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1. Introduction. Let M be a compact and orientable 3-dimensional
manifold of class C~. Let . be the set of all Riemannian metrics g
on M such that the total volume Vol (M, g) = 27®. Since dim M = 3,
g€ . # is an Einstein metric, if and only if (M, g) is a space of constant
curvature. We consider a deviation function F' on _# from Einstein
metric defined by

1.1) F(g) = ngsRi,-Rr,g“gﬂ — S7dM

where dM, (R,;), and S denote the volume element, the Ricci curvature
tensor, and the scalar curvature with respect to g = (g9;;). F(g) is the
integral of 3|G|* = 3G,,G"*, where G = (G,,) = (R, — (S/3)g.,). F(9)=0
holds if and only if ¢ is an Einstein metriec.

In the case of 3-dimensional C~-manifolds, the famous Poincaré pro-
blem is equivalent with the following: If M is a compact and simply
connected 3-dimensional C”-manifold, does .# contain an Einstein metric
(i.e., constant curvature metric)?

Since F'(g) is non-negative, ge .# such that F(g) = 0 is a critical
point of F. Problems are as follows:

(1) Can F have a critical point g such that F'(g) = 0?

(2) If there is some critical point g€ _# such that F(g) # 0, then
what is typical property of (M, g)?

(8) If F has no critical point such that F(g) # 0, then, (3-a): is it
possible to show existence of g,€ _# such that F(g,) = 0 by deforma-
tions? or (8-b): is there any counter example to (3-a)?

We calculate the necessary conditions for ge.# to be a ecritical
point of F' (cf. Proposition 2.1). Next we obtain the following theorems.

THEOREM A. Let g€ . # be a critical point of F. Assume that the
scalar curvatures S of (M, g) is positive and g is not so much deviated
from FEinstein metric, i.e.,

|G" = (1/114)S?
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holds on M. Then G =0 and g is itself an KEinstein metric.

If we assume, furthermore, constancy of S, then the restriction on
G is weakened. That is, we obtain

THEOREM B. Let ge . # be a critical point of F. Assume that S
18 positive and constant, and that g is wmot so much deviated from
Einstein metric, i.e., |G|* < (1/26)S* holds on M, or more generally

F(g) = (3/13)n*S%.
Then F(g) =0 and g is an Einstein metric.

2. Preliminaries. Let g(¢t) = (9(¢);;) be a (local) 1-parameter family
of Riemannian metrics on a compact and orientable Riemannian manifold
(M, g), g = 9(0). Since we are going to calculate only the first derivative
of the variation (F'(t) = F(¢(t))), we can put

2.1) 9(t)i; = 945 + thy + [¢]

in a local coordinate neighborhood U(x*), where h = (h;;) is a symmetric
(0, 2)-tensor field on M and [¢*] denotes the terms of order =2 in t. Then
it is classical that

(2.2) (g@)7)* = g(ty* = g% — tg7h,g% + [¢'],
(2.3) VT = VTl + @20V glg" k., + [¢],

where |g| and |g(f)|] denote the determinants of g = (9,;) and g(¢) =
(9(t);;). The Christoffel’s symbols are related by

(2.4) F(t);k = F;k + (1/2)t gi"(V,,h,.j + th’rk - V,.hjk) + [tzl )

where 7 denotes the covariant derivation with respect to g. We define
a (1, 2)-tensor field W(t) for each t by

Wt)o = I — T
Then curvature tensors are related by

(2.5) R@t)ixs = Rju + Vi W (&) — VW5 + [£]
(2.6) R(@t);. = Ry + V. W(t)5 — V. W ()5 + [£°]
@.7) S(t) = S — tR™h,, + t(7Vh,, — VPV + [¢] .

Now we assume dim M = 3 and consider the function F'(t):
(2.8) F(@) = SM[3R(t)ijR(t)ng(t)"’g(t)"” — SV 9@ [da' A da* A da®

where (a', 2% 2°) is compatible with the fixed orientation of M. By a
straightforward calculation using (2.2) ~ (2.7), we get
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2.9) %t(t)lo = | L,
where we have put
(2.10) Li; = [-(/2)R,.B™ + (127 .S + (5/2)S*]g.;

+r7V;S+ 12R;R,; — 3/ V'R,;; — TSR;; ,
and we have used V.R; = (1/2)/;S and

R, = 0iR;, — 0LR;;, + Rig; — Rigy — (1/2)S(0i9;. — 0i91) -

d Vol (M, g(t))/dt|, = 0 holds, if and only if

2.11) SM[g"h,,]dM ~0.

PROPOSITION 2.1. Let (M, g) be a compact and orientable 3-dimen-
stonal Riemannian manifold. Assume that g is a critical point of F
for any deformation g(t) (g9(0) = g) such that d Vol (M, g(t))/dt], = 0. Then
there exists a constant C such that

(2.12) 3R, R — S*+ V7V /7'S+6C=0
and we have
(2.13) [—4R. R + (2/3 V'S + (1/3)S*]9:;

+ VZVJS + 12R:R” - SVTVT_R“' - 7SR”' = 0 .
The converse is also true.
ProoOF. Let h = (h,;) be an arbitrary symmetric (0, 2)-tensor field
satisfying (2.11). By (2.9) and the classical Lagrange lemma we have
L;; = Cg,; for some constant C. Transvecting (2.10) with ¢/ we obtain

(2.12). Next we eliminate C from L,; = Cg,; and (2.12) to get (2.13).
The proof of the converse is easy.

REMARK 2.2. (2.12) is also written as
(2.14) 3| Gt — [Vol (M, g)]™ S 3| GI*dM = 48
M

or 3|G|*— [Vol (M, ¢9)]"'F(9) = 4S, where 4 denotes the Laplacian on
(M, 9).

REMARK 2.3. For a deformation ¢(t) = g + th + [t?], b satisfying
(2.11), 9(t) = [Vol (M, g)/Vol (M, g(t))]*g(t) is the equivalent deformation
of constant volume (i.e. g(t) = ¢g(¢) mod #*, and Vol (M, g(¢)) = Vol (M, g)).

3. Proof of Theorem A. Let M be a compact and orientable 3-
dimensional C~-manifold. Let .# be the set of Riemannian metrics
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explained in the introduction. If g is a critical point of F defined by
(1.1), by Proposition 2.1 we have (2.12) and (2.13). We analyze these two
identities. First we prove

PropoSITION 3.1. If ge # 1is a critical point of F and if S #0,
then (M, g9) ts irreducible.

PrROOF. Assume that (4, g) is reducible. Let U(x®) = Uy(x*) x Uyx®)
be a canonical coordinate neighborhood of the local product structure,
where (a,b,¢) = (1,2). Since S 0, U, is not flat. By *g we denote
the induced metric on U, from g, and the corresponding geometric objects
are denoted by (*). Then (2.13) gives

(B.1)  [4*E.*B* + (2/3)*7 7S + (7/3)*S[* g
+ P *7*S + 12*Ri*R,, — 8*7*V * Ry, — T*S*Ryy = 0 .

Since dim U, = 2, we have *R,, = (*S/2)*g,, on U,. Therefore (3.1) is
written as

(3.2) —(1/6)(*S? + 5*7 *7°*S)*ge + **S=0.
Transvecting (3.2) with *g*, we get

(3.3) —@/3)[*S* + 2*7 *°*S] = 0.

(3.3) on U, implies

(3.4) S2+ 27, 7'S=0

on U=U, x U,. Integrating (3.4) on M we obtain SSZdM = 0. This con-
tradicts S # 0.

LEMMA 3.2. Assume that g€ _# s a critical point of F. Let (A, =
Ny = \y) be continuous functions which are eigenvalues of the Ricci curva-
ture temsor. If (2/3)\, < N\, holds on M, (M, 9) is an KEinstein space.

ProOF. Transvecting (2.13) with 3R, we get

(3.5) f—9RW V'R, + 237 V'S + 8RWF;S=0,
where we have put
(3.6) f = —33SR,,R™ + 7S + 36 R, R*R; .

(3.5) is written as
f+ Y. Ry R — (720 ,FV"S — V. (9RV"R,; — 2SP"S — 8R™¥W;S) = 0 .

Integrating the last equation on M we get
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(3.7) SM[Zf + 187, R/ RY — 7,877 SldM = 0 .
(3.7) is transformed to
(3.8) S [2f — 7.S7"S + 2H,,H"|dM = 0

M

where we have put H,,; = 3/.R,; — V,Sg,;. Multiplying (2.12) by S and
integrating the result on M, we get

(3.9) S [3SR,.R" — S — 7,87"S + 6CS)dM = 0 ,
M

where 6C = —[Vol (M, g)]'F(g9) and 6C is non-positive. Then eliminating
V.SrS from (3.8) and (3.9), we obtain

(3.10) g [(2f — 3SR,.R™ + §°) — 6CS + 2H,,H"]dM = 0 .
M

We show that K = 2f — 3SR, R+ S*>0. By S= 3\, R,,R™ = 3\
and (3.6) we get

(3.11) K = 18 3\ A2 + 90N Ao\
— 24N F M) F MM A+ N+ MM+ N

Let p be an arbitrary point of M. If A, = 0 at p, then the assumption
(2/3)\; = \; implies ;=0 at p»p and hence K=0 at p. A\ <0 at p
gives a contradiction. Hence we prove for the case N\, >0 at p. We
put », = a, A\, = ax and A, = ay. Put P = K(p)/6a®. Then P = P(z, y) and

P=3@+ ¢+ 1)+ 152y — 4l + v + 2* + ¥* + zy(z + ¥)] .
(i) For x + y = k = constant, we have
P(x, k — z) = (18k — 23)(x — k/2)* — (1/4)(k — 2)"(k — 3) .

This means that, for 23/18 < k < 3, only (x = 1 and k = 2) satisfies P(x,
k — x) = 0; otherwise P(x, k — z) > 0.

(ii) For z =1, we have P(1, y) = (y — 1)’(3y — 2).

(iii) For y = 2/3, we have P(z, 2/3) = (1/9)(x — 1)(27x* — 332 + 5).
The solutions of 272* — 332z + 5=0is (11 = 7.8 ...)/18.

(iv) P(—1,0)= 0 and P(0, —1) = 0.
From these we see that P(x, ¥) = 0 for (x, y) such that 1 =« =y = 2/3.
Hence, we have K(p)=0 and K=0 on M. Since (2/3)\, < \; shows also
S >0, we get —6CS = 0. Then (3.10) shows K= 0, 6CS = 0 and H,,; =
0. By ¢”"H,;; =0, we get 3/, R; — V;S = (3/2 — 1)V;S = 0. Consequently,
V;S =0 and S = constant.
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If S=0 on M, (2/3)\; <\, implies that all A, = 0 on M.
If S+0, by 6CS=0 we get C= 0 and F(9) = 0. Therefore (M, g)
is an Einstein space.

LEmMMA 3.3. If S 4s positive and if
|G = R,,R™ — (1/3)8* < (1/114)S?
holds at p, then (2/3)\, =< N; holds at p.

PROOF. Let M, = a, », = ax and N, = ay at p as before. Then the
assumption is 342R,,R™ < 1178* and is written as

225(1 + 2 + ¥*) < 234(x + v + xv) .

The set [ 7): W(&, ¥) = 225(1 + & + 7%) — 234(F + 7 + ay) = 0] is an
ellipse in R X R, the axis being on the line ¥ = . We see that

(i) the ellipse is tangent to the line ¥ = 2/3 at (13/15, 2/3),

(ii) w@,1) <o.
Since the point (x, ) is inside of the ellipse, we get y = 2/3.

PROOF OF THEOREM A. Since S is positive and |G|* < (1/114)S* on
M, we have (2/3)\, < N; on M by Lemma 3.3. Next by Lemma 3.2,
(M, g) is an Einstein space.

4. Proof of Theorem B.

LEMMA 4.1. Assume that ge # is a critical point of F and S is
positive and constant. If continuous functions (A, = N, = N;) which are
etgenvalues of the Ricci curvature temsor satisfy (2/5)h, < N; on M, then
N = A = g

Proor. By (3.7) and S = constant we get
(4.1) S [f + 97, RV R*[dM = 0 .
M

We show that f = 0. By (3.6) we get
(4.2) =10 0 + 420\
~ 12[M(A + M) + M+ Ng) + MM F M)
At an arbitrary point p we put M\, =a, A\, = axr and \;, = ay. Put Q =
f(p)2a°, Q@ = Q(x, y):
Q=51+ 2+ ¢*) + 21wy — 6(x + y + 2* + ¥* + xy(x + v)) .

It suffices to show that @ = 0 in the range (z, ¥)€ R x R such that 1>
x =y = 2/56. This is seen by the following observation:
(i) For z + y = k = constant, we get
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Q, kb — z) = 3(Tk — 11)(z — k/2) — A/4)(k — 2)'(k — 5) .

This means that, for 11/7 < k < 5, only (x =1 and k = 2) satisfies Q(x,
k — x) = 0; otherwise Q(x, k — z) > 0.

(ii) For z=1,Q(1, y) = (¥ — 1)*(5y — 2).

(iii) For y = 2/5, Q(x, 2/5) = (1/25)(x — 1)(1252% — 852 — 49).
The solutions of 1252 — 85x — 49 = 0 are (17 + 35.6 - -.)/50.

(iv) Q(—1,0)= 0 and @0, —1) = 0.
Therefore we obtain f(p)=0 and f =0 on M. Then (4.1) shows that f =
0 and V/,R,, = 0 on M. By Proposition 3.1 (M, g) is an Einstein space.

LEMMA 4.2. If S is positive and if
|G| = R,,R™ — (1/3)S* < (1/26)S*
holds at p, then (2/5)\, < \; holds at p.
Proor. The assumption is 78R, R™ < 29S® and is written as
91+ 2+ y) =58+ y + 2y) .
The set [(Z, ¥); V(Z, ¥) = 491 + 2* + ¥*) — 58(Z + ¥ + Z¥) = 0] is an ellipse
in R x R, the axis being on the line T = 4. We see that
(i) the ellipse is tangent to the line ¥ = 2/5 at (29/35, 2/5),
(i) v, 1n<o.
From these we obtain y = 2/5.

Proor OoF THEOREM B. Since S is positive and constant, (2.12) tells
us that R,,R™ is also constant. Hence, |G[|* is constant. Therefore,
3S[ G|"dM = F(g) < (3/13)n*S* and Vol (¥, g) = 27* imply |G|* < (1/26)S>
Then applying Lemma 4.2 and next Lemma 4.1, we see that (M, g) is
an Einstein space.

REMARK 4.3. It is known that a Riemannian metric ¢ is a critical
point of a function Fy(g) = SSdM: #Z — R, if and only if g is an Einstein
metric (cf. Hilbert [4], Nagano [5], Eliasson [3]). Analogous results were
also obtained using other functions (cf. Berger [1], [2], Eliasson [3], etc.).
In some sense these results have connections with the famous Poincaré
conjecture. However they give only characterizations of Einstein metrics,
and they could not give any directional method how to get Einstein
metrics or how to deform a metric to an Einstein metric.

Our results have some directional property. That is, assume that
M is simply connected and admits an Einstein metric g,. Define a neigh-
borhood U of g, in .#Z by U = (connected component of V' N W), where
V={g9e #;S>40n M} and W= {ge ;|G| <16/114 on M}. Notice
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that S(g,) = 6 and G(g,) = 0. Let g, be a given metric in _#Z First one
strikes a point g, in U by deforming g¢,(9(t), « <t < 1). This is possible,
because .7 is contractible. Next g, is deformed to g, (9(t),0 £t < a)
with the help of F' in a theoretical sense that one can decrease the value
F(9)—0 in U, because S >4 and |G| < 16/114 imply |G| < S?/114 and
there is no critical point of F in U except g, by Theorem A.
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