2(5y - 2).
(iii) For y = 2/5, Q(x, 2/5) = (l/25)(a? - l)(125α2 - 85a; - 49).

The solutions of 125a2 - 85a - 49 = 0 are (17 ± 35.6 .. )/50.
(iv) Q ( - l , 0) = 0 and Q(0, - 1 ) - 0.

Therefore we obtain f(p) ^ 0 and / ^ 0 on M. Then (4.1) shows that / =
0 and VrRat = 0 on M. By Proposition 3.1 (M, g) is an Einstein space.

LEMMA 4.2. // S is positive and if

I G\2 = Rr8R
r8 - (1/3)S2 ^ (1/26)S2

holds at p, then (2/5)Xx 5g λ3 holds at p.

PROOF. The assumption is 78Rr8R
r8 ^ 29*S2 and is written as

49(1 + x2 + y2) ^ 58(α + y + xy) .

The set [(x, y); V(x, y) = 49(1 + x2 + y2) - 58(£ + y + xy) = 0] is an ellipse
in R x JB, the axis being on the line x = y. We see that

( i ) the ellipse is tangent to the line y = 2/5 at (29/35, 2/5),
(ii) F ( l , l ) < 0 .

From these we obtain y ^ 2/5.

PROOF OF THEOREM B. Since S is positive and constant, (2.12) tells
us that RrsR

rs is also constant. Hence, | G | 2 is constant. Therefore,
3[| G\2dM = F(g) ^ (3/13)τr2S2 and Vol (M, g) - 2ττ2 imply | G\2 ^ (1/26)S2.
Then applying Lemma 4.2 and next Lemma 4.1, we see that (M, g) is
an Einstein space.

REMARK 4.3. It is known that a Riemannian metric g is a critical
point of a function F8(g) — \SdM: ^^ —> R, if and only if g is an Einstein
metric (cf. Hubert [4], Nagano [5], Eliasson [3]). Analogous results were
also obtained using other functions (cf. Berger [1], [2], Eliasson [3], etc.).
In some sense these results have connections with the famous Poincare
conjecture. However they give only characterizations of Einstein metrics,
and they could not give any directional method how to get Einstein
metrics or how to deform a metric to an Einstein metric.

Our results have some directional property. That is, assume that
M is simply connected and admits an Einstein metric g0. Define a neigh-
borhood U of g0 in ^ by U = (connected component of V f)W), where
V = {g e ^ S > 4 on M] and W = {g e ^£\ \ G\ < 16/114 on M}. Notice
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that S(g0) = 6 and G(gQ) = 0. Let gx be a given metric in ^*C First one
strikes a point ga in U by deforming gi(g(t), a 5j ί <; 1). This is possible,
because ^ ^ is contractible. Next ga is deformed to g0 (g(t), 0 <*t ^ a)
with the help of F in a theoretical sense that one can decrease the value
F(g)->0 in U, because S > 4 and | G | < 16/114 imply | G | < S2/1U and
there is no critical point of F in U except g0 by Theorem A.
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