INFINITE TENSOR PRODUCTS IN FOURIER ALGEBRAS

Sadahiro SaEki

(Received April 25, 1974)

This paper is a continuation of the author's article [8], and the main purpose is to improve Theorem 4 in [8]. The reader is required to read [8] before proceeding to the present one.

Let G be a locally compact abelian group with dual \hat{G}. For a sequence $\left(E_{j}\right)_{1}^{\infty}$ of (non-empty) compact subsets of G, we write $E=\prod_{j=1}^{\infty} E_{j}$. We say that $\sum_{j=1}^{\infty} E_{j}$ converges if $\sum_{j=1}^{\infty} x_{j}$ converges for every $x=\left(x_{j}\right)_{1}^{\infty} \in E$. If this is the case, we define

$$
\widetilde{E}=\sum_{j=1}^{\infty} E_{j}=\left\{\sum_{j=1}^{\infty} x_{j}:\left(x_{j}\right)_{1}^{\infty} \in E\right\}
$$

Any set \widetilde{E} obtained in this way is called a multi-symmetric set. We also define a map $p_{E}: E \rightarrow \widetilde{E}$ by setting

$$
p_{E}(x)=\sum_{j=1}^{\infty} x_{j} \quad\left(x=\left(x_{j}\right)_{1}^{\infty} \in E\right)
$$

Notice that if $\sum_{1}^{\infty} E_{j}$ is a convergent series of compact sets then so is $\sum_{n}^{\infty} E_{j}$ for every natural number $n \in N$, and that to each neighborhood V of $0 \in G$ there corresponds an $N \in N$ such that

$$
n \geqq N \Rightarrow \sum_{j=n}^{\infty} E_{j} \subset V
$$

In fact, suppose this is false for some compact neighborhood V. Then for each $p \in N$ there exists an arbitrarily large $M_{p} \in N$ such that

$$
\begin{equation*}
x_{j p} \in E_{j}\left(j \geqq M_{p}\right) \quad \text { and } \quad \sum_{j=M_{p}}^{\infty} x_{j p} \notin V \tag{1}
\end{equation*}
$$

for some choice of $\left(x_{j p}\right)$. Suppose that such an M_{p} and a sequence ($x_{j p}$) have been chosen for some $p \in N$. Since V is compact, there is an $N_{p} \in$ N, with $N_{p}>M_{p}$, such that

$$
\begin{equation*}
\sum_{j=M_{p}}^{n} x_{j p} \notin V \quad\left(n \geqq N_{p}\right) . \tag{2}
\end{equation*}
$$

Then we choose $M_{p_{+1}}>N_{p}$ so that (1) with p replaced by $p+1$ is satisfied for some sequence $\left(x_{j(p+1)}\right)$. If we set $x_{j}=x_{j p}$ for $M_{p} \leqq j<M_{p+1}, p=$ $1,2, \cdots$, then (2) and our choice of M_{p} show that the series $\sum_{j} x_{j}$ does
not converge, which contradicts the convergence of $\sum_{j} E_{j}$.
Thus we conclude that for any convergent series $\sum_{j} E_{j}$ of compact sets the map p_{E} is continuous and therefore $\widetilde{E}=p_{E}(E)$ is compact.

Theorem 1. Let $\left(F_{j}\right)_{1}^{\infty}$ be a sequence of non-empty finite subsets of the real line \boldsymbol{R}. Then every locally compact abelian I-group G contains a convergent series $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ of compact subsets satisfying the following three conditions:
(a) the map p_{E} induces an isometric isomorphism P_{E} of the restriction algebra $A(\widetilde{E})$ onto the S-tensor product $A_{E}=\bigodot_{1}^{\infty} A\left(E_{j}\right)$ by $P_{E} f=$ $f \circ p_{E}$. Moreover, $A\left(E_{j}\right)$ is isometrically isomorphic to $A\left(F_{j}\right)$ for each $j=1,2, \cdots$.
(b) \widetilde{E} is an S-set.
(c) \widetilde{E} is a Dirichlet set, that is,

$$
\liminf _{\hat{G} \ni \chi \rightarrow \infty}\|\chi-1\|_{C(\tilde{E})}=0
$$

To prove this, we need two lemmas.
Lemma 1.1. Let G be a locally compact abelian I-group, and $F \subset \boldsymbol{R}$ and $E_{0} \subset G$ finite sets. Then every neighborhood V of O_{G} contains a finite set E such that $G p(E) \cap G p\left(E_{0}\right)=\left\{O_{G}\right\}$ and $A(E)=A(F)$ algebraically and isomorphically.

Proof. Since F is finite, there exists a rationally independent finite set $\left\{v_{1}, \cdots, v_{M}\right\}$ in \boldsymbol{R} such that

$$
F \subset G p\left(\left\{v_{1}, \cdots, v_{M}\right\}\right)
$$

Take a finite set $\widetilde{F} \subset \boldsymbol{Z}^{M}$ so that

$$
F=\left\{\sum_{1}^{M} n_{j} v_{j}: n=\left(n_{j}\right)_{1}^{M} \in \widetilde{F}\right\} .
$$

Let V be an arbitrary neighborhood of O_{G}. Since G is an I-group and E_{0} is a finite subset thereof, we can find a finite set $\left\{x_{1}, \cdots, x_{M}\right\}$ in G, which is independent (over the ring Z of integers), so that

$$
E=\left\{\sum_{1}^{M} n_{j} x_{j}: n \in \widetilde{F}\right\} \subset V
$$

and $G p(E) \cap G p\left(E_{0}\right)=\left\{O_{G}\right\}$.
Define a map $p: G p\left(\left\{x_{j}\right\}_{1}^{M}\right) \rightarrow G p\left(\left\{v_{j}\right\}_{1}^{M}\right)$ by setting

$$
p\left(\sum_{1}^{M} n_{j} x_{j}\right)=\sum_{1}^{M} n_{j} v_{j} \quad\left(n \in \boldsymbol{Z}^{M}\right) .
$$

Then p is an onto isomorphism and $p(E)=F$. Therefore it is easy to prove that

$$
\|f \circ p\|_{A(E)}=\|f\|_{A(F)} \quad(f \in A(F)),
$$

which completes the proof.
Lemma 1.2. Let E be a finite set in a locally compact abelian group G, and $\varepsilon>0$. Then there exists a compact neighborhood V of O_{G} such that:
(i) The sets $x+V, x \in E$, are disjoint.
(ii) For each $\gamma \in \hat{G}_{d}, G_{d}$ being the group G with the discrete topology, let $f_{r} \in A(E+V)$ be defined by

$$
f_{\gamma}(x+v)=\gamma(x) \quad(x \in E, v \in V)
$$

Then $\|f\|_{A(E+V)}<1+\varepsilon$.
Proof. Let $\eta>0$ be given. Since E is finite, there exists a finite subset Γ of \widehat{G} such that $\left\{\left.\chi\right|_{E}: \chi \in \Gamma\right\}$ is η-dense in $\left\{\left.\gamma\right|_{E}: \gamma \in \hat{G}_{d}\right\} \subset C(E)$.

Take a compact neighborhood W of O_{G} so that

$$
\begin{equation*}
x, y \in E \text { and } x \neq y \Rightarrow(x+W) \cap(y+W)=\varnothing, \tag{1}
\end{equation*}
$$

Next choose a $g \in A(G)$ so that

$$
\begin{equation*}
\|g\|_{A(G)}<2, \quad \text { supp } g \subset W, \text { and } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
g=1 \text { on some compact neighborhood } V \text { of } O_{G} \tag{4}
\end{equation*}
$$

Then $V \subset W$, and (i) holds.
Let $\gamma \in \widehat{G}_{d}$ be given. By the choice of Γ, there exists a $\chi=\chi_{r} \in \Gamma$ such that $|\gamma-\chi|<\eta$ on E. We can write

$$
\begin{aligned}
f_{r}= & \sum_{x \in E} \gamma(x) g_{x}=\sum_{x \in E}\{\gamma(x)-\chi(x)\} g_{x} \\
& +\sum_{x \in E}\{\chi(x)-\chi\} g_{x}+\chi \quad \text { on } \quad E+V,
\end{aligned}
$$

where $g_{x}(y)=g(y-x)$. It follows that

$$
\begin{aligned}
\left\|f_{\gamma}\right\|_{A(E+V)} \leqq & \sum_{x \in E}|\gamma(x)-\chi(x)| \cdot\left\|g_{x}\right\|_{A(G)} \\
& +\sum_{x \in E}\left\|\{\chi(x)-\chi\} g_{x}\right\|_{A(G)}+1 \\
\leqq & 2 \eta \operatorname{Card} E+\sum_{x \in E}\|\chi(x)-\chi\|_{A(x+W)}\left\|g_{x}\right\|_{A(G)}+1 \\
\leqq & 2(\eta+M \eta) \operatorname{Card} E+1,
\end{aligned}
$$

where M is an absolute constant (cf. Lemma 1 in [8]). Therefore (ii) holds if $\eta>0$ is sufficiently small.

Proof of Theorem 1. Let G be any locally compact abelian group,
and H a closed subgroup thereof. As is well-known, H is an S-set (see Theorem 2.7 .5 in [4]), and if a closed subset E of H is an S-set (or a Dirichlet set) in H, then so is E in G. Moreover, the restriction algebra of $A(G)$ to H is isometrically isomorphic to the Fourier algebra $A(H)$ on H (Theorems 2.7.2 and 2.7.4 in [4]), and every I-group contains a metrizable closed I-group (Theorem 2.5.5 in [4]). Consequently, to prove Theorem 1, we may and will assume that G is a metric I-group with translation-invariant metric d.

Let $\left(\hat{K}_{n}\right)_{1}^{\infty}$ be an increasing sequence of compact subsets of \hat{G} such that every compact subset of \widehat{G} is contained in some \hat{K}_{n}. We shall now inductively construct a sequence $\left(V_{n}\right)_{1}^{\infty}$ of compact neighborhoods of O_{G}, a sequence $\left(E_{n}\right)_{1}^{\infty}$ of finite subsets of G, and a sequence $\left(\chi_{n}\right)_{1}^{\infty}$ of characters in \hat{G} which satisfy the following conditions:

$$
\begin{equation*}
A\left(E_{n}\right)=A\left(F_{n}\right) \text { algebraically and isometrically . } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{n} \in \hat{G} \backslash \hat{K}_{n} \quad \text { and } \quad\left|\chi_{n}-1\right|<n^{-1} \text { on } E_{1}+\cdots+E_{n}+V_{n+1} . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
O_{G} \in E_{n} \quad \text { and } \quad E_{n}+V_{n+1} \subset \operatorname{int} V_{n} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { The sets } x+V_{n+1}, x \in E_{1}+\cdots+E_{n} \text {, are disjoint. } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{r}^{n}\right\|_{A\left(E_{1}+\cdots+E_{n}+V_{n+1}\right)}<1+n^{-1} \quad\left(\gamma \in \widehat{G}_{d}\right), \tag{5}
\end{equation*}
$$

where f_{r}^{n} is defined by

$$
f_{r}^{n}\left(x_{1}+\cdots+x_{n}+V_{n+1}\right)=\gamma\left(x_{1}+\cdots+x_{n}\right) \quad \forall\left(x_{j} \in E_{j}\right)_{1}^{n} .
$$

For $n=1$, we first take any compact neighborhood V_{1} of O_{G} with $\operatorname{diam} V_{1}<1 / 2$. By Lemma 1.1, int V_{1} contains a finite set E_{1} which contains O_{G} and satisfies (1) for $n=1$. Since E_{1} is finite, there is a $\chi_{1} \in$ $\hat{G} \backslash \hat{K}_{1}$ such that $\left|\chi_{1}-1\right|<1$ on E_{1}.

Let $n \in N$, and suppose that V_{k}, E_{k}, and χ_{k} have been chosen for all $k \leqq n$ so that

$$
\left|\chi_{n}-1\right|<n^{-1} \quad \text { on } \quad \sum_{1}^{n} E_{k}, \quad \text { and } \quad E_{n} \subset \operatorname{int} V_{n}
$$

Then we can take a compact neighborhood W_{n} of O_{G} so that

$$
\begin{gather*}
\left|\chi_{n}-1\right|<n^{-1} \text { on } \sum_{1}^{n} E_{k}+W_{n} \tag{2}\\
E_{n}+W_{n} \subset V_{n} .
\end{gather*}
$$

By Lemma 1.2, W_{n} contains a compact neighborhood V_{n+1} of O_{G} which satisfies (4) and (5). Clearly (2) and (3) hold. We can also demand that

$$
\begin{equation*}
\operatorname{diam} V_{n+1}<2^{-n-1} \tag{6}
\end{equation*}
$$

By Lemma 1.1, int V_{n+1} contains a finite set E_{n+1} with $O_{G} \in E_{n+1}$ which satisfies (1) with n replaced by $n+1$ and

$$
\begin{equation*}
G p\left(E_{1} \cup \cdots \cup E_{n}\right) \cap G p\left(E_{n+1}\right)=\left\{O_{G}\right\} . \tag{7}
\end{equation*}
$$

Finally choose a $\chi_{n+1} \in \hat{G} \backslash \hat{K}_{n+1}$ so that

$$
\left|\chi_{n+1}-1\right|<(n+1)^{-1} \quad \text { on } \sum_{1}^{n+1} E_{k} .
$$

This completes the induction.
By (3) and (6), $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ converges. We now want to prove that \widetilde{E} has the required properties. Notice that (3) assures that

$$
\begin{equation*}
\sum_{j=n}^{\infty} E_{j} \subset \operatorname{int} V_{n} \quad(n=1,2, \cdots) \tag{8}
\end{equation*}
$$

Proof of (a). We must prove that P_{E} is an isometric (onto) isomorphism.

Let $M \in N$ and $\gamma_{1}, \cdots, \gamma_{M} \in \hat{G}$ be given. Define $f \in A\left(\sum_{1}^{M} E_{j}+V_{M+1}\right)$ by setting

$$
\begin{equation*}
f\left(x_{1}+\cdots+x_{M}+V_{M+1}\right)=\prod_{j=1}^{M} \gamma_{j}\left(x_{j}\right) \quad \forall\left(x_{j} \in E_{j}\right)_{1}^{M}, \tag{9}
\end{equation*}
$$

which is well-defined by (4) and (7). Then we claim that

$$
\begin{gather*}
\|f\|_{A\left(\Sigma_{1}^{M} E_{j}+V_{M+1}\right)}<1+M^{-1}, \quad \text { and } \tag{9.1}\\
P_{E} f=\gamma_{1} \odot \gamma_{2} \odot \cdots \odot \gamma_{M} . \tag{9.2}
\end{gather*}
$$

Indeed, $G p\left(E_{1} \cup \cdots \cup E_{M}\right)$ is the direct sum of $G p\left(E_{1}\right), \cdots, G p\left(E_{M}\right)$ by (7). Therefore

$$
\chi\left(y_{1}+\cdots+y_{M}\right)=\prod_{j=1}^{M} \gamma_{j}\left(y_{j}\right) \quad \forall\left(y_{j} \in G p\left(E_{j}\right)\right)_{1}^{M}
$$

is a character of $G p\left(E_{1} \cup \cdots \cup E_{M}\right)$, and therefore it can be extended to a character of G_{d}. But then $f=f_{\chi}^{M}$, and so (5) yields (9.1). Also, for every $x=\left(x_{j}\right)_{1}^{\infty} \in E=\prod_{1}^{\infty} E_{j}$, we have by (8) and (9)

$$
\begin{aligned}
\left(P_{E} f\right)(x) & =f\left(x_{1}+x_{2}+\cdots+x_{M}+\cdots\right) \\
& =f\left(x_{1}+x_{2}+\cdots+x_{M}+V_{M+1}\right) \\
& =\prod_{1}^{M} \gamma_{j}\left(x_{j}\right)=\left(\gamma_{1} \odot \cdots \odot \gamma_{M}\right)(x)
\end{aligned}
$$

which establishes (9.2).
We now prove that the function f defined by (9) also satisfies

$$
\begin{equation*}
\|f\|_{A(\widetilde{E})}=1 \tag{9.3}
\end{equation*}
$$

In fact, take any natural number $N>M$, and put $\gamma_{j}=1$ for all j with $M<j \leqq N$. If we define $g \in A\left(E_{1}+\cdots+E_{N}+V_{N+1}\right)$ by the right-hand side of (9) with M replaced by N, then $f=g$ on the domain of g, and so

$$
\|f\|_{A(\tilde{E})} \leqq\|g\|_{A\left(\Sigma_{1}^{N} E_{j}+V_{N+1}\right)}<1+N^{-1}
$$

by (9.1). Since N may be arbitrarily large, this establishes $\|f\|_{A(\tilde{E})} \leqq 1$ and hence (9.3).

Notice now that the absolute convex hull of elements of the form

$$
\gamma_{1} \odot \gamma_{2} \odot \cdots \odot \gamma_{M} \quad\left(\gamma_{j} \in \hat{G}, M \in N\right)
$$

is dense in the unit ball of the Banach algebra A_{E} (see the proof of Theorem 3 in [8]). It follows from (9.2), (9.3), and Lemma 3 in [8] that P_{E} is an isometric isomorphism. This establishes part (a).

Proof of (b). For each $M \in N$, we define a homomorphism L_{M} from $A(\widetilde{E})$ into $A\left(\sum_{1}^{M} E_{j}+V_{M+1}\right)$ by setting

$$
\begin{equation*}
\left(L_{M} f\right)\left(x_{1}+\cdots+x_{M}+V_{M+1}\right)=f\left(x_{1}+\cdots+x_{M}\right) \tag{10}
\end{equation*}
$$

for $f \in A(\widetilde{E})$ and $x_{j} \in E_{j}, 1 \leqq j \leqq M$. Notice then

$$
\begin{equation*}
\left\|L_{M} f\right\|_{A\left(\Sigma_{1}^{M} E_{j}+V_{M+1}\right)} \leqq\left(1+M^{-1}\right)\|f\|_{A(\widetilde{E})} \tag{10.1}
\end{equation*}
$$

for all $f \in A(\widetilde{E})$. In fact, since \widetilde{E} is compact, it suffices to prove this for $f=\left.\gamma\right|_{\tilde{E}}$ with $\gamma \in \widehat{G}$ (cf. Lemma 2 in [8]). But then (10.1) is a special case of (9.1). We now claim

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\|L_{M} \gamma-\gamma\right\|_{A\left(\Sigma_{1}^{M} E_{j}+V_{M+1}\right)}=0 \quad(\gamma \in \widehat{G}) \tag{10.2}
\end{equation*}
$$

To see this, fix any $\gamma \in \hat{G}$. By (6) and the definition of L_{M}, we have

$$
\begin{equation*}
\lim _{M \rightarrow 0}\left\|L_{M} \gamma-\gamma\right\|_{C\left(\Sigma_{1}^{M} E_{j}+V_{M+1}\right)}=0 . \tag{10.3}
\end{equation*}
$$

On the other hand, (10.1) yields

$$
\begin{equation*}
\left\|\left(L_{M} \gamma\right)^{n}\right\|_{A}=\left\|L_{M}\left(\gamma^{n}\right)\right\|_{A} \leqq 1+M^{-1} \quad(n=0, \pm 1, \pm 2, \cdots) \tag{10.4}
\end{equation*}
$$

Thus (10.2) follows from (10.3), (10.4), and Lemma 1 in [8].
Notice now that (8) implies

$$
\begin{equation*}
\widetilde{E} \subset \sum_{j=1}^{M} E_{j}+\operatorname{int} V_{M+1} \quad(M=1,2, \cdots) \tag{11}
\end{equation*}
$$

and so $P M(\widetilde{E}) \subset A\left(\sum_{1}^{M} E_{j}+V_{M+1}\right)^{\prime}$. To complete the proof of (b), take any $S \in P M(\widetilde{E})$. Then, the definition of L_{M} shows

$$
\operatorname{supp}\left(L_{M}^{*} S\right) \subset \sum_{j=1}^{M} E_{j} \subset \widetilde{E}
$$

Since each E_{j} is a finite set, this implies that $L_{M}^{*} S$ is a finitely supported measure in $M(\widetilde{E})$ for each $M=1,2, \cdots$. Also, we have

$$
\left\|L_{M}^{*} S\right\|_{P M} \leqq\left(1+M^{-1}\right)\|S\|_{P M} \quad(M=1,2, \cdots)
$$

by (10.1); and (10.2) and (11) assure that for all $\gamma \in \hat{G}$

$$
\begin{aligned}
& \left|\left(L_{M}^{*} S\right)^{\wedge}\left(\gamma^{-1}\right)-\hat{S}\left(\gamma^{-1}\right)\right|=\left|\left\langle\gamma, L_{M}^{*} S\right\rangle-\langle\gamma, S\rangle\right| \\
& \quad=\left|\left\langle L_{M} \gamma-\gamma, S\right\rangle\right| \\
& \quad \leqq\left\|L_{M} \gamma-\gamma\right\|_{A\left(\Sigma_{1}^{M} E_{j}+V_{M+1}\right.}\|S\|_{P M}=o(1) .
\end{aligned}
$$

It follows from Lemma 2 in [8] that the sequence $\left(L_{M}^{*} S\right)_{1}^{\infty}$ of measures in $M(\widetilde{E})$ converges to S in the weak-* topology of $P M(G)$. Since this is true for every $S \in P M(\widetilde{E})$, we conclude \widetilde{E} is an S-set (actually a strong S-set).

Proof of (c) follows from (2) and (11).
Remarks. (a) If F is a compact Dirichlet set in G, then we have (c) ${ }^{\prime}$

$$
\limsup _{\chi \rightarrow \infty}|\hat{S}(\chi)|=\|S\|_{P M} \quad(S \in P M(F))
$$

To see this, take any $S \in P M(F)$. Let $\varepsilon>0, \gamma \in \hat{G}$ and a compact subset \hat{K} of \hat{G} be given. Since F is a Dirichlet set, there exists a $\chi=\chi_{\varepsilon} \in$ $\hat{G} \mid \gamma^{-1} \hat{K}$ such that $|\chi-1|<\varepsilon$ on F. But then $|\gamma \chi-\gamma|=|\chi-1|<\varepsilon$ on some compact neighborhood V of F by the continuity of χ. Thus $\|\gamma \chi-\gamma\|_{A(V)} \leqq M \varepsilon$ by Lemma 1 in [8], where M is an absolute constant. Since $S \in P M(F) \subset A(V)^{\prime}$, it follows that

$$
\begin{aligned}
& \sup \{|\hat{S}(\alpha)|: \alpha \in \hat{G} \backslash \hat{K}\} \geqq|\hat{S}(\gamma \chi)| \\
& \quad \geqq|\hat{S}(\gamma)|-|\hat{S}(\gamma)-\hat{S}(\gamma \chi)| \geqq|\hat{S}(\gamma)|-M \varepsilon\|S\|_{P M}
\end{aligned}
$$

Since $\gamma \in \hat{G}$ and $\varepsilon>0$ are arbitrary, this shows

$$
\sup \{|\hat{S}(\alpha)|: \alpha \in \hat{G} \backslash \hat{K}\}=\sup \{|\hat{S}(\gamma)|: \gamma \in \hat{G}\}=\|S\|_{P M},
$$

which establishes (c)'.
(b) In Theorem 1, we can replace \boldsymbol{R} by any torsion-free group.
(c) The technique in the proof of Theorem 1 can be used to improve Example 4 in [8] as follows. Let $\left(E_{j}\right)_{1}^{\infty}$ be a sequence of finite subset of \boldsymbol{R}^{N}, N being a fixed natural number. Then there exists a sequence $\left(t_{j}\right)_{1}^{\infty}$ of positive real numbers which satisfies the following conditions. (i) The series $\widetilde{K}=\sum_{1}^{\infty} t_{j} E_{j}$ converges; (ii) $A(\widetilde{K})$ is isometrically isomorphic to $A_{E}=\bigcirc_{1}^{\infty} A\left(E_{j}\right)$; (iii) \widetilde{K} is an S-set and a Dirichlet set.

Theorem 2 (cf. Theorem 4 in [8]). Every locally compact I-group G contains a multi-symmetric set $\widetilde{K}=\sum_{1}^{\infty} K_{j}$, each K_{j} being a compact
perfect Kronecker set in G, which satisfies the following conditions:
(i) The natural map $P_{K}: A(\widetilde{K}) \rightarrow S(K)=\bigodot_{1}^{\infty} C\left(K_{j}\right)$ induced by p_{K} :
$K=\Pi_{1}^{\infty} K_{j} \rightarrow \widetilde{K}$ is an isometric isomorphism.
(ii) \widetilde{K} is an S-set and a Dirichlet set.

Proof. Without loss of generality, we may assume that G has a translation-invariant metric d compatible with its topology. Then Theorem 1 and its proof show that there exists a countable subset $\left\{r_{j k}: j, k \in N\right\}$ of G which is independent over \boldsymbol{Z} and has the following properties:

$$
\begin{equation*}
d\left(0, r_{j k}\right)<2^{-j-k} \quad(j, k=1,2, \cdots) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{E}=\sum_{j k} E_{j k} \text { satisfies the conclusions of Theorem } 1 \tag{2}
\end{equation*}
$$

Here $E_{j k}=\left\{0, r_{j k}\right\}$ for all j and k.
Put $E=\Pi_{j k} E_{j k}, \widetilde{E}_{j}=\sum_{k} E_{j k}, E^{\prime}=\Pi_{j} \widetilde{E}_{j}$, and define a map

$$
q=p_{E^{\prime}}: E^{\prime} \rightarrow \widetilde{E}=\sum_{j k} E_{j k}=\sum_{j} \widetilde{E}_{j}
$$

in the natural way. Then, by part (a) of Theorem 1, the natural map Q induced by q is an isometric isomorphism of $A(\widetilde{E})$ onto

$$
A_{E^{\prime}}=\bigoplus_{1}^{\infty} A\left(\widetilde{E}_{j}\right) \cong \bigodot_{j}\left[\bigodot_{k} A\left(E_{j k}\right)\right] \cong \bigodot_{j k} A\left(E_{j k}\right) .
$$

(Notice that p_{E} is a homeomorphism from E onto \widetilde{E} since P_{E} is an isomorphism.)

We now claim that each \widetilde{E}_{j} contains a perfect Kronecker set. In fact, since $\left\{r_{j k}\right\}_{k}$ is independent over $\boldsymbol{Z}, \widetilde{E}_{j}$ has the following property: for any natural number n, any $x_{1}, \cdots, x_{n} \in \widetilde{E}_{j}$, and any $\varepsilon>0$, there exist distinct $y_{1}, \cdots, y_{n} \in \widetilde{E}_{j}$ such that $d\left(x_{l}, y_{l}\right)<\varepsilon$ for all l and $\left\{y_{l}\right\}_{l}$ is independent over \boldsymbol{Z}. This property assures that \widetilde{E}_{j} contains a perfect Kronecker set (cf. 5.2.3 and 5.2.4 in [4]).

We now choose and fix a perfect Kronecker set K_{j} in E_{j} for each $j=1,2, \cdots$, and first prove that $K_{1} \times \cdots \times K_{N}$ is an S-set for the algebra $\bigcirc_{1}^{N} A\left(\widetilde{E}_{j}\right)$. In fact, every Kronecker set is an S-set (see [11], [5], and [7]). Since $A\left(G^{N}\right)$ is the N-fold projective tensor product of $A(G)$, it follows that $K_{1} \times \cdots \times K_{N}$ is an S-set in G^{N} (see Theorem 1.5.1 in [12] and Theorem 2.2 in [6]). Since

$$
\bigoplus_{1}^{N} A\left(\widetilde{E}_{j}\right)=A\left(\widetilde{E}_{1} \times \cdots \times \widetilde{E}_{N}\right)
$$

algebraically and isometrically, this assures that $K_{1} \times \cdots \times K_{N}$ is an S-set for the algebra $\odot_{1}^{N} A\left(\widetilde{E}_{j}\right)$.

Next we prove that $K=\Pi_{1}^{\infty} K_{j}$ is an S-set for the algebra $A_{E^{\prime}}$. To do this, choose and fix any point $y=\left(y_{j}\right)_{1}^{\infty} \in K$, and define a sequence of homomorphisms

$$
J_{N}: A_{E^{\prime}} \rightarrow \bigoplus_{1}^{N} A\left(\widetilde{E}_{j}\right) \subset A_{E^{\prime}}
$$

by setting

$$
\left(J_{N} f\right)\left(x_{1}, \cdots, x_{N}\right)=f\left(x_{1}, \cdots, x_{N}, y_{N+1}, y_{N+2}, \cdots\right)
$$

for $f \in A_{E^{\prime}}$ and $x_{j} \in \widetilde{E}_{j}, 1 \leqq j \leqq N=1,2, \cdots$. Then we have

$$
\begin{equation*}
\lim _{N \rightarrow 0}\left\|J_{N} f-f\right\|_{A_{E^{\prime}}}=0 \quad\left(f \in A_{E^{\prime}}\right) \tag{3}
\end{equation*}
$$

(cf. [8: p. 283]). If $f \in A_{E^{\prime}}$ vanishes on K, then each $J_{N} f$ vanishes on $K_{1} \times \cdots \times K_{N}$. Since each $K_{1} \times \cdots \times K_{N}$ is an S-set, it follows that

$$
\begin{aligned}
& J_{N} f \in \operatorname{cl}\left\{g \in \bigoplus_{1}^{N} A\left(\widetilde{E}_{j}\right): \operatorname{supp} g \cap\left(K_{1} \times \cdots \times K_{N}\right)=\varnothing\right\} \\
& \subset \operatorname{cl}\left\{h \in \bigoplus_{1}^{\infty} A\left(\widetilde{E}_{j}\right): \operatorname{supp} h \cap K=\varnothing\right\}
\end{aligned}
$$

for all N, which combined with (3) implies that K is an S-set for $A_{E^{\prime}}$.
Finally $\widetilde{K}=\sum_{1}^{\infty} K_{j}=q(K)$ is an S-set for $A(\widetilde{E})$ since $Q: A(\widetilde{E}) \rightarrow A_{E^{\prime}}$ is an isomorphism. Therefore \widetilde{K} is an S-set for $A(G)$ since so is \widetilde{E} by part (b) of Theorem 1. That \widetilde{K} is a Dirichlet set follows from part (c) of Theorem 1. Also we have

$$
\begin{aligned}
A(\widetilde{K}) & =\left.A(\widetilde{E})\right|_{\tilde{K}}=\left.A_{E^{\prime}}\right|_{K} \\
& =\left.\bigoplus_{1}^{\infty} A\left(\widetilde{E}_{j}\right)\right|_{K_{j}}=\bigoplus_{1}^{\infty} C\left(K_{j}\right)=S(K)
\end{aligned}
$$

with natural identification, which completes the proof.
It is an interesting problem to find an explicit example of a multisymmetric set $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ for which we have $A(\widetilde{E})=\odot_{1}^{\infty} A\left(E_{j}\right)$ algebraically and topologically. If G is an infinite product of compact groups, then this is very easy (Theorem 3 in [8]). Since every non-discrete non I group contains such a group as a closed subgroup, it is reasonable to consider the problem only for I-groups. However, to obtain an explicit example of a set of a certain type, we much know the group under consideration. Consequently we will consider the above problem only for $G=$ the group of a-adic integers and for $G=\boldsymbol{R}^{N}$. Of course, then the problem will turn out trivial for any groups which contain, as a closed subgroup, one of the following groups: an infinite product of non-trivial compact groups; the group of a-adic integers for some $a ; \boldsymbol{R}^{N}$ or \boldsymbol{T}^{N} for
some natural number N.
Let $a=\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ be a sequence of positive integers $\geqq 2$, and $\Delta(a)$ the compact group of the a-adic integers (cf. [1: (10.2)]). Topologically we will identity $\Delta(a)$ with the product space of all $\left\{0,1, \cdots, a_{n}-1\right\}$, $n=0,1,2, \cdots$. Let u_{n} be the element of $\Delta(a)$ whose n-th coordinate is one and other coordinates are all zero. Thus we have

$$
u_{n}=a_{n-1} u_{n-1}=a_{n-1} a_{n-2} \cdots a_{0} u_{0} \quad(n=1,2, \cdots) ‘
$$

and each element $x \in \Delta(a)$ can be uniquely written in the form

$$
x=\left(x_{n}\right)_{0}^{\infty}=\sum_{n=0}^{\infty} x_{n} u_{n}
$$

where $x_{n} \in\left\{0,1, \cdots, a_{n}-1\right\}$ for all $n=0,1,2, \cdots$. We also set

$$
a(l, m)=a_{l} a_{l+1} \cdots a_{m} \quad(l<m)
$$

Theorem 3. Let a be as above, and let (n_{1}, n_{2}, \cdots) and (k_{1}, k_{2}, \ldots) be two sequences of natural numbers such that

$$
n_{j}<n_{j+1} \text { and } k_{j}<a_{n_{j}} \quad(j=1,2, \cdots)
$$

$I f$
(*)

$$
\sum_{j=1}^{\infty} j k_{j} / a\left(n_{j}, n_{j+1}-1\right)<\infty
$$

then $A(\widetilde{E})$ is topologically isomorphic to $A_{E}=\bigcirc_{1}^{\infty} A\left(E_{j}\right)$, where

$$
E_{j}=\left\{\tau u_{n_{j}}: \tau=0,1, \cdots, k_{j}\right\} \quad \text { and } \quad \widetilde{E}=\sum_{j=1}^{\infty} E_{j}
$$

Proof. For each m, put

$$
\Delta_{m}=\Delta(a, m)=\left\{\left(x_{n}\right)_{0}^{\infty} \in \Delta(a): x_{n}=0 \text { for all } n<m\right\}
$$

which is an open-and-compact subgroup of $\Delta(a)$. Thus, if $l<m$, the coset $u_{l}+\Delta_{m}$ has order $a_{l} a_{l+1} \cdots a_{m-1}=a(l, m-1)$ as an element of the quotient group $\Delta(a) / \Delta_{m}$. Notice that the subgroup of $T=\{z:|z|=1\}$ consisting of p elements is η_{p}-dense in T, where $\eta_{p}=|1-\exp (\pi i / p)|=$ $2 \sin (\pi / 2 p)$. It follows that for each pair $l<m$ of non-negative integers and each character γ of $\Delta(a)$, there exists a character $\chi \in \Delta_{m}^{\perp}$ such that

$$
\begin{equation*}
\left|\gamma\left(u_{l}\right)-\chi\left(u_{l}\right)\right|<\pi / a(l, m-1) \tag{1}
\end{equation*}
$$

where Δ_{m}^{\perp} denotes the annihilator of Δ_{m} in $\widehat{\Delta(a)}$. Obviously (1) implies

$$
\begin{equation*}
\left|\gamma\left(\tau u_{l}\right)-\chi\left(\tau u_{l}\right)\right| \leqq \tau \pi / a(l, m-1) \quad(\tau=0,1,2, \cdots) \tag{2}
\end{equation*}
$$

If the sets E_{j} are defined as in the theorem, then $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ converges, and

$$
\begin{equation*}
\sum_{j=k}^{\infty} E_{j} \subset \Delta_{n_{k}} \quad(k=1,2, \cdots) \tag{3}
\end{equation*}
$$

Notice that (*) implies

$$
\begin{equation*}
\sum_{j=N}^{\infty} \pi(j-N+1) k_{j} / a\left(n_{j}, n_{j+1}-1\right) \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty \tag{4}
\end{equation*}
$$

We apply the arguments in [8: pp. 294-295] with $\Gamma_{j}=\Delta_{n_{j+1}}^{\perp}$ and $\varepsilon_{j}=$ $\pi k_{j} / a\left(n_{j}, n_{j+1}-1\right)$, and infer from (2), (3) and (4) that $A\left(\sum_{N}^{\infty} E_{j}\right)$ is topologically isomorphic to $\odot_{N}^{\infty} A\left(E_{j}\right)$ for all sufficiently large N. Since each E_{j} is a finite set and the natural map p_{E} associated with $\left(E_{j}\right)_{1}^{\infty}$ is injective, it follows that $A(\widetilde{E})$ is topologically isomorphic to A_{E}. This completes the proof.

We now prove an analog of Theorem 3 for $G=Z$. For each natural number $j \in N$, let A_{j} be a semi-simple commutative Banach algebra with spectrum E_{j}. We identify A_{j} with a subalgebra of $C_{0}\left(E_{j}\right)$ in the usual way, and assume that A_{j} contains an idempotent ξ_{j} of norm one. If f_{1}, \cdots, f_{N} are functions in A_{1}, \cdots, A_{N}, we define a function

$$
\tilde{f}=f_{1} \odot \cdots \odot f_{N} \odot \xi_{N+1} \odot \cdots
$$

on the set

$$
E_{0}=\bigcup_{k=1}^{\infty} E_{1} \times \cdots \times E_{k} \times \xi_{k+1}^{-1}(1) \times \cdots
$$

by setting

$$
\widetilde{f}(x)=\left\{\prod_{j=1}^{N} f_{j}\left(x_{j}\right)\right\}\left\{\prod_{j=N+1}^{\infty} \xi_{j}\left(x_{j}\right)\right\} \quad\left(x=\left(x_{j}\right)_{1}^{\infty} \in E_{0}\right)
$$

We denote by $S=S\left(A_{1}, A_{2}, \cdots\right)$ the algebra of all functions f on E_{0} which have expansions of the form

$$
f=\sum_{k=1}^{\infty} f_{1}^{(k)} \odot \cdots \odot f_{N_{k}}^{(k)} \odot \xi_{N_{k}+1} \odot \xi_{N_{k}+2} \odot \cdots
$$

where $f_{j}^{(k)} \in A_{j}, N_{k} \in N$, and

$$
M=\sum_{k=1}^{\infty}\left\|f_{1}^{(k)}\right\|_{A_{1}} \cdots\left\|f_{N_{k}}^{(k)}\right\|_{A_{N_{k}}}<\infty
$$

For $f \in S$, the norm $\|f\|_{s}$ of f is defined to be the infimum of the numbers M taken over all expansions of f of the above form. We call S with norm $\|\cdot\|_{S}$ the S-tensor product of A_{1}, A_{2}, \cdots relative to ξ_{1}, ξ_{2}, \cdots (or, relative to $0_{1}, 0_{2}, \cdots$ if each $\xi_{j}^{-1}(1)$ is a singleton $\left\{0_{j}\right\}$). Therefore S is a semi-simple commutative Banach algebra. Notice that if $\xi_{j}=1$ for all j, then S is the algebra $\bigcirc_{1}^{\infty} A_{j}$ defined in [8].

ThEOREM 4. Let $\left(a_{1}, a_{2}, \cdots\right)$ and $\left(k_{1}, k_{2}, \cdots\right)$ be two sequences of natural numbers such that

$$
\begin{equation*}
k_{j}<a_{j} \forall j \quad \text { and } \quad \sum_{j=1}^{\infty} j k_{j} / a_{j}<\infty \tag{*}
\end{equation*}
$$

Let also \widetilde{E}_{0} be the subset of \boldsymbol{Z} consisting of all elements of the form

$$
\tau_{1}+\tau_{2} a_{1}+\cdots+\tau_{n} a_{1} a_{2} \cdots a_{n-1}+\cdots,
$$

where $\tau_{j} \in\left\{0,1, \cdots, k_{j}\right\}$ for all j and $\tau_{j}=0$ for all but except finitely many j. Then $A\left(\widetilde{E}_{0}\right)$ is topologically isomorphic to the S-tensor product S of

$$
A_{j}=A\left(\left\{0,1, \cdots, k_{j}\right\}\right) \quad(j=1,2, \cdots)
$$

relative to $0,0, \cdots$.
Proof. Let $a=\left(a_{1}, a_{2}, \cdots\right)$, and let $\Delta(a)$ be the compact group of the a-adic integers. Put

$$
\begin{aligned}
E_{j} & =\left\{\tau u_{j}: \tau=0,1, \cdots, k_{j}\right\} \quad(j=1,2, \cdots), \\
E & =\prod_{j=1}^{\infty} E_{j}=\sum_{j=1}^{\infty} E_{j}=\widetilde{E} \subset \Delta(a)
\end{aligned}
$$

Then the natural homomorphism P_{E} of $A(E)$ into $A_{E}=\bigcirc_{1}^{\infty} A\left(E_{j}\right)$ is normdecreasing by Lemma 3 in [8], and is actually an (onto) isomorphism by Theorem 3 and (*).

For each $N \in N$, we define a norm-decreasing homomorphism $J_{N}: A_{E} \rightarrow$ $\bigcirc{ }_{1}^{N} A\left(E_{j}\right) \subset A_{E}$ by setting

$$
\begin{equation*}
\left(J_{N} f\right)(x)=f\left(x_{1}, \cdots, x_{N}, 0,0, \cdots\right) \quad(x \in E) \tag{1}
\end{equation*}
$$

Notice that if we regard J_{N} as an operator on $A(E)$ then J_{N} has norm $\leqq\left\|P_{E}^{-1}\right\|$, and that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|J_{N} f-f\right\|_{A(E)}=0 \quad(f \in A(E)) \tag{2}
\end{equation*}
$$

(See [8: p. 283].)
Put

$$
E_{0}=\bigcup_{N=1}^{\infty} E_{1} \times \cdots \times E_{N} \times\{0\} \times\{0\} \times \cdots,
$$

which is a dense subset of E. Let $B\left(E_{0}\right)$ be the restriction algebra of $B\left(\Delta_{d}\right)$ to E_{0}. Here Δ_{d} denotes the group $\Delta(a)$ with the discrete topology, and $B\left(\Delta_{d}\right)$ denotes the Banach algebra of Fourier-Stieltjes transforms of measures on $\widehat{\Delta_{d}}=$ the Bohr compactification of $\widehat{\Delta(\alpha)}$. Let also $M_{F}\left(E_{0}\right)$ be the space of finitely supported measures on E_{0}. Then $\mu \in M_{F}\left(E_{0}\right)$ implies

$$
\|\mu\|_{P M}=\sup \{|\widehat{\mu}(\gamma)|: \gamma \in \widehat{\Delta(a)}\}=\sup \left\{|\hat{\mu}(\chi)|: \chi \in \widehat{\Delta_{d}}\right\}
$$

since $\hat{\mu}$ is continuous on $\widehat{\Delta_{d}}$ and $\widehat{\Delta(a)}$ is dense in $\widehat{\Delta_{d}}$. The space $B\left(E_{0}\right)$ may be identified with the conjugate space of $M_{F}\left(E_{0}\right): f \in B\left(E_{0}\right)$ if and only if

$$
\|f\|_{B\left(E_{0}\right)}=\sup \left\{\left|\int_{E_{0}} f d \mu\right|: \mu \in M_{F}\left(E_{0}\right),\|\mu\|_{P M} \leqq 1\right\}<\infty
$$

Since E_{0} is dense in E and $A(E) \subset C(E)$, we can and will identify $A(E)$ with its restriction to E_{0}. Then the embedding $A(E) \subset B\left(E_{0}\right)$ is a norm-decreasing homomorphism. We claim that $A(E)$ is indeed closed in $B\left(E_{0}\right)$. To see this, take any $f \in A(E)$. Then there exists a $\lambda \in M\left(\widehat{\Delta_{d}}\right)$ such that $\hat{\lambda}=f$ on E_{0} and $\|\lambda\|_{M}=\|f\|_{B\left(E_{0}\right)}$. Since E_{0} is countable there exists a sequence $\left(f_{n}\right)_{1}^{\infty}$ in $A(\Delta(a))$ such that $\left\|f_{n}\right\|_{A(\Delta(a))} \leqq\|\lambda\|_{M}$ for all n and $f_{n} \rightarrow \hat{\lambda}$ on E_{0} pointwise. Then we have

$$
\left\{\begin{align*}
\left\|J_{N} f\right\|_{A(E)} & \leqq\left\|J_{N} f-J_{N} f_{n}\right\|_{A(E)}+\left\|J_{N} f_{n}\right\|_{A(E)} \tag{3}\\
& \leqq\left\|J_{N}\left(f-f_{n}\right)\right\|_{A(E)}+\left\|J_{N}\right\| \cdot\|f\|_{B\left(E_{0}\right)}
\end{align*}\right.
$$

for all $N, n=1,2, \cdots$. Notice that the range of J_{N} is finite-dimensional and $J_{N} f_{n}$ converges to $J_{N} f$ pointwise by (1), for each $N=1,2, \cdots$. Thus (3) yields

$$
\left\|J_{N} f\right\|_{A(E)} \leqq\left\|J_{N}\right\| \cdot\|f\|_{B\left(E_{0}\right)} \leqq\left\|P_{E}^{-1}\right\| \cdot\|f\|_{B\left(E_{0}\right)} \quad(N=1,2, \cdots)
$$

and hence

$$
\begin{equation*}
\|f\|_{B\left(E_{0}\right)} \leqq\|f\|_{A(E)} \leqq\left\|P_{E}^{-1}\right\| \cdot\|f\|_{B\left(E_{0}\right)} \tag{4}
\end{equation*}
$$

by (2). Since (4) holds for every $f \in A(E)$, we conclude that $A(E)$ is closed in $B\left(E_{0}\right)$.

We now prove that the S-tensor product S_{E} of the $A\left(E_{j}\right)$ relative to $0,0, \cdots$ can be naturally identified with $A\left(E_{0}\right)$-the restriction algebra of $A\left(\Delta_{d}\right)$ to E_{0}. To do this, we introduce two maps

$$
S_{E} \xrightarrow{K_{N}} \odot_{1}^{N} A\left(E_{j}\right) \xrightarrow{L_{N}} S_{E}
$$

for each N :

$$
\begin{aligned}
& \left(K_{N} f\right)(x)=f\left(x_{1}, \cdots, x_{N}, 0,0, \cdots\right) \quad\left(x \in E_{1} \times \cdots \times E_{N}\right), \\
& L_{N} f=f \odot \xi_{N+1} \odot \xi_{N+2} \odot \cdots .
\end{aligned}
$$

It follows from the definition of S_{E} that K_{N} is norm-decreasing, that L_{N} is an isometry, and that the sequence ($\left.L_{N} \circ K_{N}\right)_{1}^{\infty}$ converges to the identity operator on S_{E} in the strong operator topology. Take now any $f \in S_{E}$. Then, by the first inequality in (4), we have

$$
\begin{equation*}
\left\|K_{N} f\right\|_{B\left(E_{0}\right)} \leqq\left\|K_{N} f\right\|_{A(E)} \leqq\left\|P_{E}^{-1}\right\|\left\|K_{N} f\right\|_{A_{E}} \leqq\left\|P_{E}^{-1}\right\| \cdot\|f\|_{s_{E}} \tag{5}
\end{equation*}
$$

for all N. Here we regard $\odot_{1}^{N} A\left(E_{j}\right) \subset A_{E}=A(E)$ in the usual way. Since $K_{N} f \rightarrow f$ pointwise on E_{0}, (5) assures

$$
\begin{equation*}
f \in B\left(E_{0}\right) \quad \text { and } \quad\|f\|_{B\left(E_{0}\right)} \leqq\left\|P_{E}^{-1}\right\| \cdot\|f\|_{s_{E}} \tag{6}
\end{equation*}
$$

To prove the converse inequality, choose a sequence $\left(f_{n}\right)_{1}^{\infty}$ in $A(E)$ so that $\left\|f_{n}\right\|_{A(E)} \leqq\|f\|_{B\left(E_{0}\right)}$ and $f_{n} \rightarrow f$ pointwise on E_{0}. Then we have

$$
\begin{aligned}
\left\|L_{N} J_{N} f_{n}\right\|_{S_{E}} & =\left\|J_{N} f_{n}\right\|_{A_{E}} \leqq\left\|f_{n}\right\|_{A_{E}} \\
& \leqq\left\|f_{n}\right\|_{A(E)} \leqq\|f\|_{B\left(E_{0}\right)}
\end{aligned}
$$

But it is clear that $J_{N} f_{n} \rightarrow K_{N} f$ pointwise on E as $n \rightarrow \infty$ for each fixed N. Since $\odot_{1}^{N} A\left(E_{j}\right)$ is a finite-dimensional linear space, this implies

$$
\left\|J_{N} f_{n}-K_{N} f\right\|_{A_{E}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad(N=1,2, \cdots)
$$

Therefore we have

$$
\left\|L_{N} K_{N} f\right\|_{s_{E}}=\lim _{n \rightarrow \infty}\left\|L_{N} J_{N} f_{n}\right\|_{S_{E}} \leqq\|f\|_{B\left(E_{0}\right)} \quad(N=1,2, \cdots)
$$

Since $L_{N} K_{N}$ converges to the identity operator, we have $\|f\|_{S_{E}} \leqq\|f\|_{B\left(E_{0}\right)}$, and hence

$$
\begin{equation*}
\|f\|_{s_{E}} \leqq\|f\|_{B\left(E_{0}\right)} \leqq\left\|P_{E}^{-1}\right\|\|f\|_{s_{E}} \quad\left(f \in S_{E}\right) \tag{7}
\end{equation*}
$$

Now it is easy to see that all the functions on E_{0} with finite support are contained in $A\left(E_{0}\right) \cap S_{E}$ and are dense in both $A\left(E_{0}\right)$ and S_{E}. Therefore (7) assures $A\left(E_{0}\right)=S_{E}$.

Finally, there exists a unique group isomorphism $\phi: Z \rightarrow G p\left(E_{0}\right) \subset \Delta_{d}$ such that $\phi(1)=u_{1}$, and we have $\phi\left(\widetilde{E}_{0}\right)=E_{0}$. The adjoint map ϕ^{*} induces an isometric isomorphism $\Phi: B\left(E_{0}\right) \rightarrow B\left(\widetilde{E}_{0}\right)$ which maps $A\left(E_{0}\right)$ onto $A\left(\widetilde{E}_{0}\right)$. The composite of the maps

$$
A\left(\widetilde{E}_{0}\right) \xrightarrow{\Phi^{-1}} A\left(E_{0}\right) \xrightarrow{i d} S_{E}
$$

is therefore a norm-decreasing topological isomorphism. Since $A(\{0,1$, $\left.\left.\cdots, k_{j}\right\}\right)=A\left(E_{j}\right)$ algebraically and isometrically for all j, this completes the proof.

Remark. The above proof shows that $B\left(\widetilde{E}_{0}\right)$ contains a closed subalgebra which is topologically isomorphic to A_{E}.

We now fix a natural number N. For each $j=1,2, \cdots$, let $\left\{v_{k j}\right\}_{k=1}^{N}$ be an orthogonal basis in \boldsymbol{R}^{N}, and E_{j} a finite set such that

$$
\{0\} \subsetneq E_{j} \subset G p\left(\left\{v_{1 j}, \cdots, v_{N j}\right\}\right) .
$$

We put

$$
R_{j}=\sup \left\{\|x\|: x \in E_{j}\right\}, r_{j}=\inf \left\{\left\|v_{k j}\right\|: 1 \leqq k \leqq N\right\}
$$

and assume that
(UTMS)

$$
\sum_{j=1}^{\infty}\left(R_{j+1} / r_{j}\right)^{2}<\infty .
$$

Under these conditions, we call $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ a UTMS set (ultra thin multisymmetric set).

The following theorem is a generalization of the Meyer-Schneider theorem (cf. [3], [10], and [2: Chapter XIV]).

ThEOREM 5. Let $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ be a UTMS set in \boldsymbol{R}^{N}, and define a $\operatorname{map} p_{E}: E=\Pi_{1}^{\infty} E_{j} \rightarrow \widetilde{E}$ as usual. Assume that p_{E} is one-to-one. Then we have:
(a) The $\operatorname{map} P_{E}: A(\widetilde{E}) \rightarrow A_{E}=\bigcirc_{1}^{\infty} A\left(E_{j}\right)$ induced by p_{E} is a topological isomorphism.
(b) \widetilde{E} is an S-set.
(c) \widetilde{E} is a set of uniqueness, i.e., $P F(\widetilde{E})=\{0\}$.

To prove this, we need several lemmas. Although the first two of these lemmas are well-known, we give a complete proof to make the paper self-contained.

For $\gamma=\left(\gamma_{k}\right)_{1}^{N}$ and $x=\left(x_{k}\right)_{1}^{N} \in \boldsymbol{R}^{N}$, write

$$
\gamma(x)=e_{\gamma}(x)=e^{i_{\gamma} x}=\exp \left[i\left(\gamma_{1} x_{1}+\cdots+\gamma_{N} x_{N}\right)\right]
$$

If u is a unit vector in \boldsymbol{R}^{N} and $\phi \in C^{1}\left(\boldsymbol{R}^{N}\right)$, we define

$$
\begin{equation*}
\left(D_{u} \phi\right)(\gamma)=\sum_{1}^{N} u_{j} \frac{\partial \phi}{\partial \gamma_{j}}(\gamma) \tag{N}
\end{equation*}
$$

which is the derivative of ϕ in the direction of u. We also write $S_{l}=$ $\left\{x \in \boldsymbol{R}^{N}:\|x\| \leqq l\right\}$ for $l>0$.

Lemma 5.1. (Bernstein's inequality). If $P \in P M\left(S_{l}\right)$, then we have

$$
\left\|D_{u}^{k} P\right\|_{C\left(\boldsymbol{R}^{N}\right)} \leqq l^{k}\|P\|_{P M} \quad(k=1,2, \cdots)
$$

for every unit vector u in \boldsymbol{R}^{N}.
Proof. Let f_{l} be the $4 l$-periodic odd function on \boldsymbol{R}^{1} defined by

$$
f_{l}(t)=\left\{\begin{array}{cl}
t & (0 \leqq t \leqq l) \\
2 l-t & (l \leqq t \leqq 2 l)
\end{array}\right.
$$

Then we have

$$
\begin{equation*}
f_{l}(t)=l \sum_{n \neq 0}\left\{\left(\sin \frac{n \pi}{2}\right) /\left(\frac{n \pi}{2}\right)\right\}^{2}(-i)^{n} \exp (i n \pi t / 2 l) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\|f\|_{B(\boldsymbol{R})}=l \sum_{n \neq 0}\left\{\left(\sin \frac{n \pi}{2}\right) /\left(\frac{n \pi}{2}\right)\right\}^{2}=l \tag{2}
\end{equation*}
$$

To prove (1), we identify $[-2 l, 2 l$) with T in the usual way and compute the Fourier coefficients of $f_{l}(t-l)+l$. (2) follows from $\left\|f_{l}\right\|_{B(R)}=f_{l}(l)=l$.

Let now $P \in P M\left(S_{l}\right)$ be given. Since

$$
\hat{P}(\gamma)=\left\langle e^{-i \gamma x}, P_{x}\right\rangle \quad\left(\gamma \in \boldsymbol{R}^{N}\right)
$$

we have $\hat{P} \in C^{\infty}\left(\boldsymbol{R}^{N}\right)$ and

$$
\begin{equation*}
\left(D_{u}^{k} \hat{P}\right)(\gamma)=\left\langle(-\mathrm{iux})^{k} e^{-i \gamma x}, P_{x}\right\rangle \quad\left(\gamma \in \boldsymbol{R}^{N} ; k=1,2, \cdots\right) \tag{3}
\end{equation*}
$$

for any unit vector u in \boldsymbol{R}^{N}. Notice that $|u x| \leqq\|x\|$ by Schwarz' inequality, and so

$$
\begin{equation*}
f_{l}(u x)=u x \tag{4}
\end{equation*}
$$

$\left(x \in S_{l}\right)$.
Since S_{l} is an S-set [4: Theorem 7.5.4], we have by (2), (3), and (4)

$$
\begin{aligned}
& \left|\left(D_{u}^{k} \hat{P}\right)(\gamma)\right|=\left|\left\langle f_{l}(u x)^{k} e^{-i \gamma x}, P_{x}\right\rangle\right| \\
& \quad \leqq| | f_{l}(u x)^{k} e^{-i \gamma^{\prime} x}\left\|_{B\left(R^{N}\right)} \cdot\right\| P \|_{P M} \\
& \quad \leqq\left\{\left\|f_{l}\right\|_{B\left(\mathbf{R}^{1}\right)}\right\}^{k}\|P\|_{P M}=l^{k}\|P\|_{P M} .
\end{aligned}
$$

This completes the proof.
Lemma 5.2. (Schneider's inequality [10]). Let $P \in P M\left(S_{l}\right), l>0$, and $\eta>0$ be given. Let also K be any η-dense subset of \boldsymbol{R}^{N}. Then we have

$$
\sup _{r \in K}|\hat{P}(\gamma)| \geqq\left\{1-2^{-1}(l \eta)^{2}\right\}\|P\|_{P M}
$$

Proof. We first prove this assuming $P \in P F\left(S_{l}\right)$, i.e., $\hat{P} \in C_{0}\left(R^{N}\right)$. Then there exists a $\gamma_{0} \in \boldsymbol{R}^{N}$ such that

$$
\left|\hat{P}\left(\gamma_{0}\right)\right|=\|\hat{P}\|_{C\left(\mathbf{R}^{N}\right)}=\|P\|_{P M}
$$

Without loss of generality, we may assure $\hat{P}\left(\gamma_{0}\right) \geqq 0$. Choose any $\gamma_{1} \in K$ so that $\left\|\gamma_{0}-\gamma_{1}\right\| \leqq \eta$. Let u be the unit vector in the direction of $\gamma_{1}-\gamma_{0}$. Thus

$$
\gamma_{1}=\gamma_{0}+t u, \quad \text { where } \quad t=\left\|\gamma_{1}-\gamma_{0}\right\| \leqq \eta
$$

By the Taylor formula, we then have

$$
\begin{aligned}
& \operatorname{Re} \hat{P}\left(\gamma_{1}\right)=\operatorname{Re} \hat{P}\left(\gamma_{0}+t u\right) \\
& \quad=\operatorname{Re}\left[\hat{P}\left(\gamma_{0}\right)+t\left(D_{u} \hat{P}\right)\left(\gamma_{0}\right)+\frac{t^{2}}{2}\left(D_{u}^{2} \hat{P}\right)\left(\gamma^{\prime}\right)\right] \\
& \quad=\|P\|_{P M}+0+\frac{t^{2}}{2} \operatorname{Re}\left(D_{u}^{2} \hat{P}\right)\left(\gamma^{\prime}\right)
\end{aligned}
$$

for some $\gamma^{\prime} \in \boldsymbol{R}^{N}$. It follows from Bernstein's inequality that

$$
\begin{aligned}
& \sup _{r \in K}|\hat{P}(\gamma)| \geqq\left|\operatorname{Re} \hat{P}\left(\gamma_{1}\right)\right| \\
& \quad \geqq\left(1-2^{-1} t^{2} l^{2}\right)\|P\|_{P M} \geqq\left(1-2^{-1} \eta^{2} l^{2}\right)\|P\|_{P M}
\end{aligned}
$$

Let now $P \in P M\left(S_{l}\right)$ be arbitrary. Given $\varepsilon>0$, take any probability measure $\mu_{\varepsilon} \in M\left(S_{\varepsilon}\right) \cap P F\left(S_{\varepsilon}\right)$. Then we have

$$
P * \mu_{\varepsilon} \in P M\left(S_{l+\varepsilon}\right) \text { and } \widehat{P * \mu_{\varepsilon}}=\hat{P} \hat{\mu}_{\varepsilon} \in C_{0}\left(R^{N}\right) .
$$

It follows from the first case that

$$
\begin{aligned}
\sup _{\gamma \in K}|\hat{P}(\gamma)| & \geqq \sup _{\gamma \in K}\left|\widehat{P * \mu_{\varepsilon}}(\gamma)\right| \\
& \geqq\left\{1-2^{-1}(\eta(l+\varepsilon))^{2}\right\}\left\|P * \mu_{\varepsilon}\right\|_{P M} .
\end{aligned}
$$

Since $\lim _{\varepsilon} \hat{\mu}_{\varepsilon}(\gamma)=1 \forall \gamma \in \boldsymbol{R}^{N}$, this yields the desired inequality.
Lemma 5.3. Let $\left\{v_{k}\right\}_{1}^{N}$ be an orthogonal basis in \boldsymbol{R}^{N} and E any subset of $G p\left(\left\{v_{k}\right\}_{1}^{N}\right)$. Then the set

$$
E^{\perp}=\left\{\gamma \in \boldsymbol{R}^{N}: e^{i r x}=1 \quad \forall x \in E\right\}
$$

is η-dense in \boldsymbol{R}^{N}, where $\eta=\pi\left(\sum_{1}^{N}\left\|v_{k}\right\|^{-2}\right)^{1 / 2}$.
Proof. It suffices to note that E^{\perp} contains

$$
G p\left(\left\{v_{k}\right\}_{1}^{N}\right)^{\perp}=\left\{\sum_{k=1}^{N} n_{k} 2 \pi\left\|v_{k}\right\|^{-2} v_{k}: n \in \boldsymbol{Z}^{N}\right\}
$$

Lemma 5.4. Let E be a finite set in \boldsymbol{R}^{N}, and $0<l<\infty$. Suppose that E^{\perp} is η-dense in R^{N} for some $0<\eta<2^{1 / 2} / l$. Then

$$
\sup _{r, \beta \in \mathbb{R}^{N}}\left|\sum_{x \in E} \hat{Q}_{x}(\gamma) e^{-i \beta x}\right| \leqq\left\{1-\frac{(l \eta)^{2}}{2}\right\}^{-1}\left\|\sum_{x \in E} Q_{x} * \delta_{x}\right\|_{P M}
$$

holds for every finite subset $\left\{Q_{x}: x \in E\right\}$ of $P M\left(S_{l}\right)$. Here δ_{x} is the unit mass at x.

Proof. Let $\left\{Q_{x}: x \in E\right\} \subset P M\left(S_{l}\right)$ and $\beta \in \boldsymbol{R}^{N}$ be given. Then we have

$$
\begin{align*}
\left\|\sum_{x \in E} Q_{x} * \delta_{x}\right\|_{P M} & =\sup _{\gamma \in \mathbf{R}^{N}}\left|\sum_{x \in E} \hat{Q}_{x}(\gamma) e^{-i \gamma x}\right| \tag{1}\\
& \geqq \sup _{\lambda \in E^{\perp}}\left|\sum_{x \in E} \hat{Q}_{x}(\lambda+\beta) e^{-i \beta x}\right|
\end{align*}
$$

Let $Q \in P M\left(S_{l}\right)$ be the sum of all $e^{-i \beta x} Q_{x}, x \in E$. Since $E^{\perp}+\beta$ is η-dense in \boldsymbol{R}^{N}, it follows from Schneider's inequality that

$$
\sup _{\lambda \in E \pm}|\hat{Q}(\lambda+\beta)| \geqq\left\{1-\frac{(l \eta)^{2}}{2}\right\}\|Q\|_{P M}
$$

or, equivalently, that the last term in (1) is larger than or equal to

$$
\left\{1-\frac{(l \eta)^{2}}{2}\right\} \sup _{\gamma \in \mathbf{R}^{N}}\left|\sum_{x \in E} \hat{Q}_{x}(\gamma) e^{-i \beta x}\right| .
$$

Since $\beta \in R^{N}$ is arbitrary, this gives the desired inequality.
Lemma 5.5. Let $\alpha=(2 \pi N)^{-1}$, and let

$$
l_{j}=\sum_{k=j+1}^{\infty} R_{k} \quad \text { and } \quad \eta_{j}=\pi\left(\sum_{k=1}^{N}\left\|v_{k j}\right\|^{-2}\right)^{1 / 2} .
$$

To prove Theorem 5, we can assume the following:
(i) $r_{j}>4 \pi N l_{j}$ and $(1+\alpha) l_{j} \eta_{j}<1(j=1,2, \cdots)$.
(ii) The sets $\sum_{1}^{n} x_{j}+S_{\alpha r_{n}}, x_{j} \in E_{j}(1 \leqq j \leqq n)$, are disjoint for each $n=1,2, \cdots$.

Proof. We first prove that (i) implies (ii). Fix any $n \in N$, and take two distinct points $\sum_{1}^{n} x_{j}$ and $\sum_{1}^{n} y_{j}$ of $\sum_{1}^{n} E_{j}$. If $1 \leqq k \leqq n$ is the first number such that $x_{k} \neq y_{k}$, then we have

$$
\left\|\sum_{1}^{n} x_{j}-\sum_{1}^{n} y_{j}\right\| \geqq r_{k}-2 l_{k}
$$

But (i) assures that $r_{j}-2 l_{j}>r_{j+1}-2 l_{j+1}$ for all j, and so

$$
\left\|\sum_{1}^{n} x_{j}-\sum_{1}^{n} y_{j}\right\| \geqq r_{n}-2 l_{n}
$$

Moreover, we have

$$
\begin{aligned}
\left(r_{n}-2 l_{n}\right)-2 \alpha r_{n} & =(1-2 \alpha) r_{n}-2 l_{n} \\
& >\left\{1-2 \alpha-(2 \pi N)^{-1}\right\} r_{n}>0
\end{aligned}
$$

by (i) and the definition of α. Thus (i) implies (ii).
Take now any real a so large that

$$
\begin{equation*}
a>4 \pi N \quad \text { and } \quad(1+\alpha) \pi N^{1 / 2} / a<1 \tag{1}
\end{equation*}
$$

By (UTMS), there exists a natural number j_{0} such that $r_{j}>(a+1) R_{j+1}$ for all $j>j_{0}$. Since $R_{j} \geqq r_{j}$, it follows that $j>j_{0}$ implies

$$
\begin{align*}
& r_{j}>a R_{j+1}+r_{j+1}>a R_{j+1}+a R_{j+2}+r_{j+2} \tag{2}\\
& \quad \cdots>a \sum_{k=j+1}^{\infty} R_{k}=a l_{j}
\end{align*}
$$

Notice now that $\eta_{j} \leqq \pi N^{1 / 2} / r_{j}$. It follows from (1) and (2) that $j>j_{0}$ implies

$$
(1+\alpha) l_{j} \eta_{j}<(1+\alpha) a^{-1} r_{j} \cdot \pi N^{1 / 2} / r_{j}<1
$$

In other words, (i) is the case for every $j>j_{0}$.
Let now $t_{1}, \cdots, t_{j_{0}}$ be any real positive numbers. Put $E_{j}^{\prime}=E_{j}$ if $j>j_{0}, E_{j}^{\prime}=t_{j} E_{j}$ if $j \leqq j_{0}$, and let $\left(r_{j}^{\prime}\right)_{1}^{\infty},\left(\eta_{j}^{\prime}\right)_{1}^{\infty}$ and $\left(l_{j}^{\prime}\right)_{1}^{\infty}$ be the numerical sequences corresponding to $\left(E_{j}^{\prime}\right)_{1}^{\infty}$. We choose successively $t_{j_{0}}, \cdots, t_{2}, t_{1}$ so that the above three sequences satisfy (i).

Then both $\widetilde{E}=\sum_{1}^{\infty} E_{j}$ and $\widetilde{E}^{\prime}=\sum_{1}^{\infty} E_{j}^{\prime}$ are disjoint unions of the same number of translates of $\sum_{j>j_{0}} E_{j}$. Therefore it is trivial that if $\widetilde{E^{\prime}}$ has the required properties in Theorem 5, then so does \widetilde{E}. This completes the proof.

Lemma 5.6. Suppose that the UTMS set \widetilde{E} satisfies condition (i) in Lemma 5.5. Let $\left\{Q_{x_{1} \cdots x_{n}} ; x_{j} \in E_{j}, 1 \leqq j \leqq n\right\}$ be a finite subset of $P M\left(S_{\alpha r_{n}}\right)$, n being a natural number. Then we have

$$
\begin{aligned}
& \sup \left\{\left|\sum_{x_{j} \in E_{j}, 1 \leq j \leq n} \hat{Q}_{x_{1} \cdots x_{n}}(\gamma) \exp \left(-i \sum_{j=1}^{n} \gamma_{j} x_{j}\right)\right|: \gamma, \gamma_{j} \in \boldsymbol{R}^{N}\right\} \\
& \\
& \leqq\left(2 / C_{n}\right) \sup \left\{\left|\sum_{x_{j}} \hat{Q}_{x_{1} \cdots x_{n}}(\gamma) \exp \left(-i \gamma \sum_{j=1}^{n} x_{j}\right)\right|: \gamma \in \boldsymbol{R}^{N}\right\},
\end{aligned}
$$

where $C_{n}=\Pi_{1}^{n-1}\left\{1-\left(\eta_{j} l_{j}\right)^{2}\right\}$.
Proof. Write

$$
\begin{aligned}
s_{n} & =\alpha r_{n} ; s_{n-1}=s_{n}+R_{n}=\alpha r_{n}+R_{n} ; \cdots ; \\
s_{1} & =s_{2}+R_{2}=\alpha r_{n}+R_{n}+\cdots+R_{2} .
\end{aligned}
$$

Let $\gamma_{1}, \cdots, \gamma_{n} \in \boldsymbol{R}^{N}$ be fixed. In the expression

$$
\phi(\gamma)=\sum_{x_{n} \in E_{n}}\left\{\sum_{\substack{x_{j} \leq E_{j} \\ 1 \leqq j<n}} \hat{Q}_{x_{1} \cdots x_{n}}(\gamma) \exp \left(-i \sum_{j=1}^{n-1} \gamma_{j} x_{j}\right)\right\} e^{-i \gamma_{n} x_{n}},
$$

the functions of γ in the brackets are Fourier transforms of pseudomeasures in $P M\left(S_{s_{n}}\right)$. Since E_{n}^{\perp} is η_{n}-dense in \boldsymbol{R}^{N} by Lemma 5.3, and since $\eta_{n} s_{n} \leqq \pi N^{1 / 2} \alpha<2^{1 / 2}$, it follows from Lemma 5.4 that

$$
\begin{aligned}
& \sup _{r}|\phi(\gamma)| \leqq A_{n}^{-1} \sup _{r}\left|\sum_{x_{n} \in E_{n}}\left\{\sum_{x_{j} \in E_{j}, 1 \leq j<n}\right\} e^{-i \gamma x_{n}}\right| \\
& \quad=A_{n}^{-1} \sup _{r}\left|\sum_{\substack{x_{j} \in E_{j} \\
1 \leqq j<n}}\left\{\sum_{x_{n} \in E_{n}}\left(Q_{x_{1} \cdots x_{n}} * \delta_{x_{n}}\right) \wedge(\gamma)\right\} \exp \left(-i \sum_{j=1}^{n-1} \gamma_{j} x_{j}\right)\right|,
\end{aligned}
$$

where $A_{n}=1-\left(\eta_{n} s_{n}\right)^{2} / 2$. Notice that

$$
\operatorname{supp}\left\{\sum_{x_{n} \in E_{n}}\left(Q_{x_{1} \cdots x_{n}} * \delta_{x_{n}}\right)\right\} \subset S_{s_{n}}+S_{R_{n}}=S_{s_{n-1}}
$$

for all $x_{j} \in E_{j}, 1 \leqq j<n$. Therefore an inductive argument applies, and we have

$$
\begin{aligned}
\sup _{r} & \left|\sum_{x_{j} \in E_{j}, 1 \leq j \leq n} \hat{Q}_{x_{1} \cdots x_{n}}(\gamma) \exp \left(-i \sum_{j=1}^{n} \gamma_{j} x_{j}\right)\right| \\
& \leqq\left(\mathrm{A}_{n} \cdots A_{2} A_{1}\right)^{-1} \sup _{r} \mid \sum_{x_{j}}\left(Q_{x_{1} \cdots x_{n}} * \delta_{x_{n}} * \cdots * \delta_{x_{1}} \wedge \wedge(\gamma) \mid\right. \\
& \leqq 2 C_{n}^{-1} \sup _{\gamma}\left|\sum_{x_{j}} \hat{Q}_{x_{1} \cdots x_{n}}(\gamma) \exp \left(-i \gamma \sum_{j=1}^{n} x_{j}\right)\right| .
\end{aligned}
$$

Since $\gamma_{1}, \cdots, \gamma_{n} \in \boldsymbol{R}^{N}$ are arbitrary, this yields the required inequality.
Proof of Theorem 5. We will assume the two additional conditions (i) and (ii) given in Lemma 5.5. Notice that then

$$
C_{0}=2 \lim _{n} C_{n}^{-1}=2 \coprod_{\jmath=1}^{\infty}\left\{1-\left(\eta_{j} l_{j}\right)^{2}\right\}^{-1}<\infty,
$$

since $\eta_{j} l_{j} \leqq\left(\pi N^{1 / 2} / r_{j}\right) \cdot\left(R_{j+1}+l_{j+1}\right) \leqq 2 \pi N R_{j+1} / r_{j}$ and so $\sum_{1}^{\infty}\left(\eta_{j} l_{j}\right)^{2}<\infty$ by condition (UTMS). Notice also that (i) implies

$$
\sum_{j=n+1}^{\infty} E_{j} \subset S_{l_{n}} \subset S_{\alpha r_{n}} \quad(n=1,2, \cdots)
$$

To prove part (a), take any $n \in N$ and any n vectors $\gamma_{1}, \cdots, \gamma_{n}$ in \boldsymbol{R}^{N}. We define a function $f=f_{r_{1} \cdots \gamma_{n}} \in A\left(\sum_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)$ by setting

$$
\begin{equation*}
f\left(\sum_{j=1}^{n} x_{j}+S_{\alpha r_{n}}\right)=\exp \left(i \sum_{j=1}^{n} \gamma_{j} x_{j}\right) \quad \forall\left(x_{j} \in E_{j}\right)_{1}^{n}, \tag{1}
\end{equation*}
$$

which is well-defined by (ii).
We then claim that

$$
\begin{equation*}
\left\|f_{\gamma_{1} \cdots \gamma_{n}}\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)} \leqq C_{0}, \quad \text { and } \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
P_{E}\left(f_{\gamma_{1} \cdots \gamma_{n}}\right)=e_{r_{1}} \bigcirc \cdots \odot e_{\gamma_{n}} . \tag{1.2}
\end{equation*}
$$

In fact, (1.2) is trivial. To prove (1.1), take any $Q \in A\left(\sum_{1}^{n} E_{j}+\right.$ $\left.S_{\alpha r_{n}}\right)^{\prime}=P M\left(\sum_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)$ (notice that $\sum_{1}^{n} E_{j}+S_{\alpha r_{n}}$ is a finite disjoint union of translates of the S-set $S_{\alpha r_{n}}$). Write

$$
Q=\sum_{x_{j} \in E_{j}, 1 \leq j \leqq n} Q_{x_{1} \cdots x_{n}} * \delta_{x_{1}+\cdots+x_{n}}
$$

with $Q_{x_{1} \cdots x_{n}} \in P M\left(S_{\alpha r_{n}}\right)$. Then we have

$$
\begin{aligned}
\langle f, Q\rangle & =\sum_{x_{j}}\left\langle f, Q_{x_{1} \cdots x_{n}} * \delta_{x_{1}+\cdots+x_{n}}\right\rangle \\
& =\sum_{x_{j}} \hat{Q}_{x_{1} \cdots x_{n}}(0) \exp \left(i \sum_{j=1}^{n} \gamma_{j} x_{j}\right) .
\end{aligned}
$$

Therefore, by Lemma 5.6, we have

$$
|\langle f, Q\rangle| \leqq C_{0}\|Q\|_{P M} \quad \forall Q \in A\left(\sum_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)^{\prime}
$$

This, combined with the Hahn-Banach Theorem, yields (1.1).
It is now easy to see that P_{E} is a topological isomorphism of $A(\widetilde{E})$ onto A_{E} and satisfies

$$
\left\|P_{E} f\right\|_{A_{E}} \leqq\|f\|_{A(\tilde{E})} \leqq C_{0}\left\|P_{E} f\right\|_{A_{E}} \quad \forall f \in A(\widetilde{E})
$$

(cf. the proof of part (a) of Theorem 1).
To prove part (b), fix a natural number n, and define an algebra homomorphism

$$
L_{n}: A(\widetilde{E}) \rightarrow A\left(\sum_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)
$$

by setting

$$
\begin{equation*}
\left(L_{n} f\right)\left(\sum_{1}^{n} x_{j}+S_{\alpha r_{n}}\right)=f\left(\sum_{1}^{n} x_{j}\right) \quad \forall\left(x_{j} \in E_{j}\right)_{1}^{n} \tag{2}
\end{equation*}
$$

We then claim that

$$
\left\|L_{n} f\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S_{\alpha r_{n}}\right)} \leqq C_{0}\|f\|_{A(\tilde{E})} \quad \forall f \in A(\widetilde{E})
$$

In fact, it suffices to prove this for $f=e_{\gamma}$ with $\gamma \in \boldsymbol{R}^{N}$. But then $f=$ $f_{\gamma_{1} \cdots \gamma_{n}}$, where $\gamma_{1}=\cdots=\gamma_{n}=\gamma$. Thus (2.1) is a special case of (1.1).

We next prove

$$
\begin{equation*}
\left\|L_{n} e_{\gamma}-e_{\gamma}\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S l_{n}\right)} \leqq M C_{0}\|\gamma\| \cdot l_{n} \tag{2.2}
\end{equation*}
$$

for every $\gamma \in \boldsymbol{R}^{N}$, where M is an absolute constant. Fix $\gamma \in \boldsymbol{R}^{N}$, and set $l=l_{n}$. We have by (2.1)

$$
\begin{aligned}
& \left\|\left(L_{n} e_{r}\right)^{k}\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S_{l}\right)}=\left\|L_{n} e_{k r}\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S_{l}\right)} \\
& \leqq C_{0}\left\|e_{k r}\right\|_{A(\widetilde{E})}=C_{0} \quad(k=0, \pm 1, \pm 2, \cdots) .
\end{aligned}
$$

On the other hand, (2) shows

$$
\left|\arg \left[\left(\overline{L_{n} e_{r}}\right) e_{r}\right]\right| \leqq\|\gamma\| \cdot l \quad \text { on } \quad \sum_{1}^{n} E_{j}+S_{l}
$$

Thus (2.2) follows from Lemma 1 in [8].
Notice now $\sum_{n+1}^{\infty} E_{j} \subset S_{l_{n}}$ and so

$$
P M(\widetilde{E}) \subset A\left(\sum_{1}^{n} E_{j}+S_{l_{n}}\right)^{\prime}
$$

Given any $Q \in P M(\widetilde{E})$, we prove

$$
\begin{gather*}
L_{n}^{*} Q \in M\left(\sum_{1}^{n} E_{j}\right) \subset M(\widetilde{E}), \quad \text { and } \tag{2.3}\\
\left|\left(L_{n}^{*} Q\right)^{\wedge}(\gamma)-\widehat{Q}(\gamma)\right| \leqq M C_{0}\|\gamma\| l_{n}\|Q\|_{P M} \quad \forall \gamma \in \boldsymbol{R}^{N} . \tag{2.4}
\end{gather*}
$$

The definition (2) of L_{n} shows $\operatorname{supp} L_{n}^{*} Q$ is contained in the finite set
$\sum_{1}^{n} E_{j}$, and hence (2.3). If $\gamma \in \boldsymbol{R}^{N}$, we have by (2.2)

$$
\begin{aligned}
& \left|\left(L_{n}^{*} Q\right)^{\wedge}(\gamma)-\hat{Q}(\gamma)\right|=\left|\left\langle L_{n} e_{-r}-e_{-r}, Q\right\rangle\right| \\
& \quad \leqq\left\|L_{n} e_{-r}-e_{-r}\right\|_{A\left(\Sigma_{1}^{n} E_{j}+S_{l_{n}}\right)} \cdot\|Q\|_{P M} \\
& \quad \leqq M C_{0}\|\gamma\| \cdot l_{n} \cdot\|Q\|_{P M},
\end{aligned}
$$

which establishes (2.4).
We infer from (2.1), (2.3), and (2.4) that $M(\widetilde{E})$ is weak-* dense in $P M(\widetilde{E})$ and \widetilde{E} is therefore an S-set.

To prove part (c), let f be the characteristic function of the unit ball S_{1} divided by its volume (hence $\|f\|_{1}=\hat{f}(0)=1$). Set $f_{n}(x)=$ $\left.\left(\alpha r_{n}\right)^{-N} f\left(\alpha r_{n}\right)^{-1} x\right)$ for $n=1,2, \cdots$, so that each f_{n} is supported by $S_{\alpha r_{n}}$ and has Fourier transform $\hat{f}_{n}(\gamma)=\hat{f}\left(\alpha r_{n} \gamma\right), \gamma \in R^{N}$. We can choose a positive real number B_{0} so that $\gamma \in \boldsymbol{R}^{N}$ and $\|\gamma\| \geqq B_{0}$ imply $|\bar{f}(\alpha \gamma)|<$ $\left(2 C_{0}\right)^{-1}$. Notice then

$$
\begin{equation*}
\|\gamma\| \geqq B_{0} / r_{n} \Rightarrow\left|\hat{f}_{n}(\gamma)\right|<\left(2 C_{0}\right)^{-1} \quad(n=1,2, \cdots) \tag{3}
\end{equation*}
$$

Given $n \geqq 1, \mu \in M\left(\sum_{1}^{n} E_{j}\right)$, and $\gamma_{0} \in \boldsymbol{R}^{N}$, we now prove

$$
\begin{equation*}
\|\mu\|_{P M} \leqq C_{0} \sup \left\{|\mu(\gamma)|: \gamma \in \boldsymbol{R}^{N},\left\|\gamma-\gamma_{0}\right\| \leqq B_{0} / r_{n}\right\} \tag{3.1}
\end{equation*}
$$

First notice that $\operatorname{supp}\left(f_{n} * \mu\right) \subset \sum_{1}^{n} E_{j}+S_{\alpha r_{n}} . \quad$ Regarding $L^{1}\left(\boldsymbol{R}^{N}\right)$ as a subspace of $P M\left(\boldsymbol{R}^{N}\right)$ in the usual way, we have for every $g \in A(\widetilde{E})$

$$
\begin{aligned}
& \left\langle g, L_{n}^{*}\left(f_{n} * \mu\right)\right\rangle=\left\langle L_{n} g, f_{n} * \mu\right\rangle \\
& \quad=\int_{\Sigma_{1}^{n} E_{j}+S_{\alpha r_{n}}}\left(L_{n} g\right)(x) \cdot\left(f_{n} * \mu\right)(x) d x \\
& \quad=\sum\left\{\int_{\Sigma_{1}^{n} x_{j}+s_{\alpha r_{n}}} g\left(\sum_{1}^{n} x_{j}\right) f_{n}\left(x-\sum_{1}^{n} x_{j}\right) d x\right\} \mu\left(\left\{\sum_{1}^{n} x_{j}\right\}\right) \\
& \quad=\sum g\left(\sum_{1}^{n} x_{j}\right) \cdot \mu\left(\left\{\sum_{1}^{n} x_{j}\right\}\right)=\langle g, \mu\rangle
\end{aligned}
$$

where the sum \sum is taken over all $x_{j} \in E_{j}, 1 \leqq j \leqq n$. This shows $L_{n}^{*}\left(f_{n} * \mu\right)=\mu$. It follows from (2.1) and (3) that

$$
\begin{aligned}
& \|\mu\|_{P M}=\left\|L_{n}^{*}\left(f_{n} * \mu\right)\right\|_{P M} \leqq C_{0}\left\|f_{n} * \mu\right\|_{P M} \\
& \quad=C_{0} \sup _{r}\left|\hat{f}_{n}(\gamma) \hat{\mu}(\gamma)\right| \\
& \quad \leqq C_{0} \max \left\{\sup \left\{|\hat{\mu}(\gamma)|:\|\gamma\| \leqq B_{0} / r_{n}\right\},\|\mu\|_{P M} /\left(2 C_{0}\right)\right\}
\end{aligned}
$$

and so

$$
\|\mu\|_{P M} \leqq C_{0} \sup \left\{|\hat{\mu}(\gamma)|:\|\gamma\| \leqq B_{0} / r_{n}\right\}
$$

Replacing μ by $e_{-\gamma_{0}} \mu$, we thus have (3.1).
Take now any $Q \in P M(\widetilde{E})$. By (2.3) and (2.4), we have $L_{n}^{*} Q \in M\left(\sum_{1}^{n} E_{j}\right)$
and

$$
\begin{equation*}
\left|\left(L_{n}^{*} Q\right)^{\wedge}(\gamma)\right| \leqq|\hat{Q}(\gamma)|+M C_{0}\|\gamma\| l_{n}\|Q\|_{P M} \tag{3.2}
\end{equation*}
$$

for all $n \geqq 1$. We apply (3.1) to $\mu=L_{n}^{*} Q$ and have

$$
\begin{equation*}
C_{0}^{-1}\left\|L_{n}^{*} Q\right\|_{P M} \leqq \sup \left\{\left|\left(L_{n}^{*} Q\right)^{\wedge}(\gamma)\right|: \gamma \in \boldsymbol{R}^{N},\left\|\gamma-\gamma_{0}\right\| \leqq B_{0} / r_{n}\right\} \tag{3.3}
\end{equation*}
$$

for every $n \geqq 1$ and $\gamma_{0} \in \boldsymbol{R}^{N}$. It follows from (3.2) and (3.3) that

$$
\begin{align*}
C_{0}^{-1}\left\|L_{n}^{*} Q\right\|_{P M} \leqq & \sup \left\{|\hat{Q}(\gamma)|: \gamma \in \boldsymbol{R}^{N},\left\|\gamma-\gamma_{0}\right\| \leqq B_{0} / r_{n}\right\} \tag{3.4}\\
& +M C_{0}\left(\left\|\gamma_{0}\right\|+B_{0} / r_{n}\right) l_{n}\|Q\|_{P M}
\end{align*}
$$

Since $\gamma_{0} \in \boldsymbol{R}^{N}$ is arbitrary, we can replace it by any vector γ_{n} with $\left\|\gamma_{n}\right\|=$ $2 B_{0} / r_{n}$ for each n. Then (3.4) yields

$$
\begin{aligned}
C_{0}^{-1}\left\|L_{n}^{*} Q\right\|_{P M} \leqq & \sup \left\{|\hat{Q}(\gamma)|: \gamma \in \boldsymbol{R}^{N},\|\gamma\| \geqq B_{0} / r_{n}\right\} \\
& +3 M C_{0} B_{0}\left(l_{n} / r_{n}\right)\|Q\|_{P M},
\end{aligned}
$$

which shows

$$
C_{0}^{-1}\|Q\|_{P M} \leqq \varlimsup_{\gamma \rightarrow \infty}|\hat{Q}(\gamma)|
$$

since $L_{n}^{*} Q \rightarrow Q$ in the weak-* topology of $P M(\widetilde{E}), r_{n} \rightarrow 0$ and $l_{n} / r_{n} \rightarrow 0$ as $n \rightarrow \infty$.

This completes the proof of part (c) and Theorem 5 was established.
We now give four examples of "explicit" non S-sets in certain groups, although the first two of them are essentially contained in [8].

Examples of non S-sets. Let U be the union of the two open intervals ($0, \pi^{2} / 6-1$) and ($1, \pi^{2} / 6$). Then the following sets, denoted by the same notation \widetilde{E}_{a}, are non S-sets.
(1) Let G be the product group of any non-trivial compact abelian groups $G_{n}, n=1,2, \cdots$. Choose and fix a non-zero element $x_{n} \in G_{n}$ for each $n \geqq 1$. Put

$$
\widetilde{E}_{a}=\left\{\left(\varepsilon_{n} x_{n}\right)_{1}^{\infty} \in G: \varepsilon_{n} \in\{0,1\} \forall n, \text { and } \sum_{n=1}^{\infty} n^{-2} \varepsilon_{2 n-1} \varepsilon_{2 n}=a\right\}
$$

for $a \in U$.
(2) Let $G=\boldsymbol{T}$ or \boldsymbol{R}, and $p \geqq 3$ any natural number. Define

$$
\widetilde{E}_{a}=\left\{\sum_{n=1}^{\infty} \varepsilon_{n} p^{-n}: \varepsilon_{n} \in\{0,1\} \quad \forall n, \text { and } \sum_{n=1}^{\infty} n^{-2} \varepsilon_{2 n-1} \varepsilon_{2 n}=a\right\}
$$

for $a \in U$.
(3) Let $G=\boldsymbol{R}^{N}$, and $\left(x_{n}\right)_{1}^{\infty}$ any sequence of non-zero vectors such that $\sum_{1}^{\infty}\left(\left\|x_{n+1}\right\| /\|x\|_{n}\right)^{2}<1 / 2$. For each $a \in U$, put

$$
\widetilde{E}_{a}=\left\{\sum_{n=1}^{\infty} \varepsilon_{n} x_{n}: \varepsilon_{n} \in\{0,1\} \forall n, \quad \text { and } \sum_{n=1}^{\infty} n^{-2} \varepsilon_{2 n-1} \varepsilon_{2 n}=a\right\} .
$$

(4) Let $a=\left(a_{0}, a_{1}, \cdots\right)$ be any sequence of natural numbers $\geqq 2$, $G=\Delta(a)$ the group of the a-adic integers, and $u_{0}, u_{1}, u_{2}, \cdots$ the elements of $\Delta(a)$ defined as before. Choose any increasing sequence $\left(n_{j}\right)_{1}^{\infty}$ of natural numbers so that $\sum_{1}^{\infty} j / a\left(n_{j}, n_{j+1}-1\right)<\infty$, where $a(m, n)=a_{m} a_{m+1} \cdots a_{n}$ for $m<n$. Put

$$
\widetilde{E}_{a}=\left\{\sum_{j=1}^{\infty} \varepsilon_{j} u_{n_{j}}: \varepsilon_{j} \in\{0,1\} \forall j, \quad \text { and } \quad \sum_{j=1}^{\infty} j^{-2} \varepsilon_{2 j-1} \varepsilon_{2 j}=a\right\}
$$

for $a \in U$.
The proof that these sets are non S-sets mainly follows from Remark (a) in [8: p. 288]. We omit the details.

Remarks. (a) The set \widetilde{E} given in Theorem 3 is an S-set. The proof is similar to that of part (a) of Theorem 1, although we need a more subtle argument.
(b) We can use Bernstein's and Schneider's inequalities to improve the estimate of $\eta(d)$ given in Lemma 1 of [8]. Let $0<d<2 \sqrt{2}$, and $A(d)$ the restriction algebra of $A(T)$ to $[-d, d]$. Then we have

$$
\eta(d)=\left\|e^{i \alpha x}-1\right\|_{A(d)} \leqq|\alpha| d /\left(1-8^{-1} d^{2}\right) \quad \forall \alpha \in \boldsymbol{R}
$$

In fact, fix any $\alpha>0$. If $P \in P M([-d, d])$, then

$$
\begin{aligned}
& \left\langle e^{i \alpha x}-1, P_{x}\right\rangle=\left\langle\int_{0}^{\alpha} i x e^{i t x} d t, P_{x}\right\rangle \\
& \quad=\int_{0}^{\alpha}\left\langle i x e^{i t x}, P_{x}\right\rangle d t=-\int_{0}^{\alpha} \hat{P}^{\prime}(-t) d t
\end{aligned}
$$

It follows from Bernstein's and Schneider's inequalities that

$$
\begin{aligned}
\left|<e^{i \alpha x}-1, P_{x}\right\rangle \mid & \leqq \alpha\left\|P^{\prime}\right\|_{C(R)} \leqq \alpha d\|\hat{P}\|_{C(R)} \\
& \leqq \alpha d\left(1-8^{-1} d^{2}\right)^{-1}\|\hat{P}\|_{C(Z)}
\end{aligned}
$$

This, combined with the Hahn-Banach Theorem, yields the desired inequality.
(c) Most of the results in this paper is part of the author's lecture notes [9].

References

[1] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I. Structure of topological groups. Integration theory, group representations, Die Grundlehran der. math. Wissenschaften, Band 115, Springer-Verlag, Berlin and New York, 1963. MR 28\#158.
[2] L. - \AA. Lindahl and F. Poulsen, Thin sets in harmonic analysis, Marcel-Dekker, Inc. New York, 1971.
[3] Y. Meyer, Isomorphisms entre certain algèbres de restrictions, C. R. Acad. Sci. Paris, 265 (1967), Ser. A., 18-20. MR 37 \# 6672.
[4] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 \# 2808.
[5] S. Saeki, Spectral synthesis for the Kronecker sets, J. Math. Soc. Japan 21 (1969), 549-563. MR 40 \# 7733.
[6] S. SaEkI, The ranges of certain isometries of tensor products of Banach spaces, J. Math. Soc. Japan 23 (1971), 27-39.
[77] S. Saeki, A characterization of SH-sets, Proc. Amer. Math. Soc. 30 (1971), 497-503. MR 44 \# 731.
[$8 \downarrow$] S. Saeki, Tensor products of Banach algebras and harmonic analysis, Tôhoku Math. J. 24 (1972), 281-299.
[9] S. SAEKI, Tensor products in harmonic analysis (hand-written lecture notes), Kansas State University, 1973.
[10] R. Schneider, Some theorems in Fourier analysis on symmetric sets, Pacific J. Math. 31 (1969), 175-196.
[11] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris 260 (1965), 4668-4670; ibid. 260 (1965), 5165-5168; ibid. 260 (1965), 5997-6000. MR 31 \# 2567.
[12] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51-112. MR 39 \# 1911.

Kansas State University, Manhattan, Kansas 66506, U.S.A.
and
Tokyo Metropolitan University, Fukazawa-cho, Setagaya, Tokyo, Japan.

