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INFINITE TENSOR PRODUCTS IN FOURIER ALGEBRAS

SADAHIRO SAEKI
(Received April 25, 1974)

This paper is a continuation of the author’s article [8], and the main
purpose is to improve Theorem 4 in [8]. The reader is required to read
[8] before proceeding to the present one.

Let G be a locally compact abelian group with dual G. For a se-
quence (E,)7 of (non-empty) compact subsets of G, we write E = [[, E;.
We say that >3, E; converges if >, x; converges for every z = (x;)7 € E.
If this is the case, we define

E’:jngj: {gx,.:(xj)reE}.

Any set E obtained in this way is called a multi-symmetric set. We
also define a map p;: £ — E by setting

pile) = Ba; @=(@)eh).

Notice that if >, F;is a convergent series of compact sets then so is
S E; for every natural number ne N, and that to each neighborhood
V of 0e G there corresponds an Ne€ N such that

nz N=ECV.

In fact, suppose this is false for some compact neighborhood V. Then
for each pe€ N there exists an arbitrarily large M, e N such that

(1) v, E(j =M, and 3 a,¢V

i=Mp
for some choice of (x;,). Suppose that such an M, and a sequence (z;,)
have been chosen for some pe N. Since V is compact, there is an N, ¢
N, with N, > M,, such that

(2) S eeV (n=N,).

.1=Mp
Then we choose M,,, > N, so that (1) with p replaced by » + 1 is satisfied

for some sequence (%;,.y). If we set x; = x;, for M, < 7 < M,,,, p =
1,2 ..., then (2) and our choice of M, show that the series >}; x; does
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not converge, which contradicts the convergence of >; E,.
Thus we conclude that for any convergent series >); E;, of compact
sets the map p; is continuous and therefore E = py(E) is compact.

THEOREM 1. Let (F;)? be a sequence of non-empty finite subsets of
the real line R. Then every locally compact abelian I-group G contains

a convergent series E = 3¢ E; of compact subsets satisfying the follow-
ing three conditions:

(a) the map Dg induces an isometric isomorphism Pz of the restric-
tion algebra A(E) onto the S-temsor product Ap= @7 A(E;) by Ppf =
S opz. Moreover, A(E;) is isometrically isomorphic to A(F;) for each
j=1,2 ..

(b) E: 18 an S-set.

(¢) E is a Dirichlet set, that is,

lim inf || — lloc = 0 -
G 3 y—oo

To prove this, we need two lemmas.

LEMMA 1.1. Let G be a locally compact abelian I-group, and FFC R
and E,C G finite sets. Then every mneighborhood V of O, contains a
finite set E such that Gp(E)N Gp(E,) = {Og} and A(E) = A(F) algebraically
and isomorphically.

PROOF. Since F is finite, there exists a rationally independent finite
set {v,, -+, vy} in R such that

FcGp({vy, «++, vy} -
Take a finite set F' < Z¥ so that

F = {ZIT‘, NVt N = (n,-){"eﬁ’} .

Let V be an arbitrary neighborhood of O,. Since G is an I-group and
E, is a finite subset thereof, we can find a finite set {z, .-, 2y} in G,
which is independent (over the ring Z of integers), so that

E = {injx,-:neﬁ}CV

and Gp(E) N Gp(E,) = {Og}.
Define a map »: Go({z;}}f) — Gp({v;}¥) by setting

M M
p(E 'njx,-) = nw; (neZ¥).

Then p is an onto isomorphism and p(E) = F. Therefore it is easy to
prove that
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Nfeopllaw = [ fllam  (f € AF)) ,

which completes the proof.

LEMMA 1.2. Let E be a finite set in a locally compact abelian group
G, and € > 0. Then there exists a compact meighborhood V of O, such

that:
(i) The sets x +V,xe E, are disjoint.
(ii) For each 7€ @d, G, being the group G with the discrete topology,
let f,e A(E + V) be defined by

frlx+v)=7@k) (xeKE veV).
Then || f [lazsr <14+ €.

ProoF. Let 7 >0 be given. Since E is finite, there exists a finite
subset I" of G such that {y|;: x€ '} is 7-dense in {7|;: 7€ G,}C C(E).
Take a compact neighborhood W of O, so that

(1) z,yeF and s *y=@+ W)Ny+W)=©,
(2) xel =diam [y(W)] < 7.

Next choose a g€ A(G) so that

(3) 19llsc <2, supp gC W, and

(4) g = 1 on some compact neighborhood V of O, .

Then VC w, and (i) holds.
Let 7€ G, be given. By the choice of I", there exists a y = y,el”

such that |Y — x| <7 on E. We can write
fr= 3 @)g. = 3, {7(2) — x(2)}g.
+ 3 {@) - 1. +x on E+V,
where ¢,(y) = g(y — z). It follows that
1 llapsr = 2517(@) — 2@ - 19|l
+ 3 1@ — 1. lluw + 1
< 27Card E + 3112 — 2lluceim 19:llucor + 1
<20+ Mp)Card £ + 1,

where M is an absolute constant (cf. Lemma 1 in [8]). Therefore (ii)
holds if » > 0 is sufficiently small.

PROOF OF THEOREM 1. Let G be any locally compact abelian group,
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and H a closed subgroup thereof. As is well-known, H is an S-set (see
Theorem 2.7.5 in [4]), and if a closed subset £ of H is an S-set (or a
Dirichlet set) in H, then so is E in G. Moreover, the restriction algebra
of A(G) to H is isometrically isomorphic to the Fourier algebra A(H)
on H (Theorems 2.7.2 and 2.7.4 in [4]), and every I-group contains a
metrizable closed I-group (Theorem 2.5.5 in [4]). Consequently, to prove
Theorem 1, we may and will assume that G is a metric I-group with
translation-invariant metric d.

Let (K,) be an increasing sequence of compact subsets of G such
that every compact subset of G is contained in some K,. We shall now
inductively construct a sequence (V,)? of compact neighborhoods of Og,
a sequence (E,)? of finite subsets of G, and a sequence (¥,);7 of charac-
ters in G which satisfy the following conditions:

(1) A(E,) = A(F,) algebraically and isometrically .

(2)  7.¢G\K, and |y, —1l/<n'on E,+ -+ + B, + Vi, .
(3) O,cE, and E,+V,,CintV,.

(4) The sets x +V,,,, x€ E, + --- + E,, are disjoint .
(5) 17 laesooimpirgn <1+ 07 (YeGa),

where f7 is defined by
fre + oo+, + Vo) =7 + -+ +x,) VizieE)!.

For n = 1, we first take any compact neighborhood V, of O, with
diamV, < 1/2. By Lemma 1.1, intV, contains a finite set E, which con-
tains O, and satisfies (1) for » = 1. Since E, is finite, there is a yx, €
G\K, such that |y, — 1| <1 on E..

Let n e N, and suppose that V,, E,, and y, have been chosen for all
k < n so that

4o — 1| <n™ on S E,, and E,CintV,.
Then we can take a compact neighborhood W, of O, so that
(2y %=1 <n™ on 3B +W,,

(3)y E, +W,CV,.

By Lemma 1.2, W, contains a compact neighborhood V,., of O, which
satisfies (4) and (5). Clearly (2) and (8) hold. We can also demand that

(6) diam V,., < 27" .
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By Lemma 1.1, intV,,, contains a finite set E,,, with Ose E,,, which
satisfies (1) with » replaced by » + 1 and

(7) Gp(E, U --- UE,) N Gp(E,,,) = {04 .
Finally choose a %, € é\k,,ﬂ so that

e — U <@+ D on SE.

This completes the induction.
_ By (3) and (6), E = 3" E; converges. We now want to prove that
E has the required properties. Notice that (3) assures that

(8) S E;cintV, (n=12 ).

PrOOF OF (a). We must prove that P is an isometric (onto) iso-

morphism. ~
Let Me N and 7, -+, 7, €G be given. Define fe ASY E; + Vi)
by setting

(9) f(x1+ ces Ty +VM—H): ﬁvj(xj) v(x:'eEi)f{:
7=1

which is well-defined by (4) and (7). Then we claim that

9.1) 1 lage4vysp <1+ M, and

9.2) Pof =7, @7, ® - @7y .

Indeed, Go(E,U---UE)) is the direct sum of Gp(E), ---, Go(Ey) by (7).
Therefore

AW+ oo+ ) = [7) V(s e GRENY

is a character of Gp(E,U --- U Ey), and therefore it can be extended to
a character of G;. But then f = f¥, and so (5) yields (9.1). Also, for
every ¢ = (x;)° e E = [ E;, we have by (8) and (9)

(Pof)@) = S (@ + @at oo+ g o)
= flx, + 2+ -+ + @y + Vi)
=11 7@) = (. ® -+ @7)@)

which establishes (9.2).
We now prove that the function f defined by (9) also satisfies

(9.3) W llae = 1.
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In fact, take any natural number N > M, and put 7; = 1 for all j with
M< j<N. If we define g€ A(E, + --- + Ey + Vy,,) by the right-hand
side of (9) with M replaced by N, then f = g on the domain of g, and so

W llae = N19llageiry <1+ N7

by (9.1). Since N may be arbitrarily large, this establishes || f||l.z =1
and hence (9.3).
Notice now that the absolute convex hull of elements of the form

7@%® - @7  (V;€G, MeN)

is dense in the unit ball of the Banach algebra A; (see the proof of
Theorem 3 in [8]). It follows from (9.2), (9.3), and Lemma 3 in [8] that
P, is an isometric isomorphism. This establishes part (a).

~PROOF OF (b). For each Me N, we define a homomorphism L, from
A(E) into ACY E; + V), by setting

(10) (Lyf)w, + -+ +xM+VM+1):f(xl+ coe t Ty)
for fe A(E) and ;€ E;, 1 < j < M. Notice then
(10.1) ||LMf”A(Z”{E,-+VM+1) S @+ ML N

for all fe A(E). In fact, since E is compact, it suffices to prove this
for f = 7|3 with Y€ G (cf. Lemma 2 in [8]). But then (10.1) is a special
case of (9.1). We now claim

(10.2) W [ Lo = Y llas¥zjvisn = 0 (7€ 6) .
To see this, fix any YeG. By (6) and the definition of L,, we have
(10.3) }‘{1_13 || Ly — 7]|0(2”{Ej+VM+1) =0.

On the other hand, (10.1) yields
(10.4)  [[(LuM)*lla = I Lu(™)|la =1+ M (0 =0, £1, £2, --.).

Thus (10.2) follows from (10.3), (10.4), and Lemma 1 in [8].
Notice now that (8) implies

(11) ECS B +intVe, (M=12, ),

and so PM(E:)CA(Z‘,{” E; +Vy,). To complete the proof of (b), take
any Se€ PM(E). Then, the definition of L, shows

supp (L3S) = 3 B, & .
j=1
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Since each E; i§ a finite set, this implies that L}S is a finitely supported
measure in M(E) for each M =1,2, .... Also, we have

“LE;S”PM =1+ MEI)HS“PM (M = 1,2 ...)

by (10.1); and (10.2) and (11) assure that for all Ye G
[(LES)N(r™) — S(r)| = <7, LES) — <7, S|
= [{LyY =7, S|
< || Ly — 7”4(2}1{Ej+VM+1)”S”PM =o(1).

It f~ollows from Lemma 2 in [8] that the sequence (L}S); of measures in
M(E) converges to S ixl the weak-* togology of PM(G). Since this is
true for every Se PM(E), we conclude £ is an S-set (actually a strong
S-set).

Proor or (c) follows from (2) and (11).
REMARKS. (a) If F'is a compact Dirichlet set in G, then we have
(o 1iI§1ﬁ§°up ISG)| = [ISllex  (Se PM(F)) .

To see this, take any Se PM(F). Let ¢ >0,7eG and a compact subset
K of G be given. Since F is a Dirichlet set, there exists a X =X.€
G\v'K such that |y — 1| < ¢ on F. But then |Yy — 7| =|x— 1| <¢ on
some compact neighborhood V of F by the continuity of %. Thus
H7x — 7llawy = Me by Lemma 1 in [8], where M is an absolute constant.
Since Se PM(F')c A(V), it follows that

sup {|S@: ae G\K} = |S()|
> [SM)| — [SO) — SO0 = 18| — Me||S|lp -
Since Y€ G and € > 0 are arbitrary, this shows
sup {|S(@)|: @ e G\K} = sup {|SM|: Y€ G} = [|S||px ,

which establishes (c)'.

(b) In Theorem 1, we can replace R by any torsion-free group.

(¢) The technique in the proof of Theorem 1 can be used to improve
Example 4 in [8] as follows. Let (&;) be a sequence of finite subset
of RY, N being a fixed natural number. Then there exists a sequence
(t;)r of positive real numbers which satisfies the following conditions.
(i) The series K = 3 t;E; converges; (ii) A(K) is isometrically isomorphic
to A, = @ A(E;); (iii) K is an S-set and a Dirichlet set.

THEOREM 2 (cf. Theorem 4 in [~8]). Every locally compact I-group
G contains a multi-symmetric set K = 37 K;, each K; being a compact
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perfect Kronecker set in G, which satisfies the following conditions:
(i) The natural map Pr: A(K)— S(K) = @7 C(K;) induced by pyg:
K=T1I7 Kj-—>I? 18 an isometric isomorphism.
(ii) K is an S-set and a Dirichlet set.

Proor. Without loss of generality, we may assume that G has a
translation-invariant metric d compatible with its topology. Then Theorem
1 and its proof show that there exists a countable subset {r;.: j, ke N}
of G which is independent over Z and has the following properties:

(1) a0, ry) <279°% (4, k=1,2,---).
(2) E = 3 E;, satisfies the conclusions of Theorem 1.
ik

Here E;, = {0, r;.} for~a11 7 and k. .
Put E= 11, Ejr, B; = D E;, B = I1; E;, and define a map

0= B —E=3E,=3F

in the natural way. Then, by part (a) of Theorem 1, the natural map
Q@ induced by ¢ is an isometric isomorphism of A(E) onto

Ay = © AE) = ®[® AE] = © AEy) .

(Notice that p; is a homeomorphism from E onto FE since Py is an iso-
morphism.)

We now claim that each E; contains a perfect Kronecker set. In
fact, since {r;.}, is independent over Z, E, has the following property:
for any natural number =, any =, ---,x,,eE‘,-, and any ¢ >0, there
exist distinct y,, - -, ¥, € E; such that d(x, v,) < ¢ for all I and {y,}, is
independent over Z. This property assures that E; contains a perfect
Kronecker set (cf. 5.2.3 and 5.2.4 in [4]).

We now choose and fix a perfect Kronecker set K, in E; for each
j=12 ..., and first prove that K, X .-- X K, is an S-set for the
algebra @Y A(E;). In fact, every Kronecker set is an S-set (see [11],
[5], and [7]). Since A(G") is the N-fold projective tensor product of
A(G), it follows that K, X ... X K, is an S-set in G" (see Theorem
1.5.1 in [12] and Theorem 2.2 in [6]). Since

© A(E) = AE, x - x Ey)

algebraically and isometrically, this assures that K, X ... x K, is an
S-set for the algebra @ A(E)).
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Next we prove that K = JI7 K; is an S-set for the algebra A;. To
do this, choose and fix any point ¥ = (¥,)F" € K, and define a sequence of
homomorphisms

N ~

by setting

(xS @y =+, 2y) = F @, o+, Twy Ynir, Ynsz *°°)
for fe A, and #;e £;,;1<j<N=12, ---. Then we have
(3) lim [|Jyf = fllay =0 (feAp)

(cf. [8: p. 283]). If f e Ay vanishes on K, then each J,f vanishes on
K, x +-+ X Ky. Since each K, X --- X K, is an S-set, it follows that

N ~
Jof ecl{ge ® A(E): supp g N (K, x -+ x Ky) = @}
cel {heéA(E,-): supph N K = @}

for all N, which combined with (3) implies that K is an S-set for A,.

Finally K = 3¢ K; = q(K) is an S-set for A(E) since Q: A(E)— A,
is an isomorphism. Therefore K is an S-set for A(G) since so is E by
part (b) of Theorem 1. That K is a Dirichlet set follows from part (c)
of Theorem 1. Also we have

A(IZ) = A(E)]E = Aplx
= © A(E)x, = © C(K;) = S(K)

with natural identification, which completes the proof.

It is an interesting problem to find an explicit example of a multi-
symmetric set & = 3 E; for which we have A(F) = @7 A(E,) algebraically
and topologically. If G is an infinite product of compact groups, then
this is very easy (Theorem 3 in [8]). Since every non-discrete non I-
group contains such a group as a closed subgroup, it is reasonable to
consider the problem only for I-groups. However, to obtain an explicit
example of a set of a certain type, we much know the group under
consideration. Consequently we will consider the above problem only for
G = the group of a-adic integers and for G = RY. Of course, then the
problem will turn out trivial for any groups which contain, as a closed
subgroup, one of the following groups: an infinite product of non-trivial
compact groups; the group of a-adic integers for some a; RY or TV for
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some natural number N.

Let a = (a,, @, @, --+) be a sequence of positive integers =2, and
4(a) the compact group of the a-adic integers (cf. [1: (10.2)]). Topologically
we will identity 4(a) with the product space of all {0,1, ---, a, — 1},
n=20,12 .... Let u, be the element of 4(a) whose %-th coordinate
is one and other coordinates are all zero. Thus we have

Up = QpUpy—y = Q1o * =+ QU (n = 1’ 2, b ') ¢

and each element x € 4(a) can be uniquely written in the form
z = (x,)F = f‘, LU, o
n=0

where z,€{0,1, -+--,a, — 1} for all n=0,1,2, ---. We also set
a(l, m) = @014y +*+ An (< m).

THEOREM 3. Let a be as above, and let (n, n,, ---) and (k, ks, --+)
be two sequences of natural numbers such that

n; < Wiy and k; < @, =12 -..).
If
(*) 3, dkslaln;, n — 1) < e,
then A(E) is topologically isomorphic to Az = @7 A(E;), where
Ej={tu,;t=0,1,--+,k} and E= J%E,- .

Proor. For each m, put
4, = d(a, m) = {(z,)y € d(a): xz, =0 for all n < m},

which is an open-and-compact subgroup of 4(a). Thus, if I < m, the
coset u, + 4, has order a,a,,,++* a,_, = a(l, m — 1) as an element of the
quotient group 4(a)/4,.. Notice that the subgroup of T = {2:|z]| = 1} con-
sisting of p elements is 7,-dense in T, where 7, = |1 — exp (7i/p)| =
2sin (7/2p). It follows that for each pair I < m of non-negative integers
and each character 7 of 4(a), there exists a character y e 4; such that

(1) [7(w) — 2(w)| < w/all, m — 1),
where 4 denotes the annihilator of 4, in A/(?z). Obviously (1) implies
(2) |7(tw) — x(cw)| < wfal, m — 1) (¢=0,1,2,---).

If the sets E; are defined as in the theorem, then & = X E; con-
verges, and
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(3) g‘EfCAnk (k=1,2;"’)'
Notice that (*) implies
(4) > 7 — N + Dhsfa(n;, nj, — 1) —0 as N— oo,

J=N

We apply the arguments in [8: pp. 294-295] with [I'; = 4;.,, and ¢&; =
nk;la(n;, iy, — 1), and infer from (2), (3) and (4) that Ay E;) is to-
pologically isomorphic to @®% A(#;) for all sufficiently large N. Since
each E; is a finite set and the natural map p; associated with (E,)? is
injective, it follows that A(E) is topologically isomorphic to A,. This
completes the proof.

We now prove an analog of Theorem 3 for G = Z. For each natural
number j€ N, let A; be a semi-simple commutative Banach algebra with
spectrum E;. We identify A; with a subalgebra of C,(E;) in the usual
way, and assume that A; contains an idempotent &, of norm one. If
fiy -+, fy are functions in A4,, ---, Ay, we define a function

f:f1@"'@f1v©51v+1@"‘

on the set
By=U B x +++ X By x &h(1) X -+
by setting
o = 7@l Ml se)}  @=@rem.

We denote by S = S(A, A,, ---) the algebra of all functions f on E,
which have expansions of the form

F=3Sf@ @O @nu® -,
where f* € A;, N, € N, and
M= 30580 1y, < oo -

For fe€8, the norm || f]||s of f is defined to be the infimum of the
numbers M taken over all expansions of f of the above form. We call
S with norm ||-||s the S-tensor product of A, A4, --- relative to &, &,
.+« (or, relative to 0,, 0,, --- if each &7(1) is a singleton {0,;}). Therefore
S is a semi-simple commutative Banach algebra. Notice that if & =1
for all j, then S is the algebra @ A; defined in [§].
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THEOREM 4. Let (a, s ---) and (k, k, --+) be two sequences of
natural numbers such that

(*) ki< a; Vi and 3 jkifa; < oo
=
Let also E, be the subset of Z consisting of all elements of the form

Tl_{_z-zal-l,- cee +T”ala2...an_1+ e,

where 7;€{0, 1, -+, k;} for all j and ;=0 for all but except finitely
many j. Then A(E,) is topologically isomorphic to the S-tensor product
S of

4;=A(0, 1, ---, ki}) =12 -..)
relative to 0,0, --- .

ProOOF. Let a = (a, @, --+), and let 4(a) be the compact group of
the a-adic integers. Put

Ei:{fui:T:O,1’°";ki} (j=1’29"°)7
E=11E = >E;=Ec4a).
Jj=1 j=1

Then the natural homomorphism P, of A(E) into Ay = @7 A(E;) is norm-
decreasing by Lemma 3 in [8], and is actually an (onto) isomorphism by
Theorem 3 and (*).

For each Ne N, we define a norm-decreasing homomorphism Jy: 4; —
®Y A(E;) C A; by setting

(1) (JNf)(x):f(xn"'1xNy070!"') (er)'
Notice that if we regard J, as an operator on A(E) then J, has norm
< || Pz'||, and that

(2) lim [|Jyf = fllaw = 0 (fe A(E)) .

(See [8: p. 283].)
Put

E0=DE’1>< oo X By x {0} x {0} X .-+,
N=1

which is a dense subset of E. Let B(E, be the restriction algebra of
B(4;) to E,. Here 4, denotes the group 4(a) with the discrete topology,
and B(4,) denotes the Banach algebra of Fourier-Stieltjes transforms of
measures on 21: = the Bohr compactification of Z(\a). Let also M (E;) be
the space of finitely supported measures on E,. Then p¢e M (E,) implies
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Il ££]lma = sUp {| (%) |: 7 € (@)} = sup {| 20 |: x e 43} ,

since /¢ is continuous on ZI: and 2(\a) is dense in ZI: The space B(E)
may be identified with the conjugate space of M (E): f € B(E,) if and
only if

1f sy = sup {| [ S|z e MBD), 1 pellew < 1} < o5

Since E, is dense in E and A(E)cC C(E), we can and will identify
A(E) with its restriction to E,. Then the embedding A(E)cC B(E,) is
a norm-decreasing homomorphism. We claim that A(F) is indeed closed
in B(E,). To see this, take any f e A(E). Then there exists a xeM@)
such that X = f on E, and ||\l = | £]] sy Since E, is countable there
exists a sequence (f,)7 in A(4(a)) such that || f,|liuen = |IN|]x for all n
and f,— X\ on E, pointwise. Then we have

W IxS Namy = [ Ixf — IxSFallam + |y fullae
= ”JN(f - fn)”A(E’) + IIJNH'”f”B(Eo)

for all N,n =1,2, -... Notice that the range of J, is finite-dimensional
and Jyf, converges to Jyf pointwise by (1), for each N=1 2, ---..
Thus (3) yields

xS llaw S NIull- [ fllaep S NP fllsey (N=1,2,--2),

(3)

and hence

(4) “f”B(ED> = S law = || PE| - ”f”B(Eo)

by (2). Since (4) holds for every f e A(E), we conclude that A(E) is
closed in B(E),).

We now prove that the S-tensor product S; of the A(E;) relative
to 0,0, --- can be naturally identified with A(E,)—the restriction algebra
of A(4,) to E,. To do this, we introduce two maps

Ky Ly
Sg— @F A(Ei)—f"SE
for each N:
(KNf)(x):f(xl, tt ey xN; Oy 0, "') (erIX cee X EIV))
LNf = f@SN+1©EN+2© .

It follows from the definition of S; that K, is norm-decreasing, that L,
is an isometry, and that the sequence (L, K,)? converges to the identity
operator on S; in the strong operator topology. Take now any feS..
Then, by the first inequality in (4), we have
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(5) N Exf sy = 1 Eyfllae = 1Pl 1 Enf llag = I PEI-f sy
for all N. Here we regard ®F A(E;)C A = A(E) in the usual way.
Since Kyf — f pointwise on E, (5) assures
(6) feB(E,) and ||fllszy = P51 fllsg -
To prove the converse inequality, choose a sequence (f,)” in A(E) so
that || fullaw < || f |5y and f, — f pointwise on E,. Then we have

I Lydy fallsy = 1 IxSfallag = 11 fallag

= fallaw = N1 fllazy -

But it is clear that J,f,— K,f pointwise on E as n — o for each fixed
N. Since ®F A(F;) is a finite-dimensional linear space, this implies

Tvfn— Exflliy—0 as m—oc0  (N=1,2 --:).
Therefore we have
I LyKyf lls, = m || Loy fullsy < 11 F llazy (N=1,2, +-) .

Since LyKy converges to the identity operator, we have || f||s, =< || f |lzzy>
and hence

(7) 1S llsy = 1 lsmp = 1PE ] 1S lsg (feSp).
Now it is easy to see that all the functions on FE, with finite support
are contained in A(E,) N Sy and are dense in both A(E,) and S;. Therefore
(7) assures A(E,) = S;.

Finally, there exists a unique group isomorphism ¢: Z— Gp(E,) C 4,
such that ¢(1) = u,, and we have ¢(&,) = E,. The adjoint map ¢* induces
an isometric isomorphism @: B(E,) — B(E,) which maps A(E;) onto A(E)).
The composite of the maps

AE) 25 aEy 2L s,

is therefore a norm-decreasing topological isomorphism. Since A({0, 1,
«++, k;}) = A(E;) algebraically and isometrically for all j, this completes
the proof.

REMARK. The above proof shows that B(E)) contains a closed sub-
algebra which is topologically isomorphic to Aj.

We now fix a natural number N. For each j=1,2, -.., let {v,;}i-
be an orthogonal basis in R”, and E; a finite set such that

{0} & E; C Gp({vyjy «++, vyi)}) -
We put



INFINITE TENSOR PRODUCTS 369

R; = sup{||z|l: z € B}, r; = inf {||v;||: 1 < k < N},

and assume that
(UTMS) 3 (Ryfrs) < oo .

Under these conditions, we call £ = 3 E; a UTMS set (ultra thin multi-
symmetric set).

The following theorem is a generalization of the Meyer-Schneider
theorem (cf. [3], [10], and [2: Chapter XIV]).

THEOREM 5. Let E= 37 E; be a UTMS set in RY, and define a
map pp: E = [I7E; — E as usual. Assume that p; is one-to-ome. Then
we have:

() The map Py A(E)— Ay = @7 A(E,) induced by pz is a topological
1somorphism.

(b) E is an S-set.

(¢) E is a set of uniqueness, i.e., PF(E) = {0}.

To prove this, we need several lemmas. Although the first two of
these lemmas are well-known, we give a complete proof to make the
paper self-contained.

For v = (7,)F and = = (x,)Y € R", write

Y(x) = e,(x) = €'® = exp [¢(Vi 2, + -+ + Vyxy)] .

If w is a unit vector in RY and ¢ e C'(RY), we define

(D)) = 35 u;

0¢ N
5, ) (v € RY)

which is the derivative of ¢ in the direction of w. We also write S, =
{xe R ||z|| £} for 1 > 0.
LEMMA 5.1. (Bernstein’s inequality). If Pe PM(S,), then we have
“D:P”C(RN) = lk“P”PM k=12,---)
for every unit vector u in R".
PRrOOF. Let f, be the 4l-periodic odd function on R' defined by
t 0=t
£ = {Zl—t Ez;tgzz).

Then we have

(1) Fi) =13, {(sin %’E) / (ﬁzﬁ)}(— iy exp (i nrt/21) ,
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(2) 1 o = U35 {(sin 25) [ (22 )} = 2.

To prove (1), we identify [—2I, 2]) with T in the usual way and compute
the Fourier coefficients of f,(t — 1)+ 1. (2) follows from || f;|sw = fi(}) = L.
Let now Pe PM(S,)) be given. Since
P(v) = (e, P,) (Te RY),
we have Pe C°(R") and
(3) (DEP)(7) = {(—iux)*e~", P, (YeR“; k=12, ---)

for any unit vector u in R¥. Notice that |ux| < ||z|| by Schwarz’ ine-
quality, and so

(4) Filuz) = ua @esS).
Since S, is an S-set [4: Theorem 7.5.4], we have by (2), (3), and (4)
|(DEP)()| = |<f (uz)ee", P,
= || fl(ux)se™ || pam) * || Pllpx
= {1 llswo} [ Pl = V| Pllpa
This completes the proof.

LEMMA 5.2. (Schneider’s inequality [10]). Let Pe PM(S)),1l > 0, and
N >0 be given. Let also K be any 7-dense subset of R. Then we have

sup | P(7)| = {1 = 27 @)HI Pllew -
PrROOF. We first prove this assuming P e PF(S), i.e., Pe C,(RY).
Then there exists a v,€ RY such that
|| = 1| Pllown, = [ Pllps -

Without loss of generality, we may assure P(7,) =0. Choose any 7,€ K
so that ||7, — 7, ]| £ 7. Let w be the unit vector in the direction of
Y.—%,. Thus

Y. =Y + tu, where t=||7",—N||=Z7%.
By the Taylor formula, we then have
Re P(7,) = Re P(7, + tu)

= Re| P(n) + HD.P)(7) + f(Dm(v')]
2
= || Pllpy + 0 + -';iRe (DLP)(7)

for some 7' € RY. It follows from Bernstein’s inequality that
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sup | P(v)| = | Re P(7)|
= (1= 27¢D)| Pllew = @ — 279V Pllpar -
Let now Pe PM(S)) be arbitrary. Given ¢ > 0, take any probability
measure u, € M(S.) N PF(S.). Then we have
Pxp.e PM(S,,) and Pwp, = Pii, e C(R").
It follows from the first case that

A S
"sup | P(7)| = sup | P* p£.(7)]
7TeK 7eK
= {1 —27(C + &) HI P ttellen -
Since lim, f£,(Y) = 1 V7 € R”, this yields the desired inequality.

LEMMA 5.8. Let {v,}¥ be an orthogonal basis in RY and E any
subset of Gp({vi}Y). Then the set

Et={veR":¢""=1 Vzec K}
is 7-dense in RY, where 7 = (Y ||v, || )2

ProoF. It suffices to note that E' contains
N
Gp(w): = {Zmenloloine 2} .

LEMMA 5.4. Let E be a finite set in RY, and 0 <l < . Suppose
that E* is 1n-dense in R™ for some 0 < 7 < 2Y*/l. Then

zeE

> Qu(M)e | <

zek

su
LpeRN

PM
holds for every finite subset {Q,: x € E} of PM(S,). Here 0, is the wunit
mass at x.

ProOF. Let {Q,: xe€ E} < PM(S,) and g€ R" be given. Then we have
S, Q.*0, >, Qu7)e

zeE z€E

5Q.(0 + B)e e

zeE

= su
PM re}BV

(1)

> sup
v leEL

Let @ € PM(S,) be the sum of all e***Q,, xc E. Since E- + g is 7-dense
in R, it follows from Schneider’s inequality that

Qv+ )| 2 {t = Q)

sup
2eEL
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or, equivalently, that the last term in (1) is larger than or equal to

{1 - ﬁg—)z—} sup | 3 Q.(7)e

7eRN | zeE

Since g€ RY is arbitrary, this gives the desired inequality.

LEMMA 5.5. Let o = (2xN)™, and let

© N 1/2
=3 B and 7,=a(3 vl
k k=1

=j+1
To prove Theorem 5, we can assume the following:

(i) r;>4aNl; and A+ a)lp; <1 (7=1,2, ---).
(ii) The sets >t a; + S,,, x;€ E; 1 < j < n), are disjoint for each
=12 ..

Proor. We first prove that (i) implies (ii). Fix any =€ N, and take
two distinct points >'x; and 'y; of SrE;. If 1 <k <n is the first
number such that x, +* v,, then we have
|

But (i) assures that r; — 21; > r;,, — 2l;,, for all j, and so

(LIRS 17
Moreover, we have
(r, — 2l,) — 2ar, = (1 — 2a)r, — 21,
>{l—2a— 2xN)"'}r,>0

by (i) and the definition of «. Thus (i) implies (ii).
Take now any real a so large that

(1) a>4rN and (1 + a)aN"ja <1.

By (UTMS), there exists a natural number j, such that r; > (a + 1)R;,,
for all j > j,. Since R; = r;, it follows that j > j, implies

n

51_19?1“ DLY;

1

Z’rk'—zlk-

i

=>r,— 2, .

(2) r; > aRiy, + 1ipn > aRiy + aRj + 7,
ceo>a S R, =al,.
k=j+1

Notice now that 7; < #N"¥r;. It follows from (1) and (2) that j > j,
implies

(1 + C()lﬂ]j < (1 -+ a)a“frj-nN”/'rj <l1.
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In other words, (i) is the case for every j > j,.

Let now ¢, ---,t; be any real positive numbers. Put E; = E; if
J > g, Ei=t;E; if 7 < j,, and let (#))?, )7 and (1)) be the numerical
sequences corresponding to (Ej)7. We choose successively ¢;, - -+, i, t, S0
that the above three sequences satisfy (i).

Then both = 3¢ E; and E' = 3¢ E! are disjoint unions of the
same number of translates of 3;.; E;. Therefore it is trivial that if £’
has the required properties in Theorem 5, then so does E. This completes

the proof.

LEMMA 5.6. Suppose that the UTMS set E satisfies condition (i)
in Lemma 5.5. Let {Q,,..,; ;€ E;, 1 <j=<n} be a finite subset of
PM(S,.,), » being a natural number. Then we have

1Y, 7;€ RN}

xz. Qzl...,n(ﬁ’) exp (—q;fy ]2; xj)l: ve RN} ,

J J
= 2/C,) sup {
where C, =TI {1 — (,,)%}.
Proor. Write

S, = ATy} Sy =8, + R, =ar, + R,; +++;
ss=, + Ry=ar,+ R, + -+ + R,.

sup {

Let v, -+, 7, € RY be fixed. In the expression

2 G —irp®
¢(’Y) = Z { Z Qxl"'xn(’y) eXp (-—’L Z’ijj>}6 Tn%n y
apeky \j€E; =

1S §<n

the functions of 7 in the brackets are Fourier transforms of pseudo-
measures in PM(S, ). Since E; is 7,-dense in R" by Lemma 5.3, and
since 7,s, < tN"?a < 2%, it follows from Lemma 5.4 that

S5 e
Ty € By xjeEj,1§j<n

sup [¢(7)| = A;' sup
7 7

n—1
= 475 | {5 Qo) O} exp (i Z )|
7 zjeEj zpeE, j=1
15j<n

where A, =1 — (9,s,)*/2. Notice that

SuPD{ 5 (Qupoey*32)} S, + Sa, = S,
for all z;€ E;,1 < j <mn. Therefore an inductive argument applies, and
we have
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sup
7

jplsisn

Qsynnn (V) XD (—i by 7,~x,->
, 2

= (An et AZAI)—l sup
7

a:jeE

; (Qzl---z,,, * 53,,,* e *le)A(7)|

< 2C;'sup ‘Z @xl..,%(v) exp (— 7Y i xj)
7 zj J=1

Since 7, --+, 7, € R are arbitrary, this yields the required inequality.
PrOOF OF THEOREM 5. We will assume the two additional conditions
(i) and (ii) given in Lemma 5.5. Notice that then
Cy=2lmCi* =21 {1 — ()} < o ,
n =1

since 9;l; < (@N"*[r;)-(Bjy, + 1;1,) < 2aNR;,/r; and so 37 (75;)° < o by
condition (UTMS). Notice also that (i) implies

>, E;C8,CS., (n=1,2 ).

j=n+1

To prove part (a), take any »e€ N and any = vectors 7, ---,7, in
R". We define a function f = f, .., € ACE; + S..,) by setting

(1) f(Z_‘, z; + s) — exp (7, zz‘, m,-) V(e B,

which is well-defined by (ii).
We then claim that

(1.1) ”frl---r,,”A(EfEﬁsm,n) <G, and

(1.2) PE(frl---r,.) = é, ®:---® €r, *

In fact, (1.2) is trivial. To prove (1.1), take any Qe A(S: E; +
S..,) = PM(Z! E; + S,.,) (notice that > E; + S,,, is a finite disjoint
union of translates of the S-set S,,.). Write

Q :x -eEgsjan”l“’zn * 5z1+"'+“n
J 3 =

with @Q,,...., € PM(S,,,). Then we have
<f’ Q> = ZZ <f’ Qzl---z”*511+...+xn>

= xZJ', @zl...,n(O) exp (i ,Z:f vjx,.> .

Therefore, by Lemma 5.6, we have

<, DI CllQlln Ve A(S E; + 5.,,) -
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This, combined with the Hahn-Banach Theorem, yields (1.1).
It is now easy to see that P; is a topological isomorphism of A(E)
onto A and satisfies

“PEf”AE = N flla = COHPEfHAE VfGA(E') .

(cf. the proof of part (a) of Theorem 1).
To prove part (b), fix a natural number », and define an algebra

homomorphism

L,: A(E)— A@ E; + S)

by setting

(2) L) (325 + Sur,) = £(Z,) V@ B .

We then claim that

2.1) | LS lacsm 54500 = Coll f [laz) vVfeAE).

In fact, it suffices to prove this for f = e, with Y€ R*. But then f =

Srr,, Where ¥, = «-. =7, =7. Thus (2.1) is a special case of (1.1).
We next prove

(2.2) | Laer — €llaznpjesi,y < MGol|Y]|-L,

for every ve RY, where M is an absolute constant. Fix 7€ R”, and set
=1, We have by (2.1)

||(Ln6r)k”A(E}‘Ej+s,> = ||Ln3kr||A():’;E,-+s,)
= Gollewr|lac = Co k=0, £1, £2, ...).
On the other hand, (2) shows
|arg [(Laeped | < ||7]|-0 on E;+S;.

Thus (2.2) follows from Lemma 1 in [8].
Notice now >, E; S, and so

PM(E)c AS E; + 8.,) .
Given any Qe PM(E), we prove
(2.3) L:Qe M(i E,-)c M(E), and

(2.4) [(LEQ)" (V) — Q)| < MG, |7 |21 Qllru VYeRY.
The definition (2) of L, shows supp L}Q is contained in the finite set
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>wE;, and hence (2.3). If 7€ RY, we have by (2.2)
(LR () — Q)| = [{Lne—r — ey, Q)|
= || Lue-; — 3—r||A<z§‘Ej+Szn)'l|Q||PM
= MG||7[]-1,- 1| @llpa »

which establishes (2.4).

We infer from (2.1), (2.3), and (2.4) that M(E) is weak-* dense in
PM(E) and E is therefore an S-set.

To prove part (c), let f be the characteristic function of the unit
ball S, divided by its volume (hence ||f]|, = f(0) = 1). Set f,(z)=
(ar,) ™ f(ar,)x) for » = 1,2, ---, so that each f, is supported by S,
and has Fourier transform f,(7)=Ff (ar,Y), ve R*. We can choose a
positive real number B, so that Ye RY and ||7||= B, imply |f(aY)| <
(2C,)'. Notice then

(3) V1] = Bofrn = | Fu(7)] < (2C)* =12 -...).
Given n = 1, pe M3 E;), and 7,€ RY, we now prove
(3.1) |2l = Cosup {|(7)[: Y€ RY, || — Yol| £ Bofra} -

First notice that supp (f,*g)< > E; + S..,. Regarding L‘(RNz as a
subspace of PM(R") in the usual way, we have for every gec A(E)

9, Li(fax 1)) = {Lng, fuxtt
= (Lng) (@) (f ax)(@)d

gz}” Ej+Sqr,

7

=2 {0, A3 0)7(e - Do as {20}

oS ) - @
where the sum 3, is taken over all z;€ E;, 1 < j <n. This shows
L¥(f.xp) = p. It follows from (2.1) and (3) that

12l = | L (f ) ]lpse = Coll faxtt]lpa

= Cosup | F,(A)|

< Cymax {sup {| Z()[: |7 || = Bu/ra}, || ]|pu/(2C0)}
and so

[ tllen = Co sup{lﬁ('Y)I: 7| = Bofra} .

Replacing ¢ by e_, tt, we tllus have (3.1).
Take now any Q € PM(E). By (2.3) and (2.4), we have L*Qe M(3'E))
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and

(3.2) [(L2Q) ()] = 1QM)] + MC| 712,11 Q1lex (ve RY)
for all » = 1. We apply (3.1) to # = L}Q and have

(3.3) T LEQ|px = sup {[(LxQ)"(M|: Y e R, || — 7o|| = By/ra}

for every # =1 and 7,€ R¥. It follows from (3.2) and (3.3) that
(3.4) Ci'l| LEQllew < sup {|Q@(M)[: Y € RY, ||Y — %|| < B/}
+ MG, (| Yoll + Bo/r )l || Q]px -
Since 7,€ RY is arbitrary, we can replace it by any vector 7, with ||7,[| =
2B,/r, for each n. Then (8.4) yields
Ci' | L2Qllpy < sup {|Q(7)|: Y€ RY, ||7]] = By/r,}
+ 3MCOB0(ln/rn)”Q”PM ’

which shows
Cl1Qllp = Tm Q1)

since L*Q — @ in the weak-* topology of PM(E'), r,—0 and l,/r,— 0 as
M — co.

This completes the proof of part (¢) and Theorem 5 was established.

We now give four examples of “explicit” non S-sets in certain groups,
although the first two of them are essentially contained in [§].

EXAMPLES OF NON S-SETS. Let U be the union of the two open
intervals (0, 7?/6 — 1) and (1, #%/6). Then the following sets, denoted by
the same notation E,, are non S-sets.

(1) Let G be the product group of any non-trivial compact abelian
groups G,,» =1,2, --.. Choose and fix a non-zero element z,€ G, for
each » = 1. Put

E'a, = {(enxn)(ln e G: eﬂ e {0, 1} vn ’ and i;l n_zehp——leZn = a’}

for ac U.

(2) Let G=T or R, and p = 3 any natural number. Define

E = {i‘, ep e, ef0,1) Vo, and 3 m %, & = a}
n=1

n=1
for ae U.

(8) Let G=R", and (x,)7 any sequence of non-zero vectors such
that 33° (|| 2.1l /]|2]l.)* < 1/2. For each ae U, put
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E = 5{2 60,1 €,€{0,1} Vn , and 3 0%, &, = a} .
n=1 n=1

(4) Let a =(aya, --+) be any sequence of natural numbers =2,
G = 4(a) the group of the a-adic integers, and w,, u,, u,, - -+ the elements
of 4(a) defined as before. Choose any increasing sequence (n;); of natural
numbers so that >} jja(n;, n;,, — 1) < o, where a(m, ) = @pQmys *** Ay
for m < n. Put

Bo={Seuiec(0,1) Vi, and 357 = a}
j= i=

for ac U.
The proof that these sets are non S-sets mainly follows from Remark
(a) in [8: p. 288]. We omit the details.

REMARKS. (a) The set E given in Theorem 3 is an S-set. The proof
is similar to that of part (a) of Theorem 1, although we need a more
subtle argument.

(b) We can use Bernstein’s and Schneider’s inequalities to improve
the estimate of 7(d) given in Lemma 1 of [8]. Let 0 <d <2V 2, and
A(d) the restriction algebra of A(T) to [—d, d]. Then we have

7(d) = |l — 1|40 = |a]d/(1 — 87'd") VaeR.
In fact, fix any a > 0. If Pe PM([—d, d]), then

(¢ — 1, P,y = <Szx ¢ dt, P,>
- S“m ¢ P>dt = — Saﬁ’(—t)dt :
0 0

It follows from Bernstein’s and Schneider’s inequalities that
| < e — 1, Py < al| P'llow < ad|| Pllow

< ad(l — 8-1d2)-1||p”0(2) .

This, combined with the Hahn-Banach Theorem, yields the desired ine-
quality.

(¢) Most of the results in this paper is part of the author’s lecture
notes [9].
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