THE INJECTIVE RADIUS OF NON-COMPACT 3-DIMENSIONAL RIEMANNIAN MANIFOLDS

Masao Maeda

(Received August 2, 1974)

In this note all Riemannian manifolds which we deal are connected and complete. For a point $p \in M, T_{p}(M)$ be the tangent space of M at p and $\exp _{p}: T_{p}(M) \rightarrow M$ be the exponential mapping of M. d denotes the metric distance of M induced from the Riemannian metric of M. All geodesics are parametrized by the arclength. As is well known, the function $i: M \rightarrow R \cup\{\infty\}$ defined by $i(p):=d(p, C(p))$ is continuous where $C(p)$ denotes the cut locus of p in $M . \quad i(p)$ is called the injective radius of $\exp _{p}$. With respect to the estimation of the injective radius many results are known when M is compact. Let M be a non-compact Riemannian manifold. Then in [5], Toponogov asserted the following:

FACT. 1) if the sectional curvature K_{σ} satisfies $0<K_{\sigma} \leqq \lambda$ for all tangent plane σ, then $i(q) \geqq \pi / \sqrt{\lambda}$ for all $q \in M$. 2) if $0 \leqq K_{\sigma} \leqq \lambda$, then there exists a positive constant L such that $i(q) \geqq L$ for all $q \in M$.

In [4], the author gave an anothor proof of assertion 1) and showed that the estimation of 1) is still true for a 2 -dimensional simply connected Riemannian manifold M which satisfies $0 \leqq K \leqq \lambda$, where K is the Gaussian curvature of M. In this note, we show that the estimation 1) is still true for a 3-dimensional simply connected non-compact Riemannian manifold which satisfies $0 \leqq K_{\sigma} \leqq \lambda$. To prove this fact, we use the following facts which are proved by Cheeger and Gromoll in [2]. For a Riemannian manifold M, a subset A of M will be called totally convex if for any points $p, q \in A$ and any geodesic $c:[0, \beta] \rightarrow M$ from p to q, we have $c([0, \beta]) \subset A$. Let $A \subset M$ be a closed totally convex set, then A is an imbedded k-dimensional topological submanifold of M with totally geodesic interior and possibly non-smooth boundary which might be empty, see [2, Th. 1.6 pp 418]. Now, we assume that M is non-compact and its sectional curvature satisfies $0 \leqq K_{\sigma}$. Then, for a point $p \in M$, there exists a family of compact totally convex subsets $\left\{C_{t}\right\}_{t \geq 0}$ such that
(1) $t_{2} \geqq t_{1}$ implies $C_{t_{2}} \supset C_{t_{1}}$ and $C_{t_{1}}=\left\{q \in C_{t_{2}}: d\left(q, \partial C_{t_{2}}\right) \geqq t_{2}-t_{1}\right\}$ in particular, $\partial C_{t_{1}}=\left\{q \in C_{t_{2}}: d\left(q, \partial C_{t_{2}}\right)=t_{2}-t_{1}\right\}$,
(2) $\mathrm{U}_{t \geq 0} C_{t}=M$,
(3) $p \in C_{0}$ and if $\partial C_{0} \neq \varnothing$, then $p \in \partial C_{0}$, see [2; Prop. 1.3 pp 416]. Let C be a closed totally convex set. We set

$$
\begin{aligned}
& C^{a}:=\{q \in C: d(q, \partial C) \geqq a\} \\
& C^{\max }:=\bigcap_{C^{a} \neq \varnothing} C^{a}
\end{aligned}
$$

Then, for any $a \geqq 0, C^{a}$ is totally convex and there exists $a_{0} \geqq 0$ such that $C^{\max }=C^{a_{0}}$. Furthermore $\operatorname{dim} C^{\max }<\operatorname{dim} C$, see [2; Th. 1.9 pp 420]. For a family of totally convex sets $\left\{C_{t}\right\}_{t \geq 0}$ as is mensioned above, if $\partial C_{0} \neq \varnothing$, we set $C(1):=C_{0}$ and $C(2):=C(1)^{\max }$. Inductively, if $\partial C(i) \neq \varnothing$, we set $C(i+1):=C(i)^{\max }$ for $i=1,2, \cdots$. As is easily seen, we get the integer $k>0$ such that $\partial C(k)=\varnothing$. We call $C(k)$ a soul of M and denote it by S. In the case $\operatorname{dim} C_{0}=\operatorname{dim} M$, instead of $\left\{C_{t}\right\}_{t \geq 0}$, we use a following family of totally convex sets $\left\{\widetilde{C}_{t}\right\}_{t \geq 0}$. Let $C_{0}^{a_{0}}=C_{0}^{\max }$. We set $\widetilde{C}_{0}:=C_{0}^{a_{0}}$ and

$$
\widetilde{C}_{t}:=\left\{\begin{array}{lll}
C_{t-a_{0}} & \text { if } & t \geqq a_{0} \\
C_{0}^{a_{0}-t} & \text { if } & a_{0} \geqq t \geqq 0
\end{array}\right.
$$

Then, thus obtained family $\left\{\widetilde{C}_{t}\right\}_{t \geqq 0}$ also satisfies the property (1) and (2) for $\left\{C_{t}\right\}_{t \geq 0}$. We do not use the property (3), so without confusion, we may denote again $\left\{\widetilde{C}_{t}\right\}_{t \geq 0}$ by $\left\{C_{t}\right\}_{t \geq 0}$. Under this new index, $\operatorname{dim} C_{t}=\operatorname{dim} M$ for $t>0$ and $\operatorname{dim} C_{0}<\operatorname{dim} M$. And we also obtain a decreasing sequence of totally convex sets such that $C_{0}=C(1), \cdots, C(k)=S$. Our assertion is:

Theorem. Let M be a simply connected 3-dimensional non-compact Riemannian manifold which satisfies $0 \leqq K_{\sigma} \leqq \lambda$, then

$$
i(q) \geqq \frac{\pi}{\sqrt{\lambda}} \text { for all } q \in M
$$

For the moment, we assume that M is homeomorphic to E^{3} and have the sectional curvature $0 \leqq K_{\sigma} \leqq \lambda$, where E^{3} is a 3 -dimentional Euclidean space. Let S be a soul of M. Then by [2; Th. 2.2 pp 423], S is a point set $\{s\}, s \in M$.

Lemma 1. For any soul $S=\{s\}$ of $M, i(s) \geqq \pi / \sqrt{\lambda}$.
Proof. If $i(s)<\pi / \sqrt{\lambda}$, then by the Theorem of Morse-Schoenberg and Lemma 2 [3; pp 226], there exists a geodesic loop $\gamma:[0,2 i(s)] \rightarrow M$ such that $\gamma(0)=\gamma(2 i(s))=s$. Then $\gamma([0,2 i(s)]) \subset\{s\}$, because $\{s\}$ is totally convex. This is a contradiction.

Let $p \in M$ be any point and $\left\{C_{t}\right\}_{t \geq 0}$ be the family of the totally convex sets constructed from p. Under this situation, we have:

Lemma 2. For any point $q \in C_{0}, i(q) \geqq \pi / \sqrt{\lambda}$.
Proof. Assume that there exists a point $q_{0}^{*} \in C_{0}$ such that $i\left(q_{0}^{*}\right)<$ $\pi / \sqrt{\lambda}$. Then by Lemma $1, \partial C_{0} \neq \varnothing$. Let $q_{0} \in C_{0}$ be a point such that $i\left(q_{0}\right)=\min \left\{i(q): q \in C_{0}\right\}$. Then $i\left(q_{0}\right) \leqq i\left(q_{0}^{*}\right)<\pi / \sqrt{\lambda}$. Set $A:=\left\{q \in C_{0}: i(q)=\right.$ $\left.i\left(q_{0}\right)\right\}$. Then by the compactness of A, there exists a point $q_{1} \in A$ such that $d\left(q_{1}, \partial C_{0}\right)=\max \left\{d\left(q, \partial C_{0}\right): q \in A\right\}$. Set $t_{1}:=d\left(q_{1}, \partial C_{0}\right)$. Then $q_{1} \in \partial C_{0}^{t_{1}}$ and $i\left(q_{1}\right) \leqq i\left(q_{0}^{*}\right)<\pi / \sqrt{\lambda}$. Then by the Theorem of Morse-Schoenberg and Lemma 2 [3], there exists a geodesic loop $\gamma_{1}:\left[0,2 i\left(q_{1}\right)\right] \rightarrow M$ such that $\gamma_{1}(0)=\gamma_{1}\left(2 i\left(q_{1}\right)\right)=q_{1}$. Since $C_{0}^{t_{1}}$ is totally convex, we see $\gamma_{1}\left(\left[0,2 i\left(q_{1}\right)\right]\right) \subset$ $C_{0}^{t_{1}}$. Hence, by the choice of the point $q_{1}, i\left(\gamma_{1}\left(i\left(q_{1}\right)\right)\right)=i\left(q_{1}\right)$. And again by Lemma 2 [3], γ_{1} must be a closed geodesic. We also see $\gamma_{1}\left(\left[0,2 i\left(q_{1}\right)\right]\right) \subset$ A. And by the choice of the point q_{1}, we get $\gamma_{1}\left(\left[0,2 i\left(q_{1}\right)\right]\right) \subset \partial C_{0}^{t_{1}}$. So $\gamma_{1}\left(\left[0,2 i\left(q_{1}\right)\right]\right)=\partial C_{0}^{t_{1}}$, because $\operatorname{dim} C_{0} \leqq 2$ and hence $\operatorname{dim} \partial C_{0}^{t_{1}}=1$. By the choice of t_{1} and continuity of the function i, we can choose t_{2}^{*} such that $t_{1}<t_{2}^{*}$ and $\pi / \sqrt{\lambda}>\min \left\{i(q): q \in C_{0^{2}}^{t^{*}}\right\}>i\left(q_{1}\right)$. Let $q_{2}^{*} \in C_{02}^{t^{*}}$ be a point such that $i\left(q_{2}^{*}\right)=\min \left\{i(q): q \in C_{0^{2}}^{t *}\right\}$ and $q_{2} \in C_{0^{2}}^{t *}$ be a point such that $d\left(q_{2}, \partial C_{0}\right)=\max \left\{d\left(q, \partial C_{0}\right): q \in C_{02}^{* *}\right.$ and $\left.i(q)=i\left(q_{2}^{*}\right)\right\}$. Then $i\left(q_{1}\right)<i\left(q_{2}\right)<$ $\pi / \sqrt{\lambda}$. By the same reason for q_{1}, there exists a closed geodesic $\gamma_{2}:[0$, $\left.2 i\left(q_{2}\right)\right] \rightarrow M$ such that $\gamma_{2}(0)=\gamma_{2}\left(2 i\left(q_{2}\right)\right)=q_{2}$. Set $t_{2}:=d\left(q_{2}, \partial C_{0}\right)$. Then we also have $\gamma_{2}\left(\left[0,2 i\left(q_{2}\right)\right]\right)=\partial C_{0}^{t_{2}}$. Since $C_{0}^{t_{1}}$ and $C_{0}^{t_{2}}$ are homeomorphic to a 2-dimensional disk, by applying the Theorem of Gauss-Bonnet, we get

$$
\iint_{c_{0}^{t_{1}}} K d v=\iint_{c_{0}^{t_{2}}} K d v=2 \pi
$$

where K (resp. $d v$) is the Gaussian curvature (resp. the area element) of the totally geodesic surface $C_{0}^{t_{1}}$ of M and its totally geodesic surface $C_{0}^{t_{2}}$ having the boundary $\partial C_{0}^{t_{1}}, \partial C_{0}^{t_{2}}$. This equation means $K \equiv 0$ on $C_{0}^{t_{1}}-C_{0}^{t_{2}}$. That is $L\left(\gamma_{1}\right)=L\left(\gamma_{2}\right)$, where L denotes the length of a curve. Namely $2 i\left(q_{1}\right)=2 i\left(q_{2}\right)$. This is a contradiction.
q.e.d.

Proof of the Theorem. By the classification in [2; Th. 8.1 pp 438], M must be isometric to $\widetilde{M} \times E^{1}$ or M is homeomorphic to E^{3} where E^{1} is a 1dimensional Euclidean space and \tilde{M} is homeomorphic to 2 -dimensional sphere S^{2}. If M is isometric to $\widetilde{M} \times E^{1}$, by using a result of [4], it is easily seen that our assertion is true. So we may assume that M is homeomorphic to E^{3}. We assume that there exists a point $q_{0}^{*} \in M$ such that $i\left(q_{0}^{*}\right)<\pi / \sqrt{\lambda}$ and derive a contradiction. Let p be a point of M. And $\left\{C_{t}\right\}_{t \geq 0}$ be the familly of totally convex sets constructed from a point p. By Lemma $2, q_{0}^{*} \notin C_{0}$. Choose a number $t_{0}>0$ such that $q_{0}^{*} \in C_{t_{0}}$. Let $q_{0} \in C_{t_{0}}$ be a point such that $i\left(q_{0}\right)=\min \left\{i(q): q \in C_{t_{0}}\right\}$. Then $i\left(q_{0}\right) \leqq i\left(q_{0}^{*}\right)<\pi / \sqrt{\lambda}$. We
set $A_{1}:=\left\{q \in C_{t_{0}}: i(q)=i\left(q_{0}\right)\right\}$. Then by Lemma $2, A_{1} \cap C_{0}=\varnothing$. Since A_{1} is compact, there exists a point $q_{1} \in A_{1}$ such that $d\left(q_{1}, \partial C_{t_{0}}\right)=\max \{d(q$, $\left.\left.\partial C_{t_{0}}\right): q \in A_{1}\right\}$. Set $t_{1}:=d\left(q_{1}, \partial C_{t_{0}}\right)$. Then $t_{1}<t_{0}$ by Lemma 2. As is in the proof of Lemma 2, there exists a closed geodesic $\gamma_{1}:\left[0,2 i\left(q_{1}\right)\right] \rightarrow M$ such that $\gamma_{1}(0)=\gamma_{1}\left(2 i\left(q_{1}\right)\right)=q_{1}$ and $\gamma_{1}\left(\left[0,2 i\left(q_{1}\right)\right]\right) \subset \partial C_{t_{0}-t_{1}}$. By the choice of t_{1} and the continuity of i, we can choose t_{2}^{*} such that $t_{1}<t_{2}^{*}<t_{0}$ and $\pi / \sqrt{\lambda}>\min \left\{i(q): q \in C_{t_{0}-t_{2}^{*}}\right\}>i\left(q_{1}\right) . \quad q_{2}^{*} \in C_{t_{0}-t_{2}^{*}}$ be a point such that $i\left(q_{2}^{*}\right)=\min \left\{i(q): q \in C_{t_{0}-t_{2}^{*}}\right\}$. Set $A_{2}:=\left\{q \in C_{t_{0}-t_{2}^{*}}: i(q)=i\left(q_{2}^{*}\right)\right\}$. Let $q_{2} \in$ A_{2} be a point such that $d\left(q_{2}, \partial C_{t_{0}}\right)=\max \left\{d\left(q, \partial C_{t_{0}}\right): q \in A_{2}\right\}$. Set $t_{2}:=d\left(q_{2}\right.$, $\partial C_{t_{0}}$). Then $t_{2}<t_{0}$ by Lemma 2. And by the same reason for q_{1}, there exists a closed geodesic $\gamma_{2}:\left[0,2 i\left(q_{2}\right)\right] \rightarrow M$ such that $\gamma_{2}(0)=\gamma_{2}\left(2 i\left(q_{2}\right)\right)=q_{2}$ and $\gamma_{2}\left(\left[0,2 i\left(q_{2}\right)\right] \subset \partial C_{t_{0}-t_{2}}\right.$. Continuing this operation, we obtain sequences $\left\{q_{n}\right\},\left\{t_{n}\right\}$ and a family of closed geodesics $\gamma_{n}:\left[0,2 i\left(q_{n}\right)\right] \rightarrow M$ which satisfy the following conditions:
(1) $i\left(q_{1}\right)<i\left(q_{2}\right)<\cdots<i\left(q_{n}\right)<i\left(q_{n+1}\right)<\cdots<\pi / \sqrt{\lambda}$,
(2) $t_{n}:=d\left(q_{n}, \partial C_{t_{0}}\right), t_{1}<t_{2}<\cdots<t_{n}<t_{n+1}<\cdots<t_{0}$,
(3) $\gamma_{n}(0)=\gamma_{n}\left(2 i\left(q_{n}\right)\right)=q_{n}, \gamma_{n}\left(\left[0,2 i\left(q_{n}\right)\right]\right) \subset \partial C_{t_{0}-t_{n}}$.

For the sake of convenience, we extend the domain of γ_{n} as $\gamma_{n}:(-\infty$, $\infty) \rightarrow M$. We fix n and $\tilde{t}>t_{0}$. Then by [2; Th. 1.10 pp 420], the function $\psi:(-\infty, \infty) \rightarrow R$ defined by $\psi(u):=d\left(\gamma_{n}(u), \partial C_{\tilde{t}}\right)$ is concave, i.e. for $\alpha \geqq$ $0, \beta \geqq 0, \alpha+\beta=1$, it holds $\psi\left(\alpha u_{1}+\beta u_{2}\right) \geqq \alpha \psi\left(u_{1}\right)+\beta \psi\left(u_{2}\right)$. Since ψ is bounded, $\psi \equiv$ constant, say, $l>0$. Let $c_{t}:[0, l] \rightarrow M$ be a minimal geodesic from $\gamma_{n}(0)$ to $\partial C_{\tilde{t}}$, then $\Varangle\left(\dot{\gamma}_{n}(0), \dot{c}_{\tilde{t}}(0)\right)=\pi / 2$ where $\Varangle(v, w)$ denotes the angle between the vectors v and w. For if $\Varangle\left(\dot{\gamma}_{n}(0), \dot{c}_{\tilde{t}}(0)\right)<$ $\pi / 2$, we can find $\tilde{u}>0$ such that $d\left(\gamma_{n}(\widetilde{u}), \partial C_{\tilde{t}}\right)<d\left(\gamma_{n}(0), \partial C_{\tilde{t}}\right)$. That is $l=\psi(\widetilde{u}) \leqq d\left(\gamma_{n}(\widetilde{u}), \partial C_{\tilde{t}}\right)<d\left(\gamma_{n}(0), \partial C_{\tilde{t}}\right)=l$. This is a contradiction. Let X be the vector field along c_{i} obtained by the parallel translation of $\dot{\gamma}_{n}(0)$. We define a differentiable mapping $V:[0, l] \times[0, \varepsilon] \rightarrow M$ by $V(s$, $u):=\exp _{c \tilde{t}(s)} u X(s)$ where ε is a positive number. Set $V_{u}(s):=V(s, u)$. Then, by the convexity of $C_{\tilde{t}}, V_{u}(l) \notin \operatorname{int} C_{\tilde{t}}$ for $u \in[0, \varepsilon]$, see [1: Lemma 1.7 pp 419]. On the other hand, by the comparison theorem of Berger, if we put $\varepsilon_{0}:=\min \{\pi /(2 \sqrt{\lambda}), \varepsilon\}$, then $L\left(V_{u}\right) \leqq L\left(V_{0}\right)=l$ for all $u \in\left[0, \varepsilon_{0}\right]$ and equality holding for some $u_{0} \in\left(0, \varepsilon_{0}\right]$ if and only if $V \mid[0, l] \times\left[0, u_{0}\right]$ is a flat totally geodesic surface of M, see [1, Th. 1 pp 701]. Since we have seen $\psi \equiv l$ and $V_{u}(l) \notin \operatorname{int} C_{\tilde{t}}$, we get $l \leqq L\left(V_{u}\right) \leqq L\left(V_{0}\right)=l$ for all $u \in$ $\left[0, \varepsilon_{0}\right]$. So $V \mid[0, l] \times\left[0, \varepsilon_{0}\right]$ defines a flat totally geodesic surface of M. Without confusion, $V:[0, l] \times\left[0, \varepsilon_{0}\right] \rightarrow M$ denotes the restriction $V \mid[0, l] \times$ $\left[0, \varepsilon_{0}\right]$. We extend the surface $V:[0, l] \times\left[0, \varepsilon_{0}\right] \rightarrow M$ as $V:[0, l] \times\left[0,2 \varepsilon_{0}\right] \rightarrow$ M defining $V(s, u):=\exp _{V_{\varepsilon_{0}(s)}} u V_{*}(\partial / \partial u)_{\mid s, \varepsilon_{0}}$ for $u \in\left[\varepsilon_{0}, 2 \varepsilon_{0}\right]$. Then we can also see that $V:[0, l] \times\left[0,2 \varepsilon_{0}\right] \rightarrow M$ is a flat totally geodesic surface of
M because $V \mid[0, l] \times\left[\varepsilon_{0}, 2 \varepsilon_{0}\right]$ satisfies the same condition for $V:[0, l] \times$ $\left[0, \varepsilon_{0}\right] \rightarrow M$. We extend $V:[0, l] \times\left[0,2 \varepsilon_{0}\right] \rightarrow M$ as $V:[0, l] \times\left[0,3 \varepsilon_{0}\right] \rightarrow M$ defining $V(s, u):=\exp _{V_{2 \varepsilon_{0}}(s)} u V_{*}(\partial / \partial u)_{\mid s, 2 \varepsilon_{0}}$ for $u \in\left[2 \varepsilon_{0}, 3 \varepsilon_{0}\right] . \quad V:[0, l] \times[0$, $\left.3 \varepsilon_{0}\right] \rightarrow M$ is also a flat totally geodesic surface of M. Continuing this method, finally we get an immersed flat totally geodesic surface $V:[0, l] \times$ $(-\infty, \infty) \rightarrow M$ which is given by $V(s, u):=\exp _{c \tilde{t}(s)} u X(s)$. Set $Y(u):=$ $V_{*}(\partial / \partial s)_{\mid 0, u}$. Then Y is a parallel vector field along γ_{n}.

ASSERTION 1. $Y(0)=Y\left(2 i\left(q_{n}\right)\right)$.
Proof. We assume $Y(0) \neq Y\left(2 i\left(q_{n}\right)\right)$ and derive a contradiction. Set $C_{q_{n}}:=\left\{v \in T_{q_{n}}(M): \exp _{q_{n}} u(v /\|v\|) \in C_{t_{0}-t_{n}}\right.$ for some $\left.u>0\right\} \cup\{0\}, T_{q_{n}}:=$ $\left\{v \in T_{q_{n}}(M):\left\langle v, \dot{\gamma}_{n}(0)\right\rangle=0 \quad\right.$ and $\left.\quad\|v\|=1\right\} \quad$ and $C_{q_{n}}^{*}:=T_{q_{n}} \cap C_{q_{n}} . \quad C_{q_{n}}$ is called the tangent cone of $C_{t_{0}-t_{n}}$ at q_{n}, see [2]. Since $\operatorname{dim} C_{t_{0}-t_{n}}=3, T_{q_{n}}$ is isometric to the unit circle $S^{1}=[0,2 \pi]$ and $C_{q_{n}}^{*}$ is the minor subarc of length $\alpha \in(0, \pi]$ by the convexity of $C_{t_{0}-t_{n}}$. Let $\varphi:[0,2 \pi]\left(=S^{1}\right) \rightarrow T_{q_{n}}$ be the isometry such that $\varphi([0, \alpha])=\bar{C}_{q_{n}}^{*}$ where closure is taken in $T_{q_{n}}$. Since $V_{2 m i\left(q_{n}\right)}$ is a minimal geodesic from q_{n} to $\partial C_{\tilde{t}}$, we can easily see that $Y\left(2 m i\left(q_{n}\right)\right) \in \varphi([\alpha+\pi / 2,2 \pi-\pi / 2])$ for $m=0,1,2, \cdots$. Let $Y(0)=$ $\varphi(\beta)$ for $\beta \in[\alpha+\pi / 2,2 \pi-\pi / 2]$. Then, by the assumption, without loss of generality, we can assume that $Y\left(2 i\left(q_{n}\right)\right)=\varphi(\beta+\omega)$, where $\beta+\omega$ $\langle 2 \pi-\pi / 2$ and $\omega>0$. And it follows from the linearlity of the parallel displacement that $Y\left(2 m i\left(q_{n}\right)\right)=\varphi(\beta+m \omega)$ and $\beta+m \omega<2 \pi-\pi / 2$, because $\omega<\pi$ and $Y\left(2 m i\left(q_{n}\right)\right)$ is the parallel translation of $Y\left(2(m-1) i\left(q_{n}\right)\right)$ along γ_{n} for $m=1,2,3, \cdots$. But this is impossible. q.e.d.

From this assertion, we see the image of surface V is isometric to $\left.[0, l] \times S^{1} i\left(q_{n}\right) / \pi\right)$ where $S^{1}(r)$ denotes a circle of radius r. Let $\left\{\tilde{t}_{k}\right\}$ be a sequence such that $\tilde{t}_{k} \uparrow \infty$ and $\tilde{t}_{1}>t_{0}$. For each \tilde{t}_{k}, let $c_{t_{k}}:\left[0, l_{k}\right] \rightarrow M$ be a minimal geodesic from $\gamma_{n}(0)$ to $\partial C_{\tilde{t}_{k}}$ where $l_{k}=d\left(\gamma_{n}(0), \partial C_{\tilde{t}_{k}}\right)$. Since $\tilde{t}>t_{0}$ is any number, we can apply the above argument for each \tilde{t}_{k} and we have a flat totally geodesic surface of M whose image is isometric to $\left[0, l_{k}\right] \times S^{1}\left(i\left(q_{n}\right) / \pi\right)$. We can choose subsequence $\left\{\tilde{t}_{k_{j}}\right\}$ of $\left\{\tilde{t}_{k}\right\}$ such that $\dot{c}_{\tilde{t}_{k_{j}}}(0) \rightarrow \dot{c}_{n}(0), \dot{c}_{n}(0) \in T_{q_{n}}(M)$. Let P_{n} be the vector field along γ_{n} obtained by the parallel translation of $\dot{c}_{n}(0)$. Then by the construction, we can easily see that the surface given by the map $V_{n}:[0, \infty) \times(-\infty, \infty) \rightarrow M$ defined by $V_{n}(s, u):=\exp _{r_{n}(u)} s P_{n}(u)$ is an immersed flat totally surface of M and its image is isometric to $[0, \infty) \times S^{1}\left(i\left(q_{n}\right) / \pi\right)$. We denote the image of this surface by F_{n}. Now by the compactness of $C_{t_{0}}$, we can choose a subsequence $\left\{n_{j}\right\}$ of $\{n\}$ such that $\dot{\gamma}_{n_{j}}(0) \rightarrow \dot{\gamma}_{\infty}(0)$ and $\dot{c}_{n_{j}}(0) \rightarrow \dot{c}_{\infty}(0)$ where $\dot{\gamma}_{\infty}(0)$ and $\dot{c}_{\infty}(0) \in T_{q_{\infty}}(M), q_{\infty}:=\lim _{j \rightarrow \infty} q_{n_{j}} \in M$. Then the vector field P_{∞} along the closed geodesic $\gamma_{\infty}(t):=\exp t \dot{\gamma}_{\infty}(0)$ obtained by the parallel
translation of $\dot{c}_{\infty}(0)$ satisfies $P_{\infty}(0)=P_{\infty}\left(2 i\left(q_{\infty}\right)\right)$ from the construction. And the surface given by the map $V_{\infty}:[0, \infty) \times(-\infty, \infty) \rightarrow M$ such that $V_{\infty}(s$, $u):=\exp _{T_{\infty}(u)} s P_{\infty}(u)$ is an immersed flat totally geodesic surface of M whose image is isometric to $[0, \infty) \times S^{1}\left(i\left(q_{\infty}\right) / \pi\right)$. We also denote the image of this surface by F_{∞}. Hereafter, for the convenience, the sequence $\{m\}$ denotes the sequence $\left\{n_{j}\right\}$.

ASSERTION 2. $\quad F_{m} \cap F_{\infty}=\varnothing$ for all m.

Proof. We assume that there exists m_{0} such that $F_{m_{0}} \cap F_{\infty} \neq \varnothing$ and derive a contradiction. Let ∂F_{m} and ∂F_{∞} denote the image of the closed geodesic γ_{m} and γ_{∞} respectively. And let int $F_{m}:=F_{m}-\partial F_{m}$, int $F_{\infty}:=$ $F_{\infty}-\partial F_{\infty}$. We can consider two cases int $F_{m_{0}} \cap \operatorname{int} F_{\infty} \neq \varnothing$ or $\partial F_{m} \cap \operatorname{int} F_{\infty} \neq \varnothing$ because $\partial F_{\infty} \subset \partial C_{t_{0}-t_{\infty}}$ and $F_{m_{0}} \cap C_{t_{0}-t_{\infty}}=\varnothing$ where $t_{\infty}:=d\left(q_{\infty}, \partial C_{t_{0}}\right)$. Suppose there exists a point $q \in \operatorname{int} F_{m_{0}} \cap \operatorname{int} F_{\infty}$. Since $\operatorname{dim} M=3$ and $\operatorname{dim} F_{m_{0}}=$ $\operatorname{dim} F_{\infty}=2$, there exists a vector $v \in T_{q}\left(F_{m_{0}}\right) \cap T_{q}\left(F_{\infty}\right)$ such that $\|v\|=1$. Let $c:(-\infty, \infty) \rightarrow M$ be the geodesic defined by $c(t):=\exp t v$. Then there exists a subarc of the geodesic c which is a geodesic in $F_{m_{0}}$ and F_{∞} because $F_{m_{0}}$ and F_{∞} are totally geodesic surface of M. We assert that $c((-\infty, \infty)) \cap$ $\partial F_{m_{0}} \neq \varnothing$. For, if $c((-\infty, \infty)) \cap \partial F_{m_{0}}=\varnothing$, then as is easily seen, c is a closed geodesic in $F_{m_{0}}$ and F_{∞}, since $F_{m_{0}}$ and F_{∞} are isometric to the half cylinder $[0, \infty) \times S^{1}\left(i\left(q_{m_{0}}\right) / \pi\right)$ and $[0, \infty) \times S^{1}\left(i\left(q_{\infty}\right) / \pi\right)$ respectively. The fundamental period of a closed geodesic in $F_{m_{0}}$ and F_{∞} are $2 i\left(q_{m_{0}}\right)$ and $2 i\left(q_{\infty}\right)$ respectively. So above fact means $2 i\left(q_{m_{0}}\right)=2 i\left(q_{\infty}\right)$. This is a contradiction. So the assumption int $F_{m_{0}} \cap \operatorname{int} F_{\infty} \neq \varnothing$ derives $\partial F_{m_{0}} \cap$ int $F_{\infty} \neq \varnothing$. Next we suppose $\partial F_{m_{0}} \cap \operatorname{int} F_{\infty} \neq \varnothing$. For each $u \in\left[0,2 i\left(q_{m_{0}}\right)\right]$, let $c_{u}:[0, \infty) \rightarrow M$ be the geodesic defined by $c_{u}(s):=\exp _{r_{m_{0}}(u)}(-s) P_{m_{0}}(u)$. Then for each $u \in\left[0,2 i\left(q_{m_{0}}\right)\right]$, we will show $c_{u}([0, \infty)) \cap \operatorname{int} C_{t_{0}-t_{m_{0}}}=\varnothing$. For, if some $u_{0} \in\left[0,2 i\left(q_{m_{0}}\right)\right]$ and $s_{0} \in(0, \infty), c_{u_{0}}\left(s_{0}\right) \in \operatorname{int} C_{t_{0}-t_{m_{0}}}$, then by the total convexity of $C_{t_{0}-t_{m_{0}}}, c_{u_{0}}\left(\left(0, s_{0}\right]\right) \subset \operatorname{int} C_{t_{0}-t_{m_{0}}}$. We define a differentiable mapping $V:\left[0,2 i\left(q_{m_{0}}\right)\right] \times[0, \beta] \rightarrow M$ by $V(u, s):=c_{u}(s)$. We put $V_{s}(u):=$ $V(u, s)$. Then by the comparison theorem of Berger, there exists an $\varepsilon_{0}>0$ depending on λ such that for all $0 \leqq s \leqq \varepsilon_{0}, L\left(V_{s}\right) \leqq L\left(V_{0}\right)$, see [1: Th. 1 pp 701]. By the assumption $V_{s_{0}}\left(u_{0}\right)\left(=c_{u_{0}}\left(s_{0}\right)\right) \in \operatorname{int} C_{t_{0}-t_{m_{0}}}$ and by the choice of $t_{m_{0}}$, for all $s, 0<s \leqq s_{0}$, we get $i\left(V_{s}\left(u_{0}\right)\right)>i\left(V_{0}\left(u_{0}\right)\right)$. Namely, for all $0<s \leqq \min \left\{\varepsilon_{0}, s_{0}\right\}, i\left(V_{s}\left(u_{0}\right)\right)>i\left(V_{0}\left(u_{0}\right)\right)=(1 / 2) L\left(V_{0}\right) \geqq(1 / 2) L\left(V_{s}\right)$. Then by using the same technique which is used by W. Klingenberg to get the estimation of the injective radius of a certain compact Riemannian manifold, see [3: Th. pp 227], we can easily get a contradiction. For a point $\gamma_{m_{0}}\left(u^{*}\right) \in \partial F_{m_{0}} \cap \operatorname{int} F_{\infty}$, there exists uniquely $\tilde{u} \in\left[0,2 i\left(q_{\infty}(0)\right)\right]$ and \widetilde{s} such that $\gamma_{m_{0}}\left(u^{*}\right)=\exp _{T_{\infty}(\tilde{u})} \tilde{s} P_{\infty}(\tilde{u})$. From the construction of F_{∞}, the
geodesic $\alpha:[0, \infty) \rightarrow M$ defined by $\alpha(s):=\exp _{r_{\infty}(\tilde{u})} P P(\widetilde{u})$ is a shortest connection from $\gamma_{\infty}(\widetilde{u})$ to ∂C_{t} for each $t \geqq t_{0}$. And above fact shows that $\dot{\alpha}(\widetilde{s}) \neq P_{m_{0}}\left(u^{*}\right)$ because $c_{u^{*}}([0, \infty)) \cap \operatorname{int} C_{t_{0}-t_{m_{0}}}=\varnothing$ and $\gamma_{\infty}(\widetilde{u}) \in \operatorname{int} C_{t_{0}-t_{m_{0}}}$. The geodesic $\beta:[0, \infty) \rightarrow M$ defined by $\beta(s):=\exp _{\gamma_{m}\left(u^{*}\right)} s P_{m}\left(u^{*}\right)$ is also a minimal geodesic from $\gamma_{m}\left(u^{*}\right)$ to ∂C_{t} for each $t \geqq t_{0}$. In particular $\alpha \mid[0$, $\left.\widetilde{s}+t_{m}\right]\left(\right.$ resp. $\left.\beta \mid\left[0, t_{m}\right]\right)$ is a minimal connection from $\gamma_{\infty}(\widetilde{u})$ (resp. $\gamma_{m}\left(u^{*}\right)$) to $\partial C_{t_{0}}$ where $t_{m}=d\left(q_{m}, \partial C_{t_{0}}\right)$. So, from the triangle inequality of distance, we can easily see $\dot{\alpha}(\widetilde{s})=\dot{\beta}(0)=P_{m}\left(u^{*}\right)$ and we get a contradiction.
q.e.d.

Now, since $F_{m} \rightarrow F_{\infty}$ as $m \rightarrow \infty$, we can easily find numbers m^{*} and s^{*} such that, for each minimal geodesic from a point of the set $\left\{s^{*}\right\} \times$ $S^{1}\left(i\left(q_{\infty}\right) / \pi\right) \subset F_{\infty}$ to $F_{m^{*}}$, its end point lies in int $F_{m^{*}}$. We consider that $\left\{s^{*}\right\} \times S^{1}\left(i\left(q_{\infty}\right) / \pi\right)$ is the image of the closed geodesic $\gamma_{\infty}:(-\infty, \infty) \rightarrow M$. $F_{m^{*}}$ can be considered locally as a boundary of some convex set because $F_{m^{*}}$ is a totally geodesic surface of M. And by the proof of Th. 1.10 [2: pp 420], the function $\varphi:(-\infty, \infty) \rightarrow R$ defined by $\varphi(s):=d\left(\gamma_{\infty}(s), F_{m^{*}}\right)$ is concave. So φ must be constant $a>0$, because φ is bounded. Let $c:[0, a] \rightarrow M$ be a minimal geodesic from $\gamma_{\infty}(0)$ to $F_{m^{*}}$. Then $\dot{c}(0) \perp F_{m^{*}}$ and $\dot{c}(0) \perp \dot{\gamma}_{\infty}(0)$. Let Z be the vector field along γ_{∞} obtained by the parallel translation of $\dot{c}(0)$. Then, by the same argument just we have used to prove the fact $Y(0)=Y\left(2 i\left(q_{n}\right)\right)$, we can easily see $Z(0)=Z\left(2 i\left(q_{\infty}\right)\right)$ and the differentiable mapping $\tau:[0, a] \times\left[0,2 i\left(q_{\infty}\right)\right]$ defined by $\tau(u, s):=$ $\exp _{r_{\infty}(s)} u Z(s)$ gives a flat totally geodesic surface of M which is isometric to $[0, a] \times S^{1}\left(i\left(q_{\infty}\right) / \pi\right)$. Therefore we get $L\left(\tau_{0}\right)=L\left(\tau_{a}\right)$ where $\tau_{u}(s):=$ $\tau(u, s)$. On the other hand τ_{0} and τ_{a} are closed geodesics in F_{∞} and $F_{m^{*}}$ respectively. So $L\left(\tau_{0}\right)>L\left(\tau_{a}\right)$. This is a contradiction. q.e.d.

Remark. For $\operatorname{dim} M=n \geqq 4$, this Theorem is not valid. Because M. Berger gave an example that on S^{3}, there exists a Riemannian metric g_{0} such that $0<K_{\sigma} \leqq \lambda$ satisfying $i\left(q_{0}\right)<\pi / \sqrt{\lambda}$ for some point $q_{0} \in S^{3}$. Hence, for a simply connected non-compact Riemannian manifold $M:=$ (S^{3}, g_{0}) $\times E^{1}$ which satisfies $0 \leqq K_{\sigma} \leqq \lambda$, there exists a point $q \in M$ such that $i(q)<\pi / \sqrt{\lambda}$. So it might be significant to assume that M is homeomorphic to E^{n} for the proof of our assertion in the case $n \geqq 4$.

References

[1] M. Berger, An extention of Rauch's metric comparison theorem and some applications, Ill. J. of Math. 6 (1962), 700-712.
[2] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann, of Math. 96 (1970), 413-443.
[3] D. Gromoll, W. Klingenberg and W. Meyer, Riemannshe Geometrie im Grossen,

Springer-Verlag, 1968.

[4] M. Maeda, On the injective radius of noncompact Riemannian manifolds, Proc. Japan Acad. 50 (1974), 148-151.
[5] V. Toponogov, Theorems on shortest arcs in noncompact Riemannian spaces of positive curvature, Soviet Math. Dokl. 11 (1970), 412-414.

Department of Mathematics
Tokyo Institute of Technology

