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INFINITE TENSOR PRODUCTS IN FOURIER ALGEBRAS

SADAHIRO SAEKI

(Received April 25, 1974)

This paper is a continuation of the author's article [8], and the main
purpose is to improve Theorem 4 in [8]. The reader is required to read
[8] before proceeding to the present one.

Let G be a locally compact abelian group with dual G. For a se-
quence (E3)T of (non-empty) compact subsets of G, we write E = ΐlf=iE3.
We say that ΣΓ=i E* converges if ΣΓ=i χs converges for every x = (Xj)? e E.
If this is the case, we define

ΎJl v i 77T J x i .^ . / - , \oo f~. Ύp I

±}j =
 2LΛ &'3 = 1 2ij %3 \Xj)ί ^ •" ( *

Any set E obtained in this way is called a multi-symmetric set. We
also define a map pE: E —*E by setting

Notice that if ΣΓ E3 is a convergent series of compact sets then so is
Σ ? Ej for every natural number ne N, and that to each neighborhood
V of Oe G there corresponds an Ne N such that

In fact, suppose this is false for some compact neighborhood V. Then
for each p e N there exists an arbitrarily large Mpe N such that

(1) xjP e E3(j ^ MP) and Σ Xj* $ V
5=Mp

for some choice of (xjP). Suppose that such an Mp and a sequence (xjp)
have been chosen for some pe N. Since V is compact, there is an NP e
N9 with Np > Mp, such that

( 2 ) Σ a?ypί ^ (w^JVp).

Then we choose Afp+1 > Np so that (1) with p replaced by p + 1 is satisfied
for some sequence (Xj(P+1)). If we set x3- = x3P for Mp ^ j < Mp+1, p =
1, 2, , then (2) and our choice of Mp show that the series Σ i ŷ does
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not converge, which contradicts the convergence of Σ i Es
Thus we conclude that for any convergent series ΣJΈJ of compact

sets the map pE is continuous and therefore E = pE(E) is compact.

THEOREM 1. Let (Fj)? be a sequence of non-empty finite subsets of
the real line R. Then every locally compact abelian I-group G contains
a convergent series E = ΣΓ ES of compact subsets satisfying the follow-
ing three conditions:

(a) the map pE induces an isometric isomorphism PE of the restric-
tion algebra A(E) onto the S-tensor product AE = ®Γ A(Ej) by PEf =
f°pE. Moreover, A(Ej) is isometrically isomorphic to A{Fό) for each
i = l , 2 , . j . .

(b) E is an S-set.
(c) E is a Dirichlet set, that is,

liminf | |χ — 1\\C(E) = 0 .

To prove this, we need two lemmas.

LEMMA 1.1. Let G be a locally compact abelian I-group, and FCLR

and EodG finite sets. Then every neighborhood V of OG contains a
finite set E such that Gp(E) Π Gp(E0) = {OG} and A(E) = A(F) algebraically
and ίsomorphically.

PROOF. Since F is finite, there exists a rationally independent finite
set {vlf , vM} in R such that

FdGp({vlf

Take a finite set F c. ZM so that

F =

Let V be an arbitrary neighborhood of OG. Since G is an I-group and
Eo is a finite subset thereof, we can find a finite set {xίf •••, xM] in G,
which is independent (over the ring Z of integers), so that

E = | Σ n&s ne F\ czV

and Gp(E) n Gp(E0) = {OG}.
Define a map p: Gp({Xj}?) —• Gp{{vό}ι) by setting

= Σ nάv5 (n e ZM) .

Then p is an onto isomorphism and p(E) = F. Therefore it is easy to
prove that
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which completes the proof.

LEMMA 1.2. Let E be a finite set in a locally compact abelian group
G, and ε > 0. Then there exists a compact neighborhood V of OG such
that:

( i ) The sets x + V, xeE, are disjoint.
(ii) For each Ύ e Gd, Gd being the group G with the discrete topology,

let fr e A(E + V) be defined by

fr(x + v) = Ύ(X) (xeE,ve V) .

Then | | / | U + 7 ) < l + ε.

PROOF. Let η > 0 be given. Since E is finite, there exists a finite
subset Γ of G such that {χU:χeΓ} is ^-dense in {Ύ\E:7e Gd}dC(E).

Take a compact neighborhood W of OG so that

(1) x9 y e E and x Φ y => (x + W) n (y + W) = 0 ,

(2) χ e Γ

Next choose a g e A(G) so that

( 3 ) ||0lL«?><2

(4) g = 1 on some compact neighborhood V of OG .

Then F c ^ a n d (i) holds.
Let 7 e Gd be given. By the choice of Γ, there exists a χ = χr e Γ

such that 17 — χ | < rj on £/. We can write

Λ = Σ (̂«)ff. = Σ {y(χ) - χ{χ)}9«
xe E xe E

+ Σ,{χ(χ)-χ}g. + x on E + v,
E

where gx(y) = (̂̂ / — »). It follows that

IIΛIU+F) ^ Σ \y(χ) - χ(χ)\ I I Λ I U ,

+ Σ llίχ(*) — χ}ff-IUt« + i
xe E

^ 2 3 7 C a r d # + Σ \\χ{<&) ~ X\\M,+W) llff.lUm + 1
xe E

^ 2(57 + Mη) Card £7 + 1 ,
where M is an absolute constant (cf. Lemma 1 in [8]). Therefore (ii)
holds if Ύ] > 0 is sufficiently small.

PROOF OF THEOREM 1. Let G be any locally compact abelian group,
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and H a closed subgroup thereof. As is well-known, H is an S-set (see
Theorem 2.7.5 in [4]), and if a closed subset E of H is an S-set (or a
Dirichlet set) in JHΓ, then so is E in G. Moreover, the restriction algebra
of A(G) to H is isometrically isomorphic to the Fourier algebra A(H)
on H (Theorems 2.7.2 and 2.7.4 in [4]), and every /-group contains a
metrizable closed /-group (Theorem 2.5.5 in [4]). Consequently, to prove
Theorem 1, we may and will assume that G is a metric /-group with
translation-invariant metric d.

Let (Kn)T be an increasing sequence of compact subsets of G such
that every compact subset of G is contained in some Kn. We shall now
inductively construct a sequence (VJΓ of compact neighborhoods of OG,
a sequence (En)? of finite subsets of G, and a sequence (χn)T of charac-
ters in G which satisfy the following conditions:

(1) A(En) = A(Fn) algebraically and isometrically .

(2) χneG\Kn and \χn - 1 | < n'1 on E, + + En + Vn+1 .

( 3 ) OGeEn and En + Vn+1 cintV n .

(4) The sets x + VH+1, xeE,+ + EnJ are disjoint .

(5) ll/?IU(^+...+^+Fn+1) < 1 + n-1 (ΎeGd) ,

where /* is defined by

/ fo + + xn + Fw+1)

For n = 1, we first take any compact neighborhood VΊ of OG with
i < 1/2. By Lemma 1.1, intF x contains a finite set Eγ which con-

tains OG and satisfies (1) for n = 1. Since £Ί is finite, there is a χLe
G \ ^ such that |χ, - 1| < 1 on E,.

Let neN, and suppose that Vk9 Ek, and χfc have been chosen for all
k < n so that

^" 1 o n Σ i E k f a n d J ^ .
1

Then we can take a compact neighborhood Wn of OG so that

(2)' Iz.-IK^"1 on ±Ek +Wn,
1

(3) ' En+WnczVn.

By Lemma 1.2, TΓn contains a compact neighborhood FM+1 of Oo which
satisfies (4) and (5). Clearly (2) and (3) hold. We can also demand that

(6) diam Vn+ι < 2r%-1 .
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By Lemma 1.1, intV"w+1 contains a finite set En+1 with OGeEn+1 which
satisfies (1) with n replaced by n + 1 and

( 7 ) Gp(E, U U En) n Gp(En+ί) = {OG} .

Finally choose a χn+1 e G\Kn+1 so that

\χn+1- l\<(n+ I)"1 on Σ # *
1

This completes the induction.
By (3) and (6), E = ΣΓ ES converges. We now want to prove that

E has the required properties. Notice that (3) assures that

(8) Σ J ^ c i n t V . (n= 1, 2, ••.).
j=n

PROOF OF (a). We must prove that PE is an isometric (onto) iso-
morphism.

Let Me N and 7l9 , 7M e G be given. Define / e A(Σf Es + VM+1)
by setting

(9) f(x1 + + xM + VM i) = I

which is well-defined by (4) and (7). Then we claim that

(9.1) \\f\\AiΣ*Ej+vM+1) < 1 + M~ι , and

(9.2) PEf = 7X ® T2 ® ® ΎM .

Indeed, GpiE.U U-E*) is the direct sum of GpiEJ, , Gp(EM) by (7).
Therefore

M

X(Vi + + VM) — Π ΎjiVj) V(yj e Gp(E5))ι

is a character of Gp(E1 U U EM), and therefore it can be extended to
a character of Gd. But then / = /f, and so (5) yields (9.1). Also, for
every x = (xj)T e E = ΠΓ Ejf we have by (8) and (9)

which establishes (9.2).
We now prove that the function / defined by (9) also satisfies

(9.3)
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In fact, take any natural number N > M, and put Ύs = 1 for all j with
M< j ^N. If we define g e A(E, + + EN + VN+1) by the right-hand
side of (9) with M replaced by N, then / = g on the domain of g, and so

ll/IUϊ) ^ I M U Σ ^ + P W < 1 + N~ι

by (9.1). Since N may be arbitrarily large, this establishes ||/|U<£> ^ 1
and hence (9.3).

Notice now that the absolute convex hull of elements of the form

?! ® 7, ® . ® 7* (?i e G, Me N)

is dense in the unit ball of the Banach algebra AE (see the proof of
Theorem 3 in [8]). It follows from (9.2), (9.3), and Lemma 3 in [8] that
PE is an isometric isomorphism. This establishes part (a).

PROOF OF (b). For each MeN, we define a homomorphism LM f rom

Aφ) into A(Σ?Ej + VM+1) by setting

(10) (Ljr/X&i + + xM + VM+1) = fix, + + xM)

for / e A(E) and xs e Eh 1 g j ^ M. Notice then

(10.1) \\LMf\\A{ΣMEj+VM+i) <ί (1 + M - ^ I / I U ,

for all / 6 A(β). In fact, since E is compact, it suffices to prove this
for / = 7 | Ϊ with 7 6 G (cf. Lemma 2 in [8]). But then (10.1) is a special
case of (9.1). We now claim

(10.2) lim 111*7 - Ύ\\A(Σ*[EJ+VM+I) = 0 (ΎeG).

To see this, fix any ΎeG. By (6) and the definition of LMJ we have

(10.3) lim 111*7 - 7 1 1 * ^ . + ^ , - 0 .

On the other hand, (10.1) yields

(10.4) | |(I*7) |L - | | I*(7 )|U ^ 1 + Mr" (n = 0, ± 1 , ±2, -..) .

Thus (10.2) follows from (10.3), (10.4), and Lemma 1 in [8].
Notice now that (8) implies

(11) EdΣ.E,+ intVM+1 ( A Γ = l f 2 f • . . ) ,
3=1

and so PM(E) c A(Σf E5 + VM+ι)'. To complete the proof of (b), take
any SePM(E). Then, the definition of LM shows

supp (LiS) c Σ f i i d
3=1
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Since each Eά is a finite set, this implies that LiS is a finitely supported
measure in M(E) for each M = 1, 2, - . . Also, we have

(M= 1,2, .

by (10.1); and (10.2) and (11) assure that for all 7 6 G

KLISytr-1) - SiΎ-1) I = |<τ, L*S> - <7,
= \<LM7-7,S)\

^ \\LMΎ - 7 | U Σ f * . + ^ + l ) | | S | U = o(l) .

It follows from Lemma 2 in [8] that the sequence (LMS)T of measures in
M(E) converges to S in the weak-* topology of PM{G). Since this is
true for every SePM(E), we conclude E is an S-set (actually a strong
S-set).

PROOF OF (C) follows from (2) and (11).

REMARKS, (a) If F is a compact Dirichlet set in G, then we have

(c)' limsup IS(χ)| - \\S\\PM (Se PM(F)) .

To see this, take any Se PM(F). Let ε > 0, 76 G and a compact subset
ίt of G be given. Since ί7 is a Dirichlet set, there exists a χ = χe 6
G\7"^ such that |χ - 1| < e on F. But then |τχ - 7| = |χ - 1| < ε on
some compact neighborhood V of F by the continuity of χ. Thus
II7Z — ̂ IU(F) ^ Me by Lemma 1 in [8], where M is an absolute constant.
Since Se PM(F) c A(V)', it follows that

|S(7) - S(yχ)\ ^ \S(y)\ - Mε\\S\\PM .

Since 7 6 G and ε > 0 are arbitrary, this shows

svφ{\§(a)\:ae6\έ] = sup{ |S(7) | : 7 6 G} = \\S\\PM ,

which establishes (c)\
(b) In Theorem 1, we can replace R by any torsion-free group.
(c) The technique in the proof of Theorem 1 can be used to improve

Example 4 in [8] as follows. Let (E^T be a sequence of finite subset
of RN, N being a fixed natural number. Then there exists a sequence
(tj)T of positive real numbers which satisfies the following conditions,
(i) The series K = ΣΓ tόEό converges; (ii) A{K) is isometrically isomorphic
to AE = ®Γ A{Eβ)) (iii) K is an S-set and a Dirichlet set.

THEOREM 2 (cf. Theorem 4 in [8]). Every locally compact I-group
G contains a multi-symmetric set K = ΣΓ Kί9 each K5 being a compact
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perfect Kronecker set in G, which satisfies the following conditions:
( i ) The natural map Pκ: A(K) —* S(K) = ®Γ C(Kό) induced by pκ:

K= ΠΓ JBΓ,- —»- K is an isometric isomorphism.
(ii) K is an S-set and a Dirichlet set.

PROOF. Without loss of generality, we may assume that G has a
translation-invariant metric d compatible with its topology. Then Theorem
1 and its proof show that there exists a countable subset {rjk: j , ke N}
of G which is independent over Z and has the following properties:

(1) d(0, rjk) < 2-j~k (j, k = 1, 2, . . .) .

(2) E = Σ Ejk satisfies the conclusions of Theorem 1 .
jk

Here ESk = {0, rjk} for all j and k.

Put E = ΐ[jk Eik, Ej = Σik Eik, E' = Πi Ej, and define a map

jk

in the natural way. Then, by part (a) of Theorem 1, the natural map
Q induced by q is an isometric isomorphism of A(E) onto

AE, = ® A(Ej) = ®[® A(Ejk)] = ® A(Ejk) .
1 j k jk

(Notice that pE is a homeomorphism from E onto E since P^ is an iso-
morphism.)

We now claim that each Es contains a perfect Kronecker set. In
fact, since {rjk}k is independent over Z, E3 has the following property:
for any natural number n, any xl9 , xne Ejf and any ε > 0, there
exist distinct yl9 •••, yneEj such that d(xh y^ < ε for all I and {yι}ι is
independent over Z. This property assures that E3 contains a perfect
Kronecker set (cf. 5.2.3 and 5.2.4 in [4]).

We now choose and fix a perfect Kronecker set K3 in Eά for each
j = 1,2, •••, and first prove that K^ x x KN is an S-set for the
algebra (•)* A(Eό). In fact, every Kronecker set is an £-set (see [11],
[5], and [7]). Since A(GN) is the JV-fold protective tensor product of
A(G), it follows that K\ x x KN is an S-set in GN (see Theorem
1.5.1 in [12] and Theorem 2.2 in [6]). Since

algebraically and isometrically, this assures that Kγ x x KN is an
S-set for the algebra ®f A(Ed).
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Next we prove that K = J[T K3 is an S-set for the algebra AE>. To
do this, choose and fix any point y = (y^Γ e K, and define a sequence of
homomorphisms

Jκ:Ax.-+®A{Ei)<zAt.
1

by setting

\y NJ ) \ *Ίi 9 •"N/ — J K^ίf 9 ^Nf UN + 19 &N+2t )

for / G AE, and xά e Eh 1 ^ j ^ N = 1, 2, - . Then we have

(3) Km \\JNf-f 11^ = 0 ( / e 4 , )

(cf. [8: p. 283]). If / e A^ vanishes on K, then each J^/ vanishes on
K\ x ••• x KN. Since each JB -̂X ••• x iΓ^ is an S-set, it follows that

JNf e cl ] g G ® A ί ^ ): supp g Γ\{Kxx x ίΓ )̂ = 0

c cl \h e ® A(^ )# supp hnK= 0 i

for all ΛΓ, which combined with (3) implies that i£ is an S-set for AE>.
Finally ^ - ΣΓ ϋΓ, = q(K) is an S-set for A(E) since Q: A(.E) -> AE.

is an isomorphism. Therefore K is an S-set for A(G) since so is ^ by
part (b) of Theorem 1. That K is a Dirichlet set follows from part (c)
of Theorem 1. Also we have

with natural identification, which completes the proof.

It is an interesting problem to find an explicit example of a multi-
symmetric set E = XΓ EJ for which we have A(E) = ®Γ A{Eό) algebraically
and topologically. If G is an infinite product of compact groups, then
this is very easy (Theorem 3 in [8]). Since every non-discrete non I-
group contains such a group as a closed subgroup, it is reasonable to
consider the problem only for /-groups. However, to obtain an explicit
example of a set of a certain type, we much know the group under
consideration. Consequently we will consider the above problem only for
G = the group of α-adic integers and for G = RN. Of course, then the
problem will turn out trivial for any groups which contain, as a closed
subgroup, one of the following groups: an infinite product of non-trivial
compact groups; the group of α-adic integers for some a; RN or TN for
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some natural number N.
Let a = (α0, alf a2, •••) be a sequence of positive integers ^ 2 , and

A(a) the compact group of the α-adic integers (cf. [1: (10.2)]). Topologically
we will identity A(a) with the product space of all {0, 1, , an — 1},
n = 0, 1, 2, . Let un be the element of A(a) whose n-th coordinate
is one and other coordinates are all zero. Thus we have

/}/ n Λ, n n . . . n nι (to 1 O . . . \ *

and each element x e Δ(a) can be uniquely written in the form

ίi=0

where xn e {0, 1, , an — 1} for all n = 0, 1, 2, . We also set

a{l, m) = ataι+1 α m (I < m) .

T H E O R E M 3. Let a be as above, and let (nί9 n2, •••) and (ku k2f • ••)
be two sequences of natural numbers such that

nά < nj+1 and kό < an. (j = 1, 2, •) .

If
oo

/ * \ ^ jfe ./d(γι • Ύl 1 ) <C oo

then A(E) is topologically isomorphic to AE = ®Γ A{E3), where

Ej = {τunj: τ = 0, 1, , k5] and E = Σ,Eά .

PROOF. For each m, put

Am = A(a, m) = {(xn)~ e A(a): xn = 0 for all n < m] ,

which is an open-and-compact subgroup of A{a). Thus, if I < m, the
coset Uι + Λm has order α ^ + 1 am_x = a(ϊ, m — 1) as an element of the
quotient group A(a)jAm. Notice that the subgroup of T = {z: \z\ = 1} con-
sisting of p elements is %-dense in T, where Ύ]p = 11 — exp (πi/p) \ =
2 sin (π/2p). It follows that for each pair I < m of non-negative integers
and each character Ύ of ^ί(α), there exists a character χ e Δi such that

( 1 ) IVM - χ(ut) I < π/a{lf m - 1) ,

where J i denotes the annihilator of Δm in z/(α). Obviously (1) implies

( 2 ) |7(τw,) - χ(ru,)| ^ rτr/α(ϊ, m - 1) (r = 0, 1, 2, .) .

If the sets E5 are defined as in the theorem, then E = Σ Γ ^ con-
verges, and
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(3) έ # y C 4 . » (fc=l,2, . . . ) •

Notice that (*) implies

(4) Σ πti ~ N + l)kj/a(njf nj+ι - 1) -> 0 as 2SΓ— oo .

We apply the arguments in [8: pp. 294-295] with Γ3 = d£3.+1 and εs —
πkj/a(njf nj+1 — 1), and infer from (2), (3) and (4) that A(ΣN ES) is to-
pologically isomorphic to ®% A(Ej) for all sufficiently large N. Since
each Ej is a finite set and the natural map pE associated with (E/)ΐ is
injective, it follows that A(E) is topologically isomorphic to AE. This
completes the proof.

We now prove an analog of Theorem 3 for G = Z. For each natural
number j e N, let As be a semi-simple commutative Banach algebra with
spectrum E5. We identify As with a subalgebra of C0(Ej) in the usual
way, and assume that As contains an idempotent ξ5 of norm one. If
fu '' •> fn a r e functions in Al9 , AN, we define a function

on the set

Eo = U Et x x Ek x ξΐU(L) x . . .

by setting

fix) = JΠ /i(»i)lί Π fi(a?i)} (a? = («y)Γ e £Ό) .

We denote by S = S(Alf A2, •••) the algebra of all functions / on EQ

which have expansions of the form

where ff) e Ay, iVfc G iV, and

For feS, the norm \\f\\8 of / is defined to be the infimum of the
numbers M taken over all expansions of / of the above form. We call
S with norm \\ \\8 the S-tensor product of Alf A2, relative to ξu ζi9

• •• (or, relative to 0lf 02, if each ζjι(ΐ) is a singleton {0̂ }). Therefore
S is a semi-simple commutative Banach algebra. Notice that if $3 = 1
for all j 9 then S is the algebra ®T A3 defined in [8].
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T H E O R E M 4. Let (alf a2, •••) and (ku k2, •••) be two sequences of
natural numbers such that

( * ) kj < aά Vj and Σ άkslas < °o .

Lei αiso i£0 δe £/&e subset of Z consisting of all elements of the form

τx + τ2ax + + T^α^ an_λ + ,

where τά e {0, 1, , kά) for all j and τά = 0 for all but except finitely
many j . Then A(E0) is topologically isomorphic to the S-tensor product
S of

relative to 0, 0, .

PROOF. Let a— (alf a2, •••)> and let A(a) be the compact group of
the α-adic integers. Put

E3 = {τuf. r = 0, 1, , kd) (j = 1, 2, . . .) ,

E=f[Ej=ΣΛEj = E(Z A(a) .
3=1 3=1

Then the natural homomorphism P^ of A(E) into AE = ®Γ A ί ^ ) is norm-
decreasing by Lemma 3 in [8], and is actually an (onto) isomorphism by
Theorem 3 and (*).

For each Ne N, we define a norm-decreasing homomorphism JN: AE—>
®f Aί-E'i) c A^ by setting

(1) (JNf)(x) = f(xu , *N, 0, 0, •) (xeE).

Notice that if we regard JN as an operator on A(E) then JN has norm

^ HPϊMI* and that

(2) lim ||Λ/-/11^ = 0 (f e A(E)) .
N

(See [8: p. 283].)
Put

E0=\JE1x . . . x ^ x {0} x {0} x
Λ Γ 1

which is a dense subset of E. Let 5(£O) be the restriction algebra of
B(Ad) to Eo. Here J d denotes the group A{a) with the discrete topology,
and B(Ad) denotes the Banach algebra of Fourier-Stieltjes transforms of

measures on Ad = the Bohr compactification of A(a). Let also MF(E0) be
the space of finitely supported measures on Eo. Then μ e MF(E0) implies
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\\μ\\PM = sup{ |/ϊ(7) | :7ei&)} = fmj>{\μ(X)\:χe?d} ,

since μ is continuous on Δd and A(a) is dense in Ad. The space B(E0)
may be identified with the conjugate space of MF(E0): f e B(E0) if and
only if

f ^ l [ < o o .

Since Eo is dense in JE7 and A(E) c Cί^), we can and will identify
A(E) with its restriction to JBΌ- Then the embedding A(E)aB(E0) is
a norm-decreasing homomorphism. We claim that A(E) is indeed closed

in B(E0). To see this, take any f e A(E). Then there exists a XeM{Ad)
such that X = f on Eo and \\X\\M = ||/|U(*0> Since Eo is countable there
exists a sequence (/Λ)Γ in A{Δ{άj) such that ||/.|Uu(«,) ^ l |λ |U for all n
and / w —• λ on £Ό pointwise. Then we have

(\\ T f \ \ <C \\ T f '— T f \\ 4 - 1 1 7 * f 11
\U*JNJ \\A(E) = W^NJ "NJ n\\A(E) r 11 ^NJn \ \A(E)

for all iV, n = 1, 2, . Notice that the range of JN is finite-dimensional
and JNfn converges to JNf pointwise by (1), for each N = 1, 2, .
Thus (3) yields

(ΛΓ= 1, 2, . . . ) ,

and hence

(4 ) | | / IU(, 0 )^ | | /IU, )^ | |P/H ||/IU(,0)
by (2). Since (4) holds for every f e A(E), we conclude that A(E) is
closed in B(E0).

We now prove that the S-tensor product SE of the A(Eό) relative
to 0, 0, can be naturally identified with A(E0)—the restriction algebra
of A{Ad) to Eo. To do this, we introduce two maps

for each N:

(KNf)(x) = f(xlf , χN, 0, 0, •) (xe Ey x . . x Jg?̂ ) ,

LNf = / ® ξN+ι ® ξN+2 ® .

It follows from the definition of SE that KN is norm-decreasing, that LN

is an isometry, and that the sequence (LNo KN)? converges to the identity
operator on SE in the strong operator topology. Take now any / e SE.
Then, by the first inequality in (4), we have
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(5) \\KNf\\mEQ) <, \\KNf\\ME) ^ \\PΫ\\ \\KNf\\AE <, \\Pγ\V\\f\\SE

for all N. Here we regard ®f A{Eό) aAE = A{E) in the usual way.
Since KNf-+f pointwise on Eo, (5) assures

(6) feB(E0) and | | / | U o ) ^ HPϊMHI/IU, .

To prove the converse inequality, choose a sequence (/n)Γ in A(E) so
that HΛIU )̂ <; ||/|U(*o> a n d fn~+f pointwise on EQ. Then we have

\\LNJNfn\\SE=\\JNfn\\AE^\\fn\\AE

But it is clear that JNfn —• KNf pointwise on E as n —• c>o for each fixed
N. Since ®f AC^ ) is a finite-dimensional linear space, this implies

\\JNfn-KNf\\AE^0 as ™-oo (ΛΓ=1,2, •-.) .

Therefore we have

\\LNKNf\\SE = lim \\LNJNfn\\sE ^ \\f\UQ) (N= 1, 2, . . .) .

Since L^ίΓ^ converges to the identity operator, we have
and hence

(7) | | / I U ^ | | / I U ( , 0 ) ^ | | P / H \\f\\sE (feSE).
Now it is easy to see that all the functions on Eo with finite support
are contained in (̂.EΌ) Π SE and are dense in both A(EQ) and SE. Therefore
(7) assures A(E0) = SE.

Finally, there exists a unique group isomorphism φ: Z—> Gp(E0)(zJd

such that 0(1) = î> and we have φ(E0) = Eo. The adjoint map φ* induces
an isometric isomorphism Φ: B(E0)—»B(E0) which maps A(E0) onto A(E0).
The composite of the maps

A(E0) - ^ A(E0) - ^ SE

is therefore a norm-decreasing topological isomorphism. Since A({0, 1,
...f kj}) = A(Ej) algebraically and isometrically for all j , this completes
the proof.

REMARK. The above proof shows that B(E0) contains a closed sub-
algebra which is topologically isomorphic to AE.

We now fix a natural number N. For each j = 1, 2, , let {vkj}k=ι
be an orthogonal basis in RN, and Eό a finite set such that

{0} £ Ej c Gp({vιj9 •• , ^ }).

We put
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Si = sup{||*||:α6JB'y}, r, = inf {|K, ||: 1 ^ k ^ N} ,

and assume that

(UTMS) Σ (Ri+JrjY < - .
i=i

Under these conditions, we call E = ΣΓ E5 a UTMS set (ultra thin multi-
symmetric set).

The following theorem is a generalization of the Meyer-Schneider
theorem (cf. [3], [10], and [2: Chapter XIV]).

THEOREM 5. Let E = XΓ Eά be a UTMS set in RN, and define a
map PE-E = ΐl?Ej-+E as usual. Assume that pE is one-to-one. Then
we have:

(a) The map PE: A(E) —^AE — ®Γ A(Eό) induced by pE is a topological
isomorphism.

(b) E is an S-set.
(c) E is a set of uniqueness, i.e., PF(E) = {0}.

To prove this, we need several lemmas. Although the first two of
these lemmas are well-known, we give a complete proof to make the
paper self-contained.

For 7 = (7fc)f and x = (xk)? e RN, write

7(x) = er(x) = e^x = exp [i^x, + • + ΎNxN)] .

If u is a unit vector in RN and φ e Cι(RN), we define

which is the derivative of φ in the direction of u. We also write St =
{xeRN:\\x\\ ^1} for I > 0.

LEMMA 5.1. (Bernstein's inequality). // PePM(Si), then we have

\\DtP\\c[RN)^lk\\P\\PM {k=l,2, •••)

for every unit vector u in RN.

PROOF. Let fx be the 4£-periodic odd function on -R1 defined by

t (0^0

Then we have

(1) /«(«

I
W (21-t
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( 2 )

To prove (1), we identify [—21, 21) with T in the usual way and compute
the Fourier coefficients of /,(ί - I) + I. (2) follows from \\ft \\mR) = ft(l) = I.

Let now PePM(St) be given. Since

we have P e C°°(RN) and

( 3) (Dk

uP)(Ύ) = <(-iux)*e-^e, Pβ> (7 e iT; fc = 1, 2, . . •)

for any unit vector u in RN. Notice that \ux\ ^ ||cc|| by Schwarz' ine-
quality, and so

(4) fι(ux) = ux (xe St) .

Since Sz is an S-set [4: Theorem 7.5.4], we have by (2), (3), and (4)

This completes the proof.

LEMMA 5.2. (Schneider's inequality [10]). Let Pe Pikf(S0,1 > 0, and
η > 0 be given. Let also K be any η-dense subset of RN. Then we have

γeK

PROOF. We first prove this assuming Pe PF(St)f i.e., PeC0(RN).
Then there exists a ΎoeRN such that

Without loss of generality, we may assure P(70) ^ 0. Choose any ΊxeK
so that 11 To — ̂ ίW^V' Let u be the unit vector in the direction of
Ti —To. Thus

T1 = τo + ίw, where t = H^ - τ o | | ^ V

By the Taylor formula, we then have

Re P(τx) = Re P(T0 + tu)

= Re[p(τ0) + t(DuP)(Ύ0) + | (

+ 0 + Be(

for some T' G /ί^. It follows from Bernstein's inequality that
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γeK

^ (1 - 2-HΨ)\\P\\Pi[ ̂  (1 - 2-W)\\P\\PM .

Let now PePM(Sι) be arbitrary. Given e > 0, take any probability
measure με e M(S$) Π PF(Sε). Then we have

P*μsePM(Sι+ε) and

It follows from the first case that
ε = Pfiε e C0(RN).

Since limε με(Ύ) = 1 V7 e iί^, this yields the desired inequality.

LEMMA 5.3. Let {vk}? be an orthogonal basis in RN and E any
subset of Gp({vk}ι). Then the set

E1 = {7 e RN: eirx = 1 VxeE}

is η-dense in RN, where η = τr(Σf IbfelΓT2-

PROOF. It suffices to note that E1 contains

GpiM?)1 = {Σnk2π\\vk\Γvk:nezή .

LEMMA 5.4. Let E be a finite set in RN, and 0 < I < oo. Suppose
that E1 is η-dense in RN for some 0 < η < 21/2/l. Then

sup
PM

holds for every finite subset {Qx: x e E) of PM(St). Here δx is the unit
mass at x.

PROOF. Let {Qx: xeE}a PM(St) and β e RN be given. Then we have

( 1 )

Let
in J

PM

sup

xeE

J be the sum of all e~iβxQx, xeE. Since EL + β is 97-dense
it follows from Schneider's inequality that

sup
λeE-L

β)
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or, equivalently, that the last term in (1) is larger than or equal to

ί i _ ML\ sup Σ 4(7)β-^ .

Since βe RN is arbitrary, this gives the desired inequality.

LEMMA 5.5. Let a = (2πN)~1

f and let

h = Σ Rk and η5 = TΓ(Σ \\vki\\'2Y%

k=j+i \k=i /

To prove Theorem 5, we can assume the following:

( i ) n > 4πNh and (1 + a)lόηά < 1 (j = 1, 2, . . . ) .
(ii) The sets Σ? »i + «̂r%, a?i e ^ (1 ^ i ^ ^), are disjoint for each

n = 1, 2, . . . .

PROOF. We first prove that (i) implies (ii). Fix any ne N, and take
two distinct points ΣΓ#; and Σ?2/i of Σ* ̂ / If 1 = & = ^ ^
number such that xk Φ yk, then we have

ι ! i l

But (i) assures that rό — 2lό > rj+1 — 2i i+1 for all j , and so

i - Σ »J ^
i l l

Moreover, we have

(rn - 2ln) - 2arn = (1 - 2ά)rn - 2ln

> {1 - 2a - {2πN)~1}rn > 0

by (i) and the definition of a. Thus (i) implies (ii).
Take now any real a so large that

(1) a > AπN and (1 + a)πN1/2/a < 1 .

By (UTMS), there exists a natural number j0 such that r3- > (a +
for all j > j 0 . Since R3 ^ rjf it follows that j > j0 implies

( 2 ) aR3+1 +

• > a

aRj+1 + aRj+2 + r i+2

Notice now that η3- ^ πNV2lrό. It follows from (1) and (2) that j > jQ

implies

(1 + a)lflj < (1 + a)a-WrπNυ2lr5 < 1 .
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In other words, (i) is the case for every j > j 0 .
Let now tl9 -—,tJQ be any real positive numbers. Put E] = Eά if

j > j 0 , E] = tjEd if j ^ j Q , and let {r'3)T, (% )Γ and (ΪJ )Γ be the numerical
sequences corresponding to {E])?. We choose successively tJQ, , t2, t1 so
that the above three sequences satisfy (i).

Then both E = Σ Γ Es a n d & = Σ Γ #y are disjoint unions of the
same number of translates of ̂ j>j0Ej. Therefore it is trivial that if E'
has the required properties in Theorem 5, then so does E. This completes
the proof.

LEMMA 5.6. Suppose that the UTMS set E satisfies condition (i)
in Lemma 5.5. Let {QXl...Xn', Xj £ Eh 1 ̂  j ^ n) be a finite subset of
PM(SarJ, n being a natural number. Then we have

{ I Σ Q^.-J?) exp ( - i Σ 'Tsxj ) | : T, τy e i?sup

n λβrβ Cn = Π.rι{l-(VihY}.
PROOF. Write

sn = arn; sn_, = sn + Rn = arn + Rn;

sλ = s2 + R2 = arn + .#„ + + R2.

Let Ti, - - ,7ne RN be fixed. In the expression

000= Σ j Σ ^...
j

the functions of 7 in the brackets are Fourier transforms of pseudo-
measures in PM(SSJ. Since Ei is ^-dense in RN by Lemma 5.3, and
since r]nsn ^ πNV2a < 21/2, it follows from Lemma 5.4 that

sup I φ(Ί) I <̂  An1 sup

UBEΛ•j**] v Λn^^n

= -Â 1 sup
r

where AΛ = 1 — (ηn8n)
2/2. Notice that

supp

Σ (Q.1..... δ..Γ() ( Σ
xnsEn ) \ 3=1

exp(-

for all α?y e Ejfl ^ j < n. Therefore an inductive argument applies, and

we have
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sup
r

3 = 1

^ (An A2A,) 1 sup

^ 2C~1sup

r...,*Kn* *sx)
A(y)

Σ
Since Ύlf -—tΎneRN are arbitrary, this yields the required inequality.

PROOF OF THEOREM 5. We will assume the two additional conditions
(i) and (ii) given in Lemma 5.5. Notice that then

Co = 2 lim C-1 = 2 Π {1 - 0?A ) 2 Γ < - ,
n 3=1

since ηo lά ^ (πNi/2/rj)-(Rj+1 + lj+1) ^ 2πNRj+1/Tj and so ΣΓθ?A) 2 < ^ by
condition (UTMS). Notice also that (i) implies

Σ
j=n+l

To prove part (a), take any neN and any n vectors Ύl9 « , τ Λ in

RN. We define a function / = / Γ l . . . r n e A(Σ?-^i + SβΓn) by setting
/ in.

(1) Σ *J + Sarn) = exp (i Σ ΊPi)

which is well-defined by (ii).
We then claim that

Co , and(1.1) Wfrv-rJlAi

(1.2) PAfri-J = eri® -• ®ern.

In fact, (1.2) is trivial. To prove (1.1), take any
SarJ = PM(ΣZ E,' + Sarn) (notice that Σ * Eό + s«rn is a finite disjoint
union of translates of the S-set SarJ. Write

Q = Σ Q.Γ..χ f t*δS l +...+β Λ

with QXl...Xn e PM(Sarn). Then we have

Therefore, by Lemma 5.6, we have

, Q)\ ^ Co\\Q\\PM
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This, combined with the Hahn-Banach Theorem, yields (1.1).
It is now easy to see that PE is a topological isomorphism of A(E)

onto AE and satisfies

\\PEf\\ΛE ^ ll/IUi) S C0\\PEf\\AE VfeA(E) .

(cf. the proof of part (a) of Theorem 1).
To prove part (b), fix a natural number n, and define an algebra

homomorphism

by setting

(2) (LJ){± x, + SU) - f(±

We then claim that

(2.1) \\Lnf\\A{Σ»Ej+Sarn) ^ Coll/IU) VfeA(E) .

In fact, it suffices to prove this for f = er with 7 6 RN. But then / =
frv~rn> where Ί1 = = Ύn = Ύ. Thus (2.1) is a special case of (1.1).

We next prove

(2.2) \\Lner - er\\A{znEi+8lJ ^ MC0\\Ύ\\ h

for every 7 e RN, where M is an absolute constant. Fix 7 e RN, and set
I = ln. We have by (2.1)

\\(Lner)
k\\A{ΣnE.+Sι) = \\Lnekr\\A{ΣnEj+Sι)

^C0\\ekr\UE) = Co (k = 0, ± 1 , ± 2 , . . . ) •

On the other hand, (2) shows

I arg l(Lner)er] | ^ | | 7 | | 4 on Σ?#i + S% .

Thus (2.2) follows from Lemma 1 in [8].
Notice now Σ»+i EJ C «̂» a n d s o

PM(E)dA(±Ej + SιJ .

Given any Q G PM{E), we prove

(2.3) LίQ G ilf(Σ ^ ) c Λf(^) , and

(2.4) KlίQΓCr) - Q(7)| ^ MC 0 | | 7 |μ j |Q |U V T G F .

The definition (2) of Ln shows supp LtQ is contained in the finite set
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Σ r # ; , and hence (2.3). If 7eRN, we have by (2.2)

Γ(τ) - Q(7)| = \(Lne-r - e_r, Q)\

which establishes (2.4).
We infer from (2.1), (2.3), and (2.4) that M(E) is weak-* dense in

PM(E) and E is therefore an S-set.
To prove part (c), let / be the characteristic function of the unit

ball Sx divided by its volume (hence \\f\\, = /(0) - 1). Set fn(x) =
{arv)~Nf{arv)~1x) for n — 1, 2, , so that each fn is supported by Sar%

and has Fourier transform fn{Ί) = f(arnΊ), 7 e RN. We can choose a
positive real number Bo so that 7eJ?^ and | |7 | | ^ JB0 imply \f(a7)\ <
(2Q-1. Notice then

(3) | |7 | | ^ βo/rw => |ΛθO| < (2Q-1 (Λ = 1, 2, . . .) .

Given n ^ 1, μ e M(Σϊ Eό), and 70 e Λ^, we now prove

(3.1) \\μ\\PM £ Cosxφ{\μer)\:ΎeR«, | |7 - 70 | | ^ 50/rJ .

First notice that supp (/Λ*μ) c ΣΓ •#/ + $»». Regarding L 1 ^ ) as a
subspace of PM(RN) in the usual way, we have for every g e A(E)

<9,L*n(fn*μ))= (Lng,fn*μ)

= \ (Lng)(x) (fn*μ)(x)dx

where the sum Σ is taken over all Xj e Ehl ^ j ^ n. This shows
Lt(fn*μ) = μ. It follows from (2.1) and (3) that

Ilj"ll«r = \\LZU\*μ)\\PM ̂  Col l/^IU
= Cosup|Λ(7)/5(7)|

r

^ C,max{sup{|/i(7)|: | | 7 | | ^ BJrn), \\μ\\PMl{2C,)}

and so

Replacing μ by e_roμ, we thus have (3.1).
Take now any Q e PM(E). By (2.3) and (2.4), we have L*Q e M(Σ? By)
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and

(3.2) \(L:Qny)\^\Q(Ύ)\ + MC0\\Ύ\\ln\\Q\\PM (7e R»)

for all % Ξ> 1. We apply (3.1) to μ = L*Q and have

(3.3) C?\\L*Q\\PK ̂  Bup{|(2/ίQΓ(7)|: ΎeR", | |7 - 70 | | ^ βo/rM}

for every w ^ 1 and JoZR". It follows from (3.2) and (3.3) that

(3.4) C?\\L*Q\\PM =S βup{|$(7)|:7e Λ* | |7 - 70 | | <Ξ £0/rM}

Since 70e RN is arbitrary, we can replace it by any vector 7, with | |7H | | =
2B0/rn for each n. Then (3.4) yields

Co-11| LIQ\\PK ίk sup {| Q(7) 1: 7 e R",\\ 71| ^ 50/rB}

which shows

since LtQ—>Q in the weak-* topology of PM(E), rn—»0 and Ijrn-+O as
% — > oo.

This completes the proof of part (c) and Theorem 5 was established.

We now give four examples of "explicit" non S-sets in certain groups,
although the first two of them are essentially contained in [8].

EXAMPLES OF NON S-SETS. Let U be the union of the two open
intervals (0, π2/6 — 1) and (1, π2/6). Then the following sets, denoted by
the same notation Ea, are non S-sets.

(1) Let G be the product group of any non-trivial compact abelian
groups Gn, n = 1, 2, . Choose and fix a non-zero element xn e Gn for
each n ;> 1. Put

Ea = {(εΛ)Γ e G: en e {0, 1} Vn , and Σ n-%^^ =

for ae U.

(2) Let G = T or R, and p ^ 3 any natural number. Define

Ea = J Σ Wn εn e {0, 1} Vn , and Σ n-%n_xe2n = a\
\n=l n=l )

for ae U.
(3) Let G = RN, and (xn)T any sequence of non-zero vectors such

that ΣΓ (IK+i| |/IML)2 < 1/2. For each ae U, put
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{0,1} Vn , and Σn'^^e^ = a\ .

( 4 ) Let a= (aOf alf •••) be any sequence of natural numbers ^ 2 ,
G = Δ(a) the group of the α-adic integers, and u0, ulf u2, the elements
of Δ(a) defined as before. Choose any increasing sequence (%)Γ of natural
numbers so that Σ Γ j/d(njf nj+1 — 1) < oo, where α(m, n) = αmαm + 1 an

for m < n. Put

Σ esunj: ε, e {0, 1} vj , and Σ 3~%ό-^ = a\
3=l ° j=l )

for ae U.
The proof that these sets are non S-sets mainly follows from Remark

(a) in [8: p. 288]. We omit the details.

REMARKS, (a) The set E given in Theorem 3 is an S-set. The proof
is similar to that of part (a) of Theorem 1, although we need a more
subtle argument.

(b) We can use Bernstein's and Schneider's inequalities to improve
the estimate of rj(d) given in Lemma 1 of [8]. Let 0 < d < 2τ/Ί2', and
A(d) the restriction algebra of A(T) to [—d, d]. Then we have

η(d) = \\eia* - 1 | U ^ |α|d/(l - 8"^) Vae R .

In fact, fix any a > 0. If PePM([-d, d]), then

= \\ixeitm

f P.}dt = - [aP\-t)dt .
Jo Jo

It follows from Bernstein's and Schneider's inequalities that

I < έ«* - 1, Px)\ ^ α | |P ' |U> ^ ad\\P\\c{R)

This, combined with the Hahn-Banach Theorem, yields the desired ine-
quality.

(c) Most of the results in this paper is part of the author's lecture
notes [9].
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