Tôhoku Math. Journ. 27 (1975), 405-412.

THE INJECTIVE RADIUS OF NON-COMPACT 3-DIMENSIONAL RIEMANNIAN MANIFOLDS

MASAO MAEDA

(Received August 2, 1974)

In this note all Riemannian manifolds which we deal are connected and complete. For a point $p \in M$, $T_p(M)$ be the tangent space of M at p and $\exp_p: T_p(M) \to M$ be the exponential mapping of M. d denotes the metric distance of M induced from the Riemannian metric of M. All geodesics are parametrized by the arclength. As is well known, the function $i: M \to R \cup \{\infty\}$ defined by i(p): = d(p, C(p)) is continuous where C(p) denotes the cut locus of p in M. i(p) is called the injective radius of \exp_p . With respect to the estimation of the injective radius many results are known when M is compact. Let M be a non-compact Riemannian manifold. Then in [5], Toponogov asserted the following:

FACT. 1) if the sectional curvature K_{σ} satisfies $0 < K_{\sigma} \leq \lambda$ for all tangent plane σ , then $i(q) \geq \pi/\sqrt{\lambda}$ for all $q \in M$. 2) if $0 \leq K_{\sigma} \leq \lambda$, then there exists a positive constant L such that $i(q) \geq L$ for all $q \in M$.

In [4], the author gave an anothor proof of assertion 1) and showed that the estimation of 1) is still true for a 2-dimensional simply connected Riemannian manifold M which satisfies $0 \leq K \leq \lambda$, where K is the Gaussian curvature of M. In this note, we show that the estimation 1) is still true for a 3-dimensional simply connected non-compact Riemannian manifold which satisfies $0 \leq K_{\sigma} \leq \lambda$. To prove this fact, we use the following facts which are proved by Cheeger and Gromoll in [2]. For a Riemannian manifold M, a subset A of M will be called totally convex if for any points $p, q \in A$ and any geodesic $c: [0, \beta] \to M$ from p to q, we have $c([0, \beta]) \subset A$. Let $A \subset M$ be a closed totally convex set, then A is an imbedded k-dimensional topological submanifold of M with totally geodesic interior and possibly non-smooth boundary which might be empty, see [2, Th. 1.6 pp 418]. Now, we assume that M is non-compact and its sectional curvature satisfies $0 \leq K_{\sigma}$. Then, for a point $p \in M$, there exists a family of compact totally convex subsets $\{C_i\}_{t\geq 0}$ such that

(1) $t_2 \ge t_1$ implies $C_{t_2} \supset C_{t_1}$ and $C_{t_1} = \{q \in C_{t_2}: d(q, \partial C_{t_2}) \ge t_2 - t_1\}$ in particular, $\partial C_{t_1} = \{q \in C_{t_2}: d(q, \partial C_{t_2}) = t_2 - t_1\}$,

(2) $\bigcup_{t\geq 0} C_t = M$,

(3) $p \in C_0$ and if $\partial C_0 \neq \emptyset$, then $p \in \partial C_0$, see [2; Prop. 1.3 pp 416]. Let C be a closed totally convex set. We set

$$egin{array}{ll} C^a &:= \{q \in C \colon d(q, \, \partial C) \geq a \} \ C^{ ext{max}} &:= igcap_{C^a
eq arphi} C^a \;. \end{array}$$

Then, for any $a \ge 0$, C^a is totally convex and there exists $a_0 \ge 0$ such that $C^{\max} = C^{a_0}$. Furthermore dim $C^{\max} < \dim C$, see [2; Th. 1.9 pp 420]. For a family of totally convex sets $\{C_t\}_{t\ge 0}$ as is mensioned above, if $\partial C_0 \neq \emptyset$, we set $C(1):=C_0$ and $C(2):=C(1)^{\max}$. Inductively, if $\partial C(i) \neq \emptyset$, we set $C(i+1):=C(i)^{\max}$ for $i=1,2,\cdots$. As is easily seen, we get the integer k > 0 such that $\partial C(k) = \emptyset$. We call C(k) a soul of M and denote it by S. In the case dim $C_0 = \dim M$, instead of $\{C_t\}_{t\ge 0}$, we use a following family of totally convex sets $\{\widetilde{C}_t\}_{t\ge 0}$. Let $C_0^{a_0} = C_0^{\max}$. We set $\widetilde{C}_0:=C_0^{a_0}$ and

$$\widetilde{C}_t {:} = egin{cases} C_{t-a_0} & ext{if} \quad t \geqq a_0 \ C_0^{a_0-t} & ext{if} \quad a_0 \geqq t \geqq 0 \;. \end{cases}$$

Then, thus obtained family $\{\widetilde{C}_t\}_{t\geq 0}$ also satisfies the property (1) and (2) for $\{C_t\}_{t\geq 0}$. We do not use the property (3), so without confusion, we may denote again $\{\widetilde{C}_t\}_{t\geq 0}$ by $\{C_t\}_{t\geq 0}$. Under this new index, dim $C_t = \dim M$ for t > 0 and dim $C_0 < \dim M$. And we also obtain a decreasing sequence of totally convex sets such that $C_0 = C(1), \dots, C(k) = S$. Our assertion is:

THEOREM. Let M be a simply connected 3-dimensional non-compact Riemannian manifold which satisfies $0 \leq K_{\sigma} \leq \lambda$, then

$$i(q) \geq rac{\pi}{\sqrt{\lambda}}$$
 for all $q \in M$.

For the moment, we assume that M is homeomorphic to E^3 and have the sectional curvature $0 \leq K_{\sigma} \leq \lambda$, where E^3 is a 3-dimensional Euclidean space. Let S be a soul of M. Then by [2; Th. 2.2 pp 423], S is a point set $\{s\}, s \in M$.

LEMMA 1. For any soul $S = \{s\}$ of M, $i(s) \ge \pi/\sqrt{\lambda}$.

PROOF. If $i(s) < \pi/\sqrt{\lambda}$, then by the Theorem of Morse-Schoenberg and Lemma 2 [3; pp 226], there exists a geodesic loop $\gamma: [0, 2i(s)] \to M$ such that $\gamma(0) = \gamma(2i(s)) = s$. Then $\gamma([0, 2i(s)]) \subset \{s\}$, because $\{s\}$ is totally convex. This is a contradiction. q.e.d.

Let $p \in M$ be any point and $\{C_t\}_{t\geq 0}$ be the family of the totally convex sets constructed from p. Under this situation, we have:

406

INJECTIVE RADIUS

LEMMA 2. For any point $q \in C_0$, $i(q) \ge \pi/\sqrt{\lambda}$.

PROOF. Assume that there exists a point $q_0^* \in C_0$ such that $i(q_0^*) <$ $\pi/\sqrt{\lambda}$. Then by Lemma 1, $\partial C_0 \neq \emptyset$. Let $q_0 \in C_0$ be a point such that $i(q_0) = \min\{i(q): q \in C_0\}$. Then $i(q_0) \leq i(q_0^*) < \pi/\sqrt{\lambda}$. Set $A: = \{q \in C_0: i(q) = 0\}$ $i(q_0)$ }. Then by the compactness of A, there exists a point $q_1 \in A$ such that $d(q_1, \partial C_0) = \max \{ d(q, \partial C_0) : q \in A \}$. Set $t_1 := d(q_1, \partial C_0)$. Then $q_1 \in \partial C_0^{t_1}$ and $i(q_1) \leq i(q_0^*) < \pi/\sqrt{\lambda}$. Then by the Theorem of Morse-Schoenberg and Lemma 2 [3], there exists a geodesic loop $\gamma_1: [0, 2i(q_1)] \to M$ such that $\gamma_1(0) = \gamma_1(2i(q_1)) = q_1$. Since $C_0^{t_1}$ is totally convex, we see $\gamma_1([0, 2i(q_1)]) \subset$ $C_0^{t_1}$. Hence, by the choice of the point q_1 , $i(\gamma_1(i(q_1))) = i(q_1)$. And again by Lemma 2 [3], γ_1 must be a closed geodesic. We also see $\gamma_1([0, 2i(q_1)]) \subset$ A. And by the choice of the point q_1 , we get $\gamma_1([0, 2i(q_1)]) \subset \partial C_0^{i_1}$. So $\gamma_i([0, 2i(q_i)]) = \partial C_0^{t_1}$, because dim $C_0 \leq 2$ and hence dim $\partial C_0^{t_1} = 1$. By the choice of t_1 and continuity of the function *i*, we can choose t_2^* such that $t_1 < t_2^* \text{ and } \pi/\sqrt{\lambda} > \min\{i(q): q \in C_{0^2}^{t^*}\} > i(q_1).$ Let $q_2^* \in C_{0^2}^{t^*}$ be a point such that $i(q_2^*) = \min \{i(q): q \in C_{0^2}^{t^*}\}$ and $q_2 \in C_{0^2}^{t^*}$ be a point such that $d(q_2, \partial C_0) = \max \{ d(q, \partial C_0) : q \in C_{02}^{t^*} \text{ and } i(q) = i(q_2^*) \}.$ Then $i(q_1) < i(q_2) < i(q_2$ $\pi/\sqrt{\lambda}$. By the same reason for q_1 , there exists a closed geodesic γ_2 : [0, $2i(q_2)] \rightarrow M$ such that $\gamma_2(0) = \gamma_2(2i(q_2)) = q_2$. Set $t_2 := d(q_2, \partial C_0)$. Then we also have $\gamma_2([0, 2i(q_2)]) = \partial C_0^{i_2}$. Since $C_0^{i_1}$ and $C_0^{i_2}$ are homeomorphic to a 2-dimensional disk, by applying the Theorem of Gauss-Bonnet, we get

$${\displaystyle \iint_{{{C_0^{t_1}}}}} Kdv = {\displaystyle \iint_{{C_0^{t_2}}}} Kdv = 2\pi$$
 ,

where K (resp. dv) is the Gaussian curvature (resp. the area element) of the totally geodesic surface $C_0^{t_1}$ of M and its totally geodesic surface $C_0^{t_2}$ having the boundary $\partial C_0^{t_1}$, $\partial C_0^{t_2}$. This equation means $K \equiv 0$ on $C_0^{t_1} - C_0^{t_2}$. That is $L(\gamma_1) = L(\gamma_2)$, where L denotes the length of a curve. Namely $2i(q_1) = 2i(q_2)$. This is a contradiction. q.e.d.

PROOF OF THE THEOREM. By the classification in [2; Th. 8.1 pp 438], Mmust be isometric to $\tilde{M} \times E^1$ or M is homeomorphic to E^3 where E^1 is a 1dimensional Euclidean space and \tilde{M} is homeomorphic to 2-dimensional sphere S^2 . If M is isometric to $\tilde{M} \times E^1$, by using a result of [4], it is easily seen that our assertion is true. So we may assume that M is homeomorphic to E^3 . We assume that there exists a point $q_0^* \in M$ such that $i(q_0^*) < \pi/\sqrt{\lambda}$ and derive a contradiction. Let p be a point of M. And $\{C_t\}_{t\geq 0}$ be the familly of totally convex sets constructed from a point p. By Lemma 2, $q_0^* \notin C_0$. Choose a number $t_0 > 0$ such that $q_0^* \in C_{t_0}$. Let $q_0 \in C_{t_0}$ be a point such that $i(q_0) = \min \{i(q): q \in C_{t_0}\}$. Then $i(q_0) \leq i(q_0^*) < \pi/\sqrt{\lambda}$. We M. MAEDA

set $A_1 := \{q \in C_{t_0}: i(q) = i(q_0)\}$. Then by Lemma 2, $A_1 \cap C_0 = \emptyset$. Since A_1 is compact, there exists a point $q_1 \in A_1$ such that $d(q_1, \partial C_{t_0}) = \max \{d(q, \partial C_{t_0}): q \in A_1\}$. Set $t_1 := d(q_1, \partial C_{t_0})$. Then $t_1 < t_0$ by Lemma 2. As is in the proof of Lemma 2, there exists a closed geodesic $\gamma_1 : [0, 2i(q_1)] \to M$ such that $\gamma_1(0) = \gamma_1(2i(q_1)) = q_1$ and $\gamma_1([0, 2i(q_1)]) \subset \partial C_{t_0-t_1}$. By the choice of t_1 and the continuity of i, we can choose t_2^* such that $t_1 < t_2^* < t_0$ and $\pi/\sqrt{\lambda} > \min\{i(q): q \in C_{t_0-t_2^*}\} > i(q_1)$. $q_2^* \in C_{t_0-t_2^*}$ be a point such that $i(q_2^*) = \min\{i(q): q \in C_{t_0-t_2^*}\}$. Set $A_2 := \{q \in C_{t_0-t_2^*}: i(q) = i(q_2^*)\}$. Let $q_2 \in A_2$ be a point such that $d(q_2, \partial C_{t_0}) = \max\{d(q, \partial C_{t_0}): q \in A_2\}$. Set $t_2 := d(q_2, \partial C_{t_0})$. Then $t_2 < t_0$ by Lemma 2. And by the same reason for q_1 , there exists a closed geodesic $\gamma_2 : [0, 2i(q_2)] \to M$ such that $\gamma_2(0) = \gamma_2(2i(q_2)) = q_2$ and $\gamma_2([0, 2i(q_2)] \subset \partial C_{t_0-t_2}$. Continuing this operation, we obtain sequences $\{q_n\}, \{t_n\}$ and a family of closed geodesics $\gamma_n : [0, 2i(q_n)] \to M$ which satisfy the following conditions:

(1) $i(q_1) < i(q_2) < \cdots < i(q_n) < i(q_{n+1}) < \cdots < \pi/\sqrt{\lambda}$,

(2)
$$t_n := d(q_n, \partial C_{t_0}), t_1 < t_2 < \cdots < t_n < t_{n+1} < \cdots < t_0$$

 $(3) \quad \gamma_n(0) = \gamma_n(2i(q_n)) = q_n, \gamma_n([0, 2i(q_n)]) \subset \partial C_{t_0-t_n}.$

For the sake of convenience, we extend the domain of γ_n as $\gamma_n: (-\infty)$, ∞) $\rightarrow M$. We fix *n* and $\tilde{t} > t_0$. Then by [2; Th. 1.10 pp 420], the function $\psi: (-\infty, \infty) \to R$ defined by $\psi(u): = d(\gamma_n(u), \partial C_i)$ is concave, i.e. for $\alpha \ge 0$ 0, $\beta \geq 0$, $\alpha + \beta = 1$, it holds $\psi(\alpha u_1 + \beta u_2) \geq \alpha \psi(u_1) + \beta \psi(u_2)$. Since ψ is bounded, $\psi \equiv \text{constant}$, say, l > 0. Let $c_i : [0, l] \to M$ be a minimal geodesic from $\gamma_n(0)$ to ∂C_i , then $\langle \dot{\gamma}_n(0), \dot{c}_i(0) \rangle = \pi/2$ where $\langle v, w \rangle$ denotes the angle between the vectors v and w. For if $\not \leq (\dot{\gamma}_n(0), \dot{c}_i(0)) < \dot{c}_i(0)$ $\pi/2$, we can find $\tilde{u} > 0$ such that $d(\gamma_n(\tilde{u}), \partial C_{\tilde{t}}) < d(\gamma_n(0), \partial C_{\tilde{t}})$. That is $l = \psi(\widetilde{u}) \leq d(\gamma_n(\widetilde{u}), \partial C_{\widetilde{u}}) < d(\gamma_n(0), \partial C_{\widetilde{u}}) = l$. This is a contradiction. Let X be the vector field along $c_{\tilde{i}}$ obtained by the parallel translation of We define a differentiable mapping V: $[0, l] \times [0, \varepsilon] \rightarrow M$ by $V(s, \varepsilon)$ $\dot{\gamma}_n(0).$ u): = $\exp_{e_{t}(s)} uX(s)$ where ε is a positive number. Set $V_u(s)$: = V(s,u). Then, by the convexity of $C_{\tilde{\iota}}$, $V_u(l) \in int C_{\tilde{\iota}}$ for $u \in [0, \varepsilon]$, see [1: Lemma 1.7 pp 419]. On the other hand, by the comparison theorem of Berger, if we put ε_0 : = min { $\pi/(2\sqrt{\lambda})$, ε }, then $L(V_u) \leq L(V_0) = l$ for all $u \in [0, \varepsilon_0]$ and equality holding for some $u_0 \in (0, \varepsilon_0]$ if and only if $V | [0, l] \times [0, u_0]$ is a flat totally geodesic surface of M, see [1, Th. 1 pp 701]. Since we have seen $\psi \equiv l$ and $V_u(l) \in \operatorname{int} C_{\tilde{\iota}}$, we get $l \leq L(V_u) \leq L(V_0) = l$ for all $u \in U(V_0)$ $[0, \varepsilon_0]$. So $V | [0, l] \times [0, \varepsilon_0]$ defines a flat totally geodesic surface of M. Without confusion, V: $[0, l] \times [0, \varepsilon_0] \rightarrow M$ denotes the restriction $V | [0, l] \times [0, \varepsilon_0]$ $[0, \varepsilon_0]$. We extend the surface V: $[0, l] \times [0, \varepsilon_0] \rightarrow M$ as V: $[0, l] \times [0, 2\varepsilon_0] \rightarrow M$ $M \text{ defining } V(s, u) := \exp_{V_{\varepsilon_0(s)}} u V_*(\partial/\partial u)_{|s,\varepsilon_0} \text{ for } u \in [\varepsilon_0, 2\varepsilon_0]. \text{ Then we can}$ also see that V: $[0, l] \times [0, 2\varepsilon_0] \rightarrow M$ is a flat totally geodesic surface of

INJECTIVE RADIUS

M because $V | [0, l] \times [\varepsilon_0, 2\varepsilon_0]$ satisfies the same condition for $V: [0, l] \times [0, \varepsilon_0] \to M$. We extend $V: [0, l] \times [0, 2\varepsilon_0] \to M$ as $V: [0, l] \times [0, 3\varepsilon_0] \to M$ defining $V(s, u): = \exp_{V_{2\varepsilon_0}(s)} u V_*(\partial/\partial u)_{|s,2\varepsilon_0}$ for $u \in [2\varepsilon_0, 3\varepsilon_0]$. $V: [0, l] \times [0, 3\varepsilon_0] \to M$ is also a flat totally geodesic surface of M. Continuing this method, finally we get an immersed flat totally geodesic surface $V: [0, l] \times (-\infty, \infty) \to M$ which is given by $V(s, u): = \exp_{\varepsilon_t^-(s)} uX(s)$. Set $Y(u): = V_*(\partial/\partial s)_{|_0,u}$. Then Y is a parallel vector field along γ_n .

ASSERTION 1. $Y(0) = Y(2i(q_n))$.

PROOF. We assume $Y(0) \neq Y(2i(q_n))$ and derive a contradiction. Set $C_{q_n} := \{v \in T_{q_n}(M) : \exp_{q_n} u(v/||v||) \in C_{t_0-t_n} \text{ for some } u > 0\} \cup \{0\}, \ T_{q_n} :=$ $\langle v \in T_{q_n}(M) : \langle v, \dot{\gamma}_n(0) \rangle = 0$ and $||v|| = 1 \rangle$ and $C^*_{q_n} := T_{q_n} \cap C_{q_n}$. C_{q_n} is called the tangent cone of $C_{t_0-t_n}$ at q_n , see [2]. Since dim $C_{t_0-t_n}=$ 3, T_{q_n} is isometric to the unit circle $S^1 = [0, 2\pi]$ and $C^*_{q_n}$ is the minor subarc of length $\alpha \in (0, \pi]$ by the convexity of $C_{t_0-t_n}$. Let $\varphi: [0, 2\pi](=S^1) \to T_{q_n}$ be the isometry such that $\varphi([0, \alpha]) = \overline{C}_{q_n}^*$ where closure is taken in T_{q_n} . Since $V_{2mi(q_n)}$ is a minimal geodesic from q_n to $\partial C_{\tilde{t}}$, we can easily see that $Y(2mi(q_n)) \in \varphi([\alpha + \pi/2, 2\pi - \pi/2])$ for $m = 0, 1, 2, \cdots$. Let Y(0) = $\varphi(\beta)$ for $\beta \in [\alpha + \pi/2, 2\pi - \pi/2]$. Then, by the assumption, without loss of generality, we can assume that $Y(2i(q_n)) = \varphi(\beta + \omega)$, where $\beta + \omega$ $\langle 2\pi - \pi/2 \text{ and } \omega > 0.$ And it follows from the linearlity of the parallel displacement that $Y(2mi(q_n)) = \varphi(\beta + m\omega)$ and $\beta + m\omega < 2\pi - \pi/2$, because $\omega < \pi$ and $Y(2mi(q_n))$ is the parallel translation of $Y(2(m-1)i(q_n))$ along γ_n for $m = 1, 2, 3, \cdots$. But this is impossible. q.e.d.

From this assertion, we see the image of surface V is isometric to $[0, l] \times S^{1}(i(q_{n})/\pi)$ where $S^{1}(r)$ denotes a circle of radius r. Let $\{\tilde{t}_{k}\}$ be a sequence such that $\tilde{t}_{k} \uparrow \infty$ and $\tilde{t}_{1} > t_{0}$. For each \tilde{t}_{k} , let $c_{\tilde{t}_{k}}:[0, l_{k}] \to M$ be a minimal geodesic from $\gamma_{n}(0)$ to $\partial C_{\tilde{t}_{k}}$ where $l_{k} = d(\gamma_{n}(0), \partial C_{\tilde{t}_{k}})$. Since $\tilde{t} > t_{0}$ is any number, we can apply the above argument for each \tilde{t}_{k} and we have a flat totally geodesic surface of M whose image is isometric to $[0, l_{k}] \times S^{1}(i(q_{n})/\pi)$. We can choose subsequence $\{\tilde{t}_{k_{j}}\}$ of $\{\tilde{t}_{k}\}$ such that $\dot{c}_{\tilde{t}_{k_{j}}}(0) \to \dot{c}_{n}(0), \dot{c}_{n}(0) \in T_{q_{n}}(M)$. Let P_{n} be the vector field along γ_{n} obtained by the parallel translation of $\dot{c}_{n}(0)$. Then by the construction, we can easily see that the surface given by the map $V_{n}: [0, \infty) \times (-\infty, \infty) \to M$ defined by $V_{n}(s, u): = \exp_{\gamma_{n}(u)}sP_{n}(u)$ is an immersed flat totally surface of M and its image is isometric to $[0, \infty) \times S^{1}(i(q_{n})/\pi)$. We denote the image of this surface by F_{n} . Now by the compactness of $C_{t_{0}}$, we can choose a subsequence $\{n_{j}\}$ of $\{n\}$ such that $\dot{\gamma}_{n_{j}}(0) \to \dot{\gamma}_{\infty}(0)$ and $\dot{c}_{n_{j}}(0) \to \dot{c}_{\infty}(0)$ where $\dot{\gamma}_{\infty}(0)$ and $\dot{c}_{\infty}(0) \in T_{q_{\infty}}(M)$, $q_{\infty}: = \lim_{j\to\infty} q_{n_{j}} \in M$. Then the vector field P_{∞} along the closed geodesic $\gamma_{\infty}(t): = \exp t\dot{\gamma}_{\infty}(0)$ obtained by the parallel

M. MAEDA

translation of $\dot{c}_{\infty}(0)$ satisfies $P_{\infty}(0) = P_{\infty}(2i(q_{\infty}))$ from the construction. And the surface given by the map $V_{\infty}: [0, \infty) \times (-\infty, \infty) \to M$ such that $V_{\infty}(s, u): = \exp_{\gamma_{\infty}(u)} sP_{\infty}(u)$ is an immersed flat totally geodesic surface of Mwhose image is isometric to $[0, \infty) \times S^{1}(i(q_{\infty})/\pi)$. We also denote the image of this surface by F_{∞} . Hereafter, for the convenience, the sequence $\{m\}$ denotes the sequence $\{n_{i}\}$.

ASSERTION 2. $F_m \cap F_{\infty} = \emptyset$ for all m.

PROOF. We assume that there exists m_0 such that $F_{m_0} \cap F_{\infty} \neq \emptyset$ and derive a contradiction. Let ∂F_m and ∂F_∞ denote the image of the closed geodesic γ_m and γ_{∞} respectively. And let int $F_m := F_m - \partial F_m$, int $F_{\infty} :=$ $F_{\infty} - \partial F_{\infty}$. We can consider two cases $\operatorname{int} F_{m_0} \cap \operatorname{int} F_{\infty} \neq \emptyset$ or $\partial F_m \cap \operatorname{int} F_{\infty} \neq \emptyset$ because $\partial F_{\infty} \subset \partial C_{t_0-t_{\infty}}$ and $F_{m_0} \cap C_{t_0-t_{\infty}} = \emptyset$ where $t_{\infty} := d(q_{\infty}, \partial C_{t_0})$. Suppose there exists a point $q \in \operatorname{int} F_{m_0} \cap \operatorname{int} F_{\infty}$. Since dim M = 3 and dim $F_{m_0} =$ dim $F_{\infty}=2$, there exists a vector $v \in T_q(F_{m_0}) \cap T_q(F_{\infty})$ such that ||v||=1. Let $c: (-\infty, \infty) \rightarrow M$ be the geodesic defined by $c(t): = \exp tv$. Then there exists a subarc of the geodesic c which is a geodesic in F_{m_0} and F_{∞} because F_{m_0} and F_{∞} are totally geodesic surface of M. We assert that $c((-\infty, \infty)) \cap$ $\partial F_{m_0} \neq \emptyset$. For, if $c((-\infty, \infty)) \cap \partial F_{m_0} = \emptyset$, then as is easily seen, c is a closed geodesic in F_{m_0} and F_{∞} , since F_{m_0} and F_{∞} are isometric to the half cylinder $[0,\infty) imes S^{\scriptscriptstyle 1}(i(q_{m_0})/\pi)$ and $[0,\infty) imes S^{\scriptscriptstyle 1}(i(q_\infty)/\pi)$ respectively. The fundamental period of a closed geodesic in F_{m_0} and F_{∞} are $2i(q_{m_0})$ and $2i(q_{\infty})$ respectively. So above fact means $2i(q_{m_0}) = 2i(q_{\infty})$. This is a contradiction. So the assumption int $F_{m_0} \cap$ int $F_{\infty} \neq \emptyset$ derives $\partial F_{m_0} \cap$ $\text{int } F_{\infty} \neq \oslash. \quad \text{Next we suppose } \partial F_{m_0} \cap \text{int } F_{\infty} \neq \oslash. \quad \text{For each } u \in [0, \, 2i(q_{m_0})],$ let $c_u: [0, \infty) \to M$ be the geodesic defined by $c_u(s): = \exp_{\tau_{m_0}(u)}(-s)P_{m_0}(u)$. Then for each $u \in [0, 2i(q_{m_0})]$, we will show $c_u([0, \infty)) \cap \operatorname{int} C_{t_0-t_{m_0}} = \emptyset$. For, if some $u_0 \in [0, 2i(q_{m_0})]$ and $s_0 \in (0, \infty)$, $c_{u_0}(s_0) \in \operatorname{int} C_{t_0-t_{m_0}}$, then by the total convexity of $C_{t_0-t_{m_0}}$, $c_{u_0}((0, s_0]) \subset \operatorname{int} C_{t_0-t_{m_0}}$. We define a differentiable mapping $V: [0, 2i(q_{m_0})] \times [0, \beta] \rightarrow M$ by $V(u, s): = c_u(s)$. We put $V_s(u): =$ V(u, s). Then by the comparison theorem of Berger, there exists an $\varepsilon_0 > 0$ depending on λ such that for all $0 \leq s \leq \varepsilon_0$, $L(V_s) \leq L(V_0)$, see [1: Th. 1 pp 701]. By the assumption $V_{s_0}(u_0)(=c_{u_0}(s_0)) \in \text{int } C_{t_0-t_{m_0}}$ and by the choice of t_{m_0} , for all $s, 0 < s \leq s_0$, we get $i(V_s(u_0)) > i(V_0(u_0))$. Namely, for all $0 < s \le \min \{\varepsilon_0, s_0\}$, $i(V_s(u_0)) > i(V_0(u_0)) = (1/2)L(V_0) \ge (1/2)L(V_s)$. Then by using the same technique which is used by W. Klingenberg to get the estimation of the injective radius of a certain compact Riemannian manifold, see [3: Th. pp 227], we can easily get a contradiction. For a point $\gamma_{m_0}(u^*) \in \partial F_{m_0} \cap \text{int } F_{\infty}$, there exists uniquely $\widetilde{u} \in [0, 2i(q_{\infty}(0))]$ and \widetilde{s} such that $\gamma_{m_0}(u^*) = \exp_{\gamma_{\infty}(\widetilde{u})} \widetilde{s} P_{\infty}(\widetilde{u})$. From the construction of F_{∞} , the

410

INJECTIVE RADIUS

geodesic $\alpha: [0, \infty) \to M$ defined by $\alpha(s): = \exp_{\gamma_{\infty}(\tilde{u})} sP(\tilde{u})$ is a shortest connection from $\gamma_{\infty}(\tilde{u})$ to ∂C_t for each $t \geq t_0$. And above fact shows that $\dot{\alpha}(\tilde{s}) \neq P_{m_0}(u^*)$ because $c_{u^*}([0, \infty)) \cap \operatorname{int} C_{t_0-t_{m_0}} = \emptyset$ and $\gamma_{\infty}(\tilde{u}) \in \operatorname{int} C_{t_0-t_{m_0}}$. The geodesic $\beta: [0, \infty) \to M$ defined by $\beta(s): = \exp_{\gamma_m(u^*)} sP_m(u^*)$ is also a minimal geodesic from $\gamma_m(u^*)$ to ∂C_t for each $t \geq t_0$. In particular $\alpha \mid [0, \tilde{s} + t_m]$ (resp. $\beta \mid [0, t_m]$) is a minimal connection from $\gamma_{\infty}(\tilde{u})$ (resp. $\gamma_m(u^*)$) to ∂C_{t_0} where $t_m = d(q_m, \partial C_{t_0})$. So, from the triangle inequality of distance, we can easily see $\dot{\alpha}(\tilde{s}) = \dot{\beta}(0) = P_m(u^*)$ and we get a contradiction. q.e.d.

Now, since $F_m \to F_\infty$ as $m \to \infty$, we can easily find numbers m^* and s^* such that, for each minimal geodesic from a point of the set $\{s^*\} imes$ $S^{1}(i(q_{\infty})/\pi) \subset F_{\infty}$ to $F_{m^{*}}$, its end point lies in int $F_{m^{*}}$. We consider that $\{s^*\} \times S^1(i(q_{\infty})/\pi)$ is the image of the closed geodesic $\gamma_{\infty}: (-\infty, \infty) \to M$. F_{m^*} can be considered locally as a boundary of some convex set because F_{m^*} is a totally geodesic surface of *M*. And by the proof of Th. 1.10 [2: pp 420], the function $\varphi: (-\infty, \infty) \to R$ defined by $\varphi(s): = d(\gamma_{\infty}(s), F_{m})$ is concave. So φ must be constant a > 0, because φ is bounded. Let $c: [0, a] \to M$ be a minimal geodesic from $\gamma_{\infty}(0)$ to F_{m^*} . Then $\dot{c}(0) \perp F_{m^*}$ and $\dot{c}(0) \perp \dot{\gamma}_{\infty}(0)$. Let Z be the vector field along γ_{∞} obtained by the parallel translation of $\dot{c}(0)$. Then, by the same argument just we have used to prove the fact $Y(0) = Y(2i(q_n))$, we can easily see $Z(0) = Z(2i(q_{\infty}))$ and the differentiable mapping $\tau: [0, a] \times [0, 2i(q_{\infty})]$ defined by $\tau(u, s): =$ $\exp_{T_{m}(s)} uZ(s)$ gives a flat totally geodesic surface of M which is isometric to $[0, a] \times S^1(i(q_{\infty})/\pi)$. Therefore we get $L(\tau_0) = L(\tau_a)$ where $\tau_u(s)$: $\tau(u, s)$. On the other hand τ_0 and τ_a are closed geodesics in F_{∞} and F_{m^*} respectively. So $L(\tau_0) > L(\tau_a)$. This is a contradiction. q.e.d.

REMARK. For dim $M = n \ge 4$, this Theorem is not valid. Because M. Berger gave an example that on S^3 , there exists a Riemannian metric g_0 such that $0 < K_{\sigma} \le \lambda$ satisfying $i(q_0) < \pi/\sqrt{\lambda}$ for some point $q_0 \in S^3$. Hence, for a simply connected non-compact Riemannian manifold M: = $(S^3, g_0) \times E^1$ which satisfies $0 \le K_{\sigma} \le \lambda$, there exists a point $q \in M$ such that $i(q) < \pi/\sqrt{\lambda}$. So it might be significant to assume that M is homeomorphic to E^n for the proof of our assertion in the case $n \ge 4$.

References

- M. BERGER, An extention of Rauch's metric comparison theorem and some applications, Ill. J. of Math. 6 (1962), 700-712.
- [2] J. CHEEGER AND D. GROMOLL, On the structure of complete manifolds of nonnegative curvature, Ann, of Math. 96 (1970), 413-443.
- [3] D. GROMOLL, W. KLINGENBERG AND W. MEYER, Riemannshe Geometrie im Grossen,

Springer-Verlag, 1968.

- [4] M. MAEDA, On the injective radius of noncompact Riemannian manifolds, Proc. Japan Acad. 50 (1974), 148-151.
- [5] V. TOPONOGOV, Theorems on shortest arcs in noncompact Riemannian spaces of positive curvature, Soviet Math. Dokl. 11 (1970), 412-414.

DEPARTMENT OF MATHEMATICS Tokyo Institute of Technology