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CERTAIN PRIMARY COMPONENTSOF THE IDEAL CLASS GROUP
OF THE Z,-EXTENSION OVER THE RATIONALS
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Abstract. We study, for any prime number, the triviality of certain primary compo-
nents of the ideal class group of tifg,-extension over the rational field. Among others, we
prove that ifp is 2 or 3 and is a prime number not congruent to 1-e modulo &2, then!
does not divide the class number of the cyclotomic fielg'tth roots of unity for any positive
integeru.

Introduction. Let p be any prime number. We denote By the ring ofp-adic integers,
and byB, the Z ,-extension over the rational fiel@, namely, the unique abelian extension
of Q, in the complex field”, whose Galois group ove® is topologically isomorphic to the
additive group ofZ,. Let P, denote the composite i@ of the cyclotomic fields ofp“th
roots of unity for all positive integers:

Q C By CPo =By ("/P)CC.

Given a prime numbefr different from p, let F denote the decomposition field bfor the
abelian extensio?,/ Q. We have shown in [4], mainly by algebraic investigation of the
analytic class number formula, that thelass group oB ., i.e., the/-primary component of
the ideal class group a8 is trivial if [ is sufficiently large with the degree @f bounded
(for the simplest case wheie = Q so thatp > 2, cf. [2, 3]). In this paper, pursuing or
refining our arguments of [2, 3, 4], we discuss the triviality of tradass group ofB . more
precisely than in [4] for the case wheFeis a quadratic field. It is verified, as a consequence,
that if p is 2 or 3 and? # 1(mod 4p?), then thel-class group ofP o, is trivial, namely,!
does not divide the class number of the cyclotomic fielghtth roots of unity for any positive
integeru.

The author expresses here his thanks to the referee for helpful comments.

1. Preliminaries. To begin with, we give some preliminaries in this brief section.The
distinct prime numberg and! in the introduction will be fixed throughout the paper.

For each integem > 0, let B,, denote the subfield a8, with degreep™, E,, the unit
group of B,,, andh,, the class number aB,,. Note thatBg = Q and, hencejg = 1. Class
field theory shows that, 1 dividesh, for every positive integet, because the prime ideal of
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B, _; dividing p is totally ramified for the extensioB,/B,_1. Furthermore, sinc8.,/ Q
is a p-extension, we have the following basic result.

LEMMA 1. Thel-classgroup of B istrivial if and only if / does not divide i,/ h,,—1
for any positive integer u.

In the rest of the paper, we fix a positive integarnder the condition that
n>2 if p=2
and, further,
n>3 if p=2,1=3 (mod§.
Let
t=1+p" or t=1+42"1,
according to whethep > 2 or p = 2. In the case > 2, put

n+l —27rtu/p”+l

B l—[ sin(2ru/p™+t)
e—2itu/ptl sin@mtu/pttl)’

Zntu/p

e2mitu/p"+t _

with « raging over the positive integers p"*1/2 such thau?~! = 1(mod p"*1); in the
casep = 2, put
eni/2”+2 B e_m»/zn+2
= e gz~ N5

Thenn is an element ofz,, called a circular (or cyclotomic) unit aB,,. Let t denote the re-
striction toB,, of the automorphism of (e/?"**) that mapg™/?" " to e™i/P"*™* . Clearly,
is a non-trivial element of the Galois group GB),/B,,—1). Leto denote the restriction tB,,
of the automorphism 0@ (e™/7"** that maps™//?"** to ¢ (P+D/P""* Theno generates

the cyclic group GalB,/ Q) and satisfies ”" " = :
GalB,/Q) = (o) 2 (tr) = Gal(B,/B,-1) .

Let ;% denote the group ring of Ga,,/ Q) over Z, the ring of (rational) integers. Note that
E, as well as the multiplicative group &, becomes afR-module in the obvious manner.
Now, to state another basic result, we first deal with the gase2. Let

__1+'p*

G 5

so thatZ[w] is the ring of algebraic integers in

Q) = Q(/p"),

the unique quadratic subfield & . This coincides with the decomposition fietdof / for
P/ Qifand only if/ = g% (mod p?) for some primitive rooy modulop®. Let R be the set
of positive quadratic residues modyismaller tharp:

R:{meZ‘0<m<p, (ﬂ>=1}.
p
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As is well-known,

o = Z eZm’m/p )

meR

D= E .
meR

Letas anday be integers such thaf +aow is a non-zero element of a prime ideal@f./p*)
dividing /. In other words, we are given a pdiri, ap) € Z x Z such that divides

1_p* as 2 p*a2
a%—ala2+ 2 a%=<a1__ _ 42’

We define an elemeidt of R by

the norm ofay + axw for Q(/p*)/ Q. We may therefore suppose that
a1 >0, 2a1>a2>0.
We next deal with the cage = 2. Evidently, the quadratic fields containedin, are
Q). QW-2), 0QW2:;

but F cannot beQ(+/2), since the extensio® (¢™/8)/ Q(v/2) is not cyclic. The condition
F = Q(i) is equivalent to the congruente= 5(mod 8, while the conditionF = Q(v/—2)

is equivalent to the congruenée= 3(mod 8. When! is congruent to 5 modulo 8, we put
2% in ,, and take aga1, ap) the pair of positive integers such that

w=1Ii,puto =o
lzaf—i—a%, a1 > ar.
When! is congruent to 3 modulo 8, we let
w=v—2=e"t A 5= 72 e,
and take asaj, ap) the pair of positive integers such that
l=a?+243.

LEMMA 2. Assumethat F isaquadratic field and! dividesh,, / h,—1. If p isodd, then
nita® gr na1—a2=a2 jsan [th power in E,. If p isequal to 2, then n@1 192 or n91~%% jsan
[th power in E,,.

PROOF. Let f = p"~1(p —1). Foranyy e Z[eZ"!/P"], we put

f
-1
Yo = Zcuau )
u=1

where the integers,, . .., ¢y are uniquely determined by

S
y =3 ce2nibir"
u=1
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We also puty =  or 7 = 2, according to whethes > 2 or p = 2. Sincej™ ' ++7+1 = 1
by the definition ofy, it then follows that

f](a+ﬁ)0 — f]a0+ﬁo’ ﬁ(“ﬂ)t‘i — 7'70(6/30

for every pair(a, B) in Z[eZ"/P"] x Z[¢%*/P"]. In particular, we have

. 0y )

ne=n.
Now, let[ be a prime ideal 0@ (w) containing{l, a1 +aow}. By the assumptiori,and/(~ are
the prime ideals o2 (w) dividing /. Furthermore]l~1 containsz; + a2w®, wheres denotes
the non-trivial automorphism of the fiel@(w). Hence, in the case whege > 2 so that
a1 + asw® = a1 — a» — axw, we obtain our lemma from [4, Lemma 2]. In the case= 2,
sincea +a>w® = a1 —axw, we still deduce from [4, Lemma 2] thag®t42®)2 or (y41—922)2
is an/th power inE,; but this conclusion means thefti 42 or n?1-92% s anlth power in
E,. ]

2. Theminimal Z,-extension with p odd. We suppose that > 2 throughout this
section. Let

4
@ if p=1 (mod4.
= 2
% if p=3 (mod4.

Let

A =log( VAP +3 — D¥2(p— 1)\ , log(p/m) + 7%/ @2p*)
(4log 2 pl/4 20(p — 1) )
wherep denotes the Euler function as usual. The goal of this section is to prove the following
result.

THEOREM 1. Assumethat F = Q(/p%), i.e, | = g?(mod p?) for some primitive
root ¢ modulo p?. Then the I-class group of B istrivial if

_ A -De(p—DA?( | loga?
- 4(log22,/p A—-1)"
It should be added that exceeds 1 by definition. To prove the above theorem, we start
with the following fundamental lemma (cf. Problem 8 for Chapter V of Vinogradov [6]).

LEMMA 3. Letky and ko beeither 1 or —1. Let T be the number of positive integers

m < p — 2 satisfying
G)=n (557
— | =k1, — | = k2.
p P

1
T = Z(p —2— /(1(—1)(1’71)/2 — K2 — K1K2) .

Then
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PrROOF.  For each integern relatively prime top, letm denote the positive integer less
thanp such thatnm = 1(mod p). Asthesefm € Z | 1 < m < p — 2} is invariant under
the mapn — m of the difference seZ \ pZ into itself, we see that

() £ 505 £0)- ()

m=1 m=1 m=1 m'=1
Hence,
-2
1% 1
r=3 X (14m(5))(1=("))
m=1 p p

1072 m m+1 m(m + 1)

== 1+ — ) +xo + k12| ———
4= p p p

1 -1 1
- 3-2-n(25)-o(3) ) :
4 )2 )2

For each algebraic numbey let ||«| denote the maximum of the absolute values of all
conjugates ofr over Q. We then find that

1Byl < 1By, 18" = 181"
for any algebraic numbes, y, and any positive integex. Let

o =]Je"—¢c™.

whereu ranges over the positive integers less tpén!/2 such thau”~1 = 1(mod p"*1).
By the definitions of; andz,

é‘ _ ezj.”-/p)H»l

77 291—‘[.

We put
sin(ru/p"t1)
sin(2mtmu / pntl)

wherem ranges over the positive integetsp. We also put

1
mip_z,(ﬂ)z_l},
)4

R_={meR‘3§m,(mT)=—1}=R\({m+1|meR}U{1}).

bl

T = max||or ™" | = max
ax (|64 || = max| ] |
u

R+={mER

AStOR+,
m+1llmeR)={m+1|meR}\(RU{p).

LEMMA 4. Assumethat F = Q(/p*) and ! dividesh,,/ h,—1.
(i) If p=1(mod 9, then

/< (al+ (p— 1)a2>|ogT

4 log2 "
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(i) If p =3(mod 4, then

l < (max(al, )+ P 3)a2) log

4 log2 "’

PROOF. It follows from Lemma 2 that eithep(-D(atad) —  patad of
gU-D)a—az—az®) — par—az—a2é jg gnJth power in E,. Also, it is known thath; = 1 if
p = 3. Hence, by [4, Lemma 3],

(1) 2l max(”Q(l*T)(alJrazﬁ))”’ ”9(1*0((11*“2*“25))”) )

Let us first consider the cage= 1(mod 4. Since the definitions ab, R, andR_ yield

QA-—Do=1+ Z " —1- Z L

meR_ meR
we see that
(1= 7)(a1+a2d) = (a1~ az)(1~ T)+az( > rm“)
meR_ meR
= (a2 —a)(r—1) +a2( PR rm“) :
meR_ meR
(1-1)(a1—az —aw) =a1(l—1) + a2< Z Tl Z r'") .
meR meR_
Furthermore, Lemma 3yield®_| = |R.| = (p—1)/4. Therefore, noting thati1 —az| < a1

and using (1), we obtain

2l yait(p—Daz/4

Assume next thap = 3(mod 4, so that

Al-1o=1+ Z " — Z it

meR_ meRy
In the casei1 > ap, we have

1—-1)(a1+ a®) = (a1 —a2x)(1 — 1) +a2<1+ Z ™ — Z tm+l) ,

meR_ meRy

(1—=1)(a1 —az — ax®) = (a1 — a2)(1 — t)+a2( Z AR Z r'").

meR meR_
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In the caser; < ap, we have, for any € R,

A —1)(a1 + axd)
=a1(1— 1Y + (a2 — ap)(r — ¢t + a2< Z ™ — Z rm+1> ,

meR_ meR\{c}

(1—1)(a1 — a2 — ax®)

=(a—a)@T D 4+azTr -0+ a2< Z o+l Z rm> .

meR;\{c} meR_
Lemma 3 implies, however, theR_| = |R4| — 1 = (p — 3)/4. Therefore, in virtue of (1),
ol - rat(p=3a/4 o o _ Y (PtDaz/4

according to whethar; > a2 oraz < ap. O

Letag be the ratio, td, of the absolute value of the norm @f + aow for Q(/p*)/ Q:

1-p* »
az

lag = ajz_ —aiaz +

Obviously,ag is a positive integer. The next lemma is based on Problem 2, Section 26, and
Problem 2, Section 30, of Takagi [5].

LEMMA 5. Theintegersa; and az can be taken as follows:

a1+ axw + la1 — a2 — axw| < /21 /p when p=1 (mod4,

aoi\/g when p=3 (mod 4.

PROOF Let[ be a prime ideal o2 (,/p*) dividing / and, as in the proof of Lemma 2,
let § be the non-trivial automorphism a®(,/p*). Takei1, A2 € Z[w] such that{A1, A2}
forms a free basis of the additive grouplofhen

IMAS —22r = 1.
Now assume thgh = 1(mod 4. As
|+ 22 = 28) — (i1 = 2D G2+ 29 = 20502 — mAS| = 21 /p .

it follows from Minkowski’s lattice theorem that there exists a gaif, m2) in Z x Z\ {(0, 0)}
for which

|+ 2Dm1+ (G2 +2)mal <2 /p, | —ADm1+ (2 = Apma| < /2.
Therefore, by means of the triangle inequality, we have

|aama-+ioma| + [Ama + Amo)|

1
< 21+ ADma + 2 + 2)ma| + | — A)m1 + (ka2 — A3)ma))

<4/2L/p.



266 K. HORIE

Obviously, there exists a pain1, u2) € Z x Z such that
lur + uzw| = [Aamy + Aomz|, u1 >0.
If up <0, put
b1 =u1—uz2, bz=—uz;
if up > 0, put
by = maxuy, u2 —u1), br=uo.

It is then easy to check thai + bow belongs to eitheror/~1 and that

b1+ bw + |b1 — b2 — bow| < /2\/p, 2b1>Db2>0, b1>0.

Thus, (b1, b2) can be taken a1, az) satisfying the condition of the lemma.
Assume nextthgb = 3(mod 4. Replacing.; by —11 if necessary, we may also assume
that the imaginary part dfl)gl is positive:

MAS — Ao =1/ —p.
As is well-known, there exist integers, c2, m1, m2 for which

Cl)\l)nz_l + c2

1 1
cimp —comy =1, e{zeC‘—ESRe(z)<§,lzlzl},

mlklkgl + mo
where Réz) denotes the real part of eagke C. We then see that

clklkgl + c2
ml)»]_)\gl + mo
_ (uer + docp) (Rm1 + Agm2)
 (ama + kam2)(ASma + Agmo)
2(1a1l%camy + |22lPcam2) + (MAS + A3A2) (camz + coma) + A1ad — Ajrz
B 2|x1m1 + Aomo|? '

Furthermore, the imaginary part of this complex number is not smaller\f&@. Hence,

% > ? namely, |A1m1 + Aoma|? < %.
On taking a pai u1, up) € Z x Z such that
Ul + ugw = £(Agma + Agmz), u1 >0,
we can conclude the proof of the lemma in the same way as in the latter part of the proof for
the casep = 1(mod 4. O

REMARK 1. One can takei; anday satisfyingag = 1, when the class number of
0(/p*)isequalto 1.
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LEMMA 6. Assumethat F = Q(/p*) and! dividesh, /h,—1. Then

A <(p ~ D((n+1)logp —logm + nz/(zp“)))Z

JP 4log?2 ’

PROOF.  For each integen relatively prime top,

sin(2z (1 — p"m)/p*th)
sin(2z/ pnt1)

| <

IG—¢c DY =l -¢H " Y=

. —sin(2emu/ p)
G 4 tan2ru/ prl)

+ co2nmu/p)

1 1
= mt?x\/tanz(Znu/p""‘l) 1= \/tar‘?(n(p""'l +1)/p*h h

whereu ranges over the positive integetsp”+1 relatively prime top. It then follows from
the definition off that

- 1 (p=D/A o2 (DA
-7
= (g 3 ()

Since logx + 1) < logx + 1/x for any real numbex > 0, the above inequalities yield

-1 2
2 Iog)’<p— (n+l)|ng—|Og7r+7t— .
2 2p*

Now, assume thgt = 1(mod 4), with a; andaz as in Lemma 5. Then

2a1 —ax < /2l/p, axp <./2/p,

p—1 p+2/p+1
< 2l .
ay+ — —az = ayp V2P

so that

Hence, by (2) and Lemma 4,

o7 ~&/P+D%p —D((n+Dlogp —logr + %/ (2p*))
I <,/2p ®1092) /p ,

which means that
WPt 1)4((,, —D((n+Dlogp — logz + n2/<2p4>)>2.
2,/p 4log2
Assume next thap = 3(mod 4, with ag as in Lemma 5. Since

2
(p + D%ag — 4p(a1 +2 a2> = ((p — Va1 — Bp — Dax)? > 0,

—3 \2 2
(p+1>21ao—4p<az+”4 az) =(p+1)2(a1_“_22) >0,

we have

p—3 (p+Dlao _(p+1)
2 az < 25 < 2/p I/ p/3.

max(azi, az) +
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Therefore, it follows from (2) and Lemma 4 that

| < F /073 (p+D(p—D((m+Dlogp —logr + 72/(2p*)

(4log2./p
namely, that
;@D (= D+ Dlogp —log + n?/2p") \° o
J3p 4log2 ’
Let v be the number of distinct prime divisors @f — 1)/2, and let
p—1_
2 =d4q1---4v,

wheregqs, ..., g, are prime-powers greater than aipvise relatively prime. Le¥ be the
subset of the cyclic grouf?™!/(P=D) consisting of

Srim/a1 . pTimy/qy
for all v-tuples(ms, ..., m,) of integers with 0< m1 < ¢1,...,0 < m, < ¢q,. We under-

stand thatV = {1} if p = 3. Denoting by® the set of maps fronV to the non-negative
integers not greater thap + 3)//2, we put

M= Irl/nea;p{m(z V(% - 1)

EeV

3

wheredt denotes the norm map frof (e27//(?~D) to Q.

Next, letp be a prime ideal of2 (¢Z7//(?—D) dividing p. Let I denote the set of positive
integers< p"*! congruent to suitable elements Bfmodulop”*1. Note that/ includes 1.
Putting

R* =Ry U{0}, R* =R_U{0},
let 5+ denote the family of all maps fromR?* x I to the set{0, /}, andg_ the family of all
maps fromr* x I to {0, /}. For each pai(m, u) in R} x 1, let Qj’_ﬁ’” denote the family of maps
Jj:RY x I — Zsuchthatmit —2,1) < j(m,u) <landj(m’,u’) =0o0rjm’ u) =1
forevery(m', u") in (R} x I) \ {(m, u)}. Similarly, for each paitm, u) in R* x I, let &
denote the family of mapg : R* x I — Z such that mif — 2,1) < j(m,u) < [ and
jm',u'y=0o0rjm',u') =1forevery(m’,u') in (R* x I)\ {(m, u)}. We then let

6, = |J e 6= | e
(m,u)eR} <1 (m,u)eR* x1I
For each paitj, j) in (1 x §-) U (F+ x &_), we define

AG, D = Zu( >otimauw + Y r'"j/(m,u)>,

uel meRY meR*

whence

AG. " zZu( Yo imaw+ Yy j/(m,u)> (modp").

uel meRy meR*



CERTAIN PRIMARY COMPONENTS OF THEZ ,-EXTENSION 269

LEMMA 7. Assumethat M < p",andtakeapair (j, j)in (G4 x F-) U (F+ x &_).
Then the following conditions are equivalent:

; . (p+3) n
) AG,J)H= > ;u—l (mod p™).
(i) Either

jlm1,1) =1—1 for some m1 € R,
jm,u) =1 forall (m,u)e R} x1I\{(m1,1)},
j'm,u)y =1 forall (m,u)e R* x1I,
or
jm,u)y=1 forall (m,u)e R} x1I,
j'(m2,1) =1—1 for some mp € R* ,
j'm,u) =1 forall (m,u) e R* x I\ {(m2, 1)}.

PROOF.  Since|RY| + [R*| = (p + 3)/2, (ii) clearly implies (i). Let us consider the
case(j, j) € &, x F_, under the condition (i). By the definition @i, there exists a pair
(m1,u1) in R% x I with j € &"*"*. Now we can rewrite (i) as

Z( Z (- j(m,u) + Z (l—j'(m,u)))u —1=0 (modp").
uel “meR% meR*

Sincep splits completely inQ (¢?*/(P=D)  there exists a uniqug € ® such that

YE =Y A= jmu)+ Y (= mu)

meR’ meR*
if £ eV, ueW,ands =u (modp™t1). We then obtain
D Y(EE—-1=0 (modp”),

EeV
which induces

m(z V% - 1) =0 (modp").

EeV
Hence, the assumption of the lemma, together with the definitidd,amplies that
Y yEE-1=0.
EeV

Therefore, by [2, Lemma 7}/(1) = 1 andy(§) = Oforallé € V \ {1}, so thatu; = 1in
particular. We thus see that

jm,u)y=1 forall (m,u) e R} x I\ {(m1,1)},
j'm,u) =1 forall (m,u) e R* x1I.
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In the casq/, j/) € §+ x G_, an argument similar to the above enables us to deduce from
the condition (i) that

jm,u) =1 forall (m,u) e R} x I,
j'(m2,1) =1—1 forsomemy e R*,
j'm,u) =1 forall (m,u) e R* x I\ {(m2,1)}. O

We putt = 1 or¢ = 0, according to whether = 1 (mod 4 or p = 3(mod 4. For each
pair (j, j') in (&4 x ) U (F+ x G_), we put

B(j.j) = Z( doU—jmu)y+ Y A= j'm, u))).

uel “meR% meR*

The notation above will be used in the proof of the following lemma and the rest of the paper.
LEMMA 8. Assumethat F = Q(/p*) and! dividesh,,/h,—1. Then

M > p".

PROOF. As the assumption implies by [4, Lemma 2], there exist integerd, such
thatb1 + bow is not divisible byl but belongs to one of the two prime ideals @f/p*)
dividing I and thaty?1+%2® is anith power inE, (cf. also the proof of Lemma 2). In view of
the proof of Lemma 4, we obtain

A —1)(b1 + bow) =b1—Lb2+(b2—b1)t+b2< Z " — Z tm+1).

meR_ meRy

Sincep splits completely inQ (¢27/(P=D) 'we further know that

n= 9171’ — l_[((é-u _ é.fu)(é.ut _ é-fuf)*l) — l_[(eZniu/p(é.Zu _ 1)({2”! _ 1)71) )

uel uel

Hence, the image of thith powern?1+%2% in E, under the automorphism a®(¢) sending
c21to ¢ is the product of

l_[<(€.u _ 1)bl_Lb2(€ut _ 1)b2—b1 l_[ (é.utm _ 1)172 l_[ (€u1m+l _ 1)—172)
uel meR_ meR
and somepth root of unity. Thus,

l_[<(é.u _ 1)blfth2(é.ut _ 1)b27b1 l_[ (é.ut"‘ _ 1)b2 l_[ (é.ut’"‘*'l _ 1)b2) _ 81

uel meRr_ meR
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for some unit of Q(¢). Lemma 5 of [2] then shows that

H((glu _ 1)b1—tb2(§lut _ 1)b2—b1 l_[ (é.lutm _ 1)172 l_[ (é.lutm+1 _ 1)—172)

uel meR_ meR

(3) = l_[((é-u _ 1)1(b17lb2) (é-ut _ 1)1(1727171) l_[ (é-utm _ 1)lb2

uel meR_

x l_[ "t 1)‘”’2) (modi?).

meRy

We add that™ — 1 is relatively prime td for everyw € Z with ¢* # 1. Now, with an
indeterminate’, let J (Y) denote the polynomial iZ[Y] such that

Y- =y —1+1J),

namely, let
-1

_1\y¢c—1
J(Y):Z( ) <i>y or J(¥)=-Y+1,

c=1 !

according to whether> 2 or/ = 2. Then, for eachv € Z and eachy’ € Z with ¢ # 1,
@ =" =" =" = 1+ lwI ")) (modi?).

We therefore see that the right-hand side of (3) is congruent, métiuto

1‘[((4’“ — Db 1 4 1(by — b2 T (g (" — 1Pt

uel
x (" = 14 1(b2 — b1) T ("))
x [T @ =P 1@ — 14 1b2d "))

meR_

« l—[ ((é_lutm+l . 1)7b271(é.lut’”+1 . 1_ lbz](é’utm+l)))> )

meR
Hence, it follows from (3) that

1‘[((;“‘ -ne" - [T ™" v [T """ - 1))

uel meR_ meR4

= ]"[((:”‘ — 141b1 — ) J G NE™ = L+1(b2 — b1 (G"))

uel

< [T @ —1+1b20"") [] (;””’"“—1—zb21(;“’"’“)>) (mod/2),

meR_ meRy
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so that

Z((bl — 1) J (¢") T, + (b2 — b J (¢ T,

uel

(4)
m _ m+1
+ by Z JE"Hn, , — b2 Z Jmt )17;;)”) =0 (mod)).
meR_ meR
Here, for eaclim, u) € R* x I,
_ m _ 1.d 1.d+1
Hm,u:(glut _1) ln(l_[ (glut _1) l_[ (glut _1))
u'el “deR* deR}
and, for eaclim, u) € R} x I,

M, =" = ]"[( [Te" - [Te™"" - 1)) :

u'el “deR* deR}

(—1)6—1(l>
C

for every positive integer < I, we find in the casé > 2 that

On the other hand, since

(mod/?)

-1 .

Jey=Y" “? (modI)

c=1
for each algebraic integer. Consequently, (4) then means that

(—1)/ @+BG.I) (1py —

b1) i v
(T % B

uel “jegy j’e@g’u

(=1)/ @Q0+BG.J) (h1 — by) AG.S
+ . JsJ
2 2 CD) ¢

jE@g’“ JjeF-

1)/ ) +BGL -,
n Z Z Z ( 1)] m,u JsJ ( bZ)EA(,].,j)

7/
m, u
meR_ jeFs e J'tm, u)

(— DI m0+BG
+y > > 2¢4G0) =0 (mod).

j(m, u
meR+jE®r_z,u ,]'/ES— .]( ) )

®)
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In the casé = 2, it is not difficult to transform (4) into

Z(Z 3 b= bpetU 4 3N (by — bp)g AU

uel “jegt jreedt jeéﬁgj” Jjes-

(6) 2 ) (hgts

meR- jeFs jie®""
Yy szgAw)Eo (mod 2.
MmeRy jed " jeF-

Next, contrary to the conclusion of the lemma, suppose that p". It follows from
[2, Lemma 6] that the partial sum in the left-hand side of (5) or (6), under the condition
A, N =Up+3)1/2) Y ,c;u— L(mod p™), is still congruent to 0 modulh according to
whetherl > 2 orl = 2. Hence, by Lemma 7,

-1
+b2 Yy gt~y Y cAO—""“) =0 (mod).

meR_ meRy

— ((bl — )¢ 07+ (b — by)g o

wheredg = ) _,; lu(zmek,+ oy Y mer. ™). On applying complex conjugation to the
above congruence, we have

b= by + (b= b1ttt by Y "oy Y "t =0 (mod)),
meR_ meR
namely,
by — by + (b2 — b1)e™ /P + by Y &TMP —py 3 2THDIP =0 (modl) .
meR_ meRy
Since

(1_62711'/17)0):82711'/17_’_ Z e2rim/p _ Z 6271i(m+l)/1?’

meR_ meRy
we then see that
(1= e®™/P)(b1 + bow) =0 (mod1).
which contradicts our choice @f andb,, however. Thus, the inequalit < p" turns out
to be false. O

To state the following proposition, we note that, in the case 1, the right-hand side of
the inequality in Lemma 6 exceeds
4(pYer=D 4 1)
P-D(p+3
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PrROPOSITION 1. Assumethat F = Q(4/p*), and let ng be the maximal positive inte-
ger such that
4pro/erH 41 A <(p — D((no+ 1 logp —logz + zrz/(zp“»)2
< — .
P—Dp+3 /P 4log 2

oA <(p — D((no+)logp — log + 712/(2194»)2

- JP 4log2
then the [-class group of B, istrivial.

ProoOF. Foranyy € @,

‘*n(Z V% - 1)‘ =11

EeV o

)

Y o vEE -1

EeV

with p ranging over all automorphisms of the fiefi(¢%*/(?=D) and

-1 3)!
Yuew -1l swm-1+ Y ye o= P
fev sev\(1)
Therefore,

1 3)/ p(p—1)
ME((p )A(fp+) _1) .
Now assume that thieclass group o3, is not trivial. It then follows from Lemma 1 that
dividesh,/ h, _1 for some positive integer’. Hence, Lemma 8 and the above estimate for
M yield

) _1 e(p=1) A(p"/e(r=D) 4 1
o <<(p )(p+3)l_1) e, 12 +1
4 (p—D(p+3
Furthermore, by Lemma 6,
A ((p=D(@ +Dlogp —logz + 72/(2p*) \?
JP 4log2 )
The definition ofng therefore implies’ < ng. Consequently, we have

| <

;A ((p=D(no+Dlogp —logm +n?/2p") \? o
JP 4log2 ’
Let us prove Theorem 1. We put
log A 2 VA(p - Dp(p — 1)
O =A(1 , Cl=—/——r————, (2= )
( * A—l) YTV -Dpray ° (2log2 pt/4
. = VAW = Dllog(p/m) + 72/@2p*)
°T (4log2) pl/* '
Naturally, by the factA > 1, we know that
094 5, os1.

A-1
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As in Proposition 1, lekzg denote the maximal positive integer such that
C%(p"o/fﬂ(lﬂ*l) +1) < (C2log pno/(2¢(17*1)) + C3)2.
It then follows that
C1p"/@e(P=D) _ Cylog po/ (=) _ 3 < 0.

On the other hand, sincé = log(C2/C1) + C3/C2 and since the functioX — log X of a
real variableX > 1 is (strictly) increasing, we see that, for each real numberC,®/C1,
C1x Cix
Cix —Calogx —C3=Co| — —log— — A | > C2(® —log® — A)
Cs Co

log A log A .
> C2(A(1+ m) — |OgA— m —A) =0.

Therefore, we have

prol@ep-b) _ €20
C1
Hence, there exists a real numhegrfor which

C20
pnO/(Z‘O(p—l)) <x0 < é—, C1xp — C2logxg — C3 =0,
1
so that
C>log p"O/(zw(pfl)) + C3 < C2logxp + C3 < C26 .
Proposition 1 states, however, that thelass group o is trivial if
We thus obtain Theorem 1.
3. Cyclotomic fields of 3-power conductor. In this section, we prove the following

theorem.

THEOREM 2. Assumethat p = 3 and ! iscongruent to either 2, 4, 5,or 7 modulo 9.
Then [ does not divide the class number of the cyclotomic field of 3"th roots of unity.

Henceforth, we assume thatis odd except in the following lemma.

LEMMA 9. Letm and N bepositiveintegers, andtake 2N integerscy, ..., cn, 91, - - -,
gn. For each integer d, let s(d) denote the sum of ¢, for all positive integersu < N with
g« = d (mod p"*1). Then

N
Zcuezmgu/pm+l =0 (modl)
u=1
if and only if
s(d) =s(d) (modi)
for all pairs(d,d") € Z x Z withd = d’ (mod p™).
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PROOF. The lemma follows from the fact that th&"+1th cyclotomic polynomial in an
indeterminate’ is of the formzij) yr"'w, |

Letd be any integer. For eadm, u) € R} x I, let Pjr"’“(d) denote the set afj, j') in
&’ x F_ such that

A(j,jhy=d (modp"h.

Also, for each(m, u) € R* x I, letP™"(d) denote the set afj, j/) in §. x &™* such that
A(j,jy=d (modp".

Moreover, in the case> 2, we put

(—1)7 Ow+B(.j"
sp(wi, wy; d) = Z(wl Z W

wel = (i jheP @)

—1)J ma)+B(j.j")
pn Y SRR,

m, u
meRy (j,jHeP!"(d) J( )

(1)) Q+B(.j")
s— (w1, wp; d) = Z(wl > 70w

uel (o jHeP (d)

(=1)/ (mw+B(j.j")
twz ) ) ; :

m, u
meR—(j.j)eP" (d) 7. w)

for each(wy, wp) € Z x Z; in the casé = 2, we put

s (w1, wp; d) = Z(wﬂ?%“(dn +wz Y |7>2f"‘(d)|>,

uel meR
s— (w1, wp; d) = Z(wmo’“(dn +wz Yy |7>'"’“(d)|>,
uel meRr_

for each(w1, wp) € Z x Z. Note that the rational numbess (w1, wo; d) ands_ (w1, w2; d)
arel-adic integers.

LEMMA 10. Assumethat F = Q(/p*) and! dividesh,, / h,_1. Takeany pair (d, d’) €
Z x Z withd = d’ (mod p™). Then either

sy(a1 —az,a2; d) — s_(a1 — taz, az; d)
= sy(a1—az,az; d') —s_(a1 —waz, az; d') (modl)
or

sy(a1, —az; d) —s_(a1+ (t — Daz, —az; d)
= s, (a1, —ap; d') —s—_(a1 + (t — Daz, —ap; d') (modl).
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PROOF. As we know from Lemma 2y4t2® or ya—a2-42% js anjth power inE,.
Suppose thaj?t42® js an/th power inE,. Then, by an argument similar to that, in the proof
of Lemma 8, which has led us to (5) and (6) through (3) and (4), we are led to the following
conclusion: in the cade> 2,

(=1)/" OW+BGI) (1a5 — aq)

XOND)
(T % e ¢

uel “jeF4 j/ecs%“

(=1)/ O0+BG) (a1 — ag) AGLS
4 : ¢ JsJ)
Z Z J (O, u)

jeQS?_’“ J'es-

(=1)/ m+BGI) (—ap) ..
B> o

7
meR_ je§y jle®™ J'tm. )

(_]_).l'(m,u)-i-B(j.,j/)az A\ _ )
Yy V) <o o

meR+ je@'_z*u j/ES,

in the casé = 2,

Z(Z Y Gaz—apet )+ 3N (a1 —ape i)

uel “jegi jreedt jerS’;”j/ES—
FY Y Y et XN F ) =0 modd,
meR_ jeF, jle®™" MmeRy je®" " jeF-

Therefore, by the definitions of (w1, w2; d”), s—(w1, w2; d”) for w1, wp, d” € Z,
Lemma 9 shows that
sy(a1—az,az; d) —s—(a1 —taz, az; d)
=sy(a1—az,az; d') —s—(a1 —waz,az; d') (modl).
Whenn®—492-%2% js anjth power inE,, replacing(a1, az) by (a1 — ap, —az) in the above, we
have
s(a1, —az; d) —s—(a1+ (t — Daz, —az; d)
= sy(a1, —az; d') —s_(a1+ (t — Daz, —az; d’) (modl). O
We now suppose that = 3 in the following assertion.

PrRoOPOSITION 2. If [ is congruent to either 2, 4, 5,0or 7 modulo 9, then the /-class
group of the Zz-extension B, over Q istrivial.

PROOF When! is congruent to 2 or 5 modulo 9, the proposition holds by [2, Lemma
10]. We assume henceforth thais congruent to 4 or 7 modulo 9, namely, thét =
0(+/—3). Assume also thatdividesh, /h,_1, contrary to the assertion of the proposition
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(cf. Lemma 1). Then Lemma 6 implies that

|l <

4((n+1log3—logm + 7?/162 2
3 log2

and, sinceM = 3/ — 1, Lemma 8 yields 31 < . Therefore, we know that the pa(, n)
belongs to the set
{(7,2), (13,2), (13,3), (31, 4), (43, 4)}.

In the casé = 43, we may lefa1, a2) = (7, 1). Hence, if(l, n) = (43, 4), then by Lemma 4
and by [4, Lemma 4], we have

7logY - 710g(3°v/3/(2n) +1/2) -

43
= log 2 log 2

43,
a contradiction. In the case whalen) = (13, 2), we may let(as, a2) = (4, 1) and the same
lemmas still give us a contradiction:

4logY - 4109333/ (21) + 1/2) _

12.
log2 log2

13 <

Thus,(/, n) must be(7, 2), (13, 3), or (31, 4).
Since|R* x I| =1, itis understood that

F_=1{010, S_=(1,....1—1}.

When a mapj € §; satisfiesj(0,1) = j(1, 1), we naturally identify; with the common
value of j. Suppose now that, n) = (31, 4), so that we may pula1, a2) = (6, 1). We then
have

POr92 =0, PLY92 ={(1, 0}, P>192 = {31 30},
PO A = {(j2, 30}, PRy =0, P11 ={(© 1D},

with the mapsj1 € 611, j> € 8%* defined by
j10, 1) =0, ji1(1,H =11, ;2(0,1)=30, ,2(1,1) =31.
Hence,
1 1 1
1,9)=——, s5.(61 92 =—= L1 =—=
S+(5, ) 9 ) 117 N (61 ) 9 ) 5 ) s+(51 ) ) 61
6 1 1
6,1 1) = —— 1,92 = =, 5.(5-1 92 =—=
N (61 ) ) 111 S+(6, ) 9 ) 117 N (51 9 9 ) 6 )
5

1
5+(6,-1; 11) = —5 s_(5,—1; 11) = ~11
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These imply that
s+(5,1;, 92) —s_(6,1; 92 =8 (mod 3D,
s+(5,1 1) —5_(6,1; 1) =14 (mod 3D,
s+(6,—1; 92) —s_(5, -1, 92 =12 (mod 3D,
§+(6,—1; 11) —s_(5,—1; 1) =29 (mod 3).

Therefore, it follows from Lemma 10 that 31 does not diviidé /3, which is a contradiction.
Assume next thatl, n) = (13, 3). Then we have

POl@g =0, P38 ={(s 0}, P*1(38 =((1312),
POAY = ((a 13}, PRYAD =0, P'AD = {(0.1D),

with the mapsjs € 31, js € %1 such that
730, ) =0, j3(1, ) =11, a0, =12, js(1,1)=13.
Therefore
1 1 1
4@ L3 =—77. @ L3Y=-3, G L1IY=-7,

4 1 1
-G L 1) =-7. s -k 38) = 1 5-(3,—-1; 38 = 7

1 3
s LA =3 s @ -L1)=—7.

and, consequently,

5+(3,1; 38) —s_(4,1; 38 =3 (mod 13,
54(3,1; 1) —s_(4,1; 1) =1 (mod 13,
s4(4,—1; 38) —s_(3,—1; 38)=3 (mod 13,
s4(4,-1; 1) —s_(3,—-1; 1) =9 (mod 13.
As we can let(a1, a2) = (4,1), Lemma 10 shows, by the above, that 13 does not divide
h3/ h2, which contradicts our assumption. Suppose, finally, that) = (7, 2). Then
P20 = {(js, 0), (jo. D}, P20 =0, P>'(20) = {(j7, 4. (7.6)}
PIAD = ((j8. 0), Go. D}, Py AD = {(j10.0). (1. 0}, P21 =4,
where mapgs € 8%, jo € 6%, j7 € 51, js € 857, jo € 631, jio e 811, jue 81 are
defined by
50, D=2, j5(1,1)=0, js0,1)=4, js(l,)=0, j701)=7,
Jj7(1, 1) =0, 0,1 =4, jsgl, D=7, ju0 =6, jol,1)=7,
Jj1000,) =0, 1oL, D) =2, juu0,1)=7, ju@ldl=4.
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Hence,

1 1 1
s+(2, 1, 20):—5, s_(3,1; 20 = 7 s+(2,1;, 1)= —— s—(3,1, 1)=0,

12°

3 1
s+(3, —1; 20):—2, s—(2,-1;, 20= =, s+, -1 1)= > s_(2,-1;, 1) =0,

ol

so that

s+(2,1;, 200 —s5-(3,1;, 200 =1 (mod 7,
s+(2,1;, 1) —s-(3,1; 1) =4 (mod D,
s+(3,-1;, 20 —5_(2,-1;, 200=2 (mod 7,
s+3,-1;, 1) —s5_(2,-1;, 1)) =4 (mod 7).

However, we can putai, a2) = (3,1). Lemma 10 therefore shows that 7 does not divide
hz/ h1. This contradiction, together with Lemma 1, completes the proof of the proposition.

REMARK 2. Itis known thatiz = 1if p = 3 (cf. van der Linden [1, Theorem 1]).

We conclude the present section by proving Theorem 2ht efenote the relative class
number of the cyclotomic field of*3h roots of unity. As is seen in the proof of Proposition 3
of [2], Theorem 1 of [2] shows thdtdoes not dividé:* under the assumption of Theorem 2
(for an original argument, cf. Washington [7, Section 1V]). Hence, by Propositidrdaes
not divideh*h,_1, the class number of the cyclotomic field dftB roots of unity.

4. Cyclotomic fields of 2-power conductor. Throughout this section, we suppose
thatp = 2. We eventually prove the following result.

THEOREM 3. Assumethat / is congruent to 3 or 5 modulo 8. Then, for any positive
integer u, the class number of the cyclotomic field of 2“th roots of unity is not divisible by /.
We put

2n+1

)

.= eni/
whence
—tant. = t—1
1= T i+
Recall that: > 2 and that is induced by the automorphism @#(¢) sendingz to 3. We
put

n—u—1
UMZUZ

for each positive integar < n.
LEMMA 11. Assumethat!/ dividesh, /h,—1 andiscongruentto 3 or 5 modulo 8. Then

_ 2n+l H 2n+l 1
ay — taz |Og<COt bid >+ a o (COE(JT/ ) + sin(rr/ ) + )

l
= log 2 n+2 log2 cogwr /2"ty 4 sin(mw/2n+1) — 1
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PROOF  We first prove that

cogn /2"ty 4 sin(r /2"t + 1
cogrr/2nt1) + sin(r/2n 1) —1°
Sincen®™ = —p~1, we haveyt—V7 = »po1~1 which implies that

) It~ = =1 =

1701” 0‘171” i

lIn =In
Let S be the set of positive odd integers smaller th&h?2 In the case where > 3 so that
32'% = 14 2" (mod 2'+2),

o1 iC=1 i@+ g —14i—¢t e — A4 2

TUOT D) =1 ig+l—i—¢ L emifAp —emifAr1_ i
_cogm/2"h) +sin(r/2 ) +1 2
~ cogqm/2n L) +sin(r/2n ) —1 sin(r/4 + m/2n+t Ly /sin(r/4) — 1°
H n+1 H n+1
N Sln(rru(4+rru/2 ) _ 1 > min |S|n(nu/.4+rru/2 )| B
ues sin(ru/4) ues sin(mr /4)
_|IsinGru/2mth)| _sin(m /44 m/2" )
T ues|  sin(w/4) B sin(rr/4) ’
and, hence,
2
(Tlfl — ma 1 < 0‘171.
I | ues{ * sin(ru/4 + mu /201y /sin(ru/4) — 1‘ =1
Similarly, in the case = 2, we easily see that
_ 2
l,a—l — [ef] 171 = ma 1
==l = maN e/ & /8 /sinGru /) — 1
2 _cognw/8) +sin(r/8) +1 opt-1

<1 = =
=+t sin(w/4+ n/8)/sin(x/4) —1 coYx/8) + sin(m/8) — 1 7
Therefore (7) is proved. On the other hand, Lemma 4 of [4] implies that
b
on+2°
Now, assume thdt= 5(mod 8. Then, asv = o7,

Inll = lln~ |l = cot

g2 < Ip)|“=2|lpor |92, [In 2@ < )2 ptor ).
Lemma 3 of [4] shows, however, that
2\ < max(||prteed ||, In @) .
Hence, it follows from (7) and [4, Lemma 4] that

ai —az log( cot T n ar o COE(TL’/Z"+1) + Sin(n/2”+l) +1 .
log 2 2n+2 log 2 cogm/2"*t1)y 4 sin(z/2n+1) — 1

Assume next that= 3(mod 8. As® = 02 — 0, * = 0, (01 — 1), we then have

| <

7 -1 —a@ 1-
922 < |Inll“n° 1%, ™2 < || “ ™o “2.
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Thus (7), together with [4, Lemmas 3 and 4], proves

a1 i az cogm /2"y 4 sin(r/2"t1) 41
] < 2L t | .
< |Og 2 OQ<CO 2"-‘1-2) + |Og 2 (o] (Coqn/zn-‘rl) + Sin(n/2"+1) _ 1

LEMMA 12. Assumethat!/ dividesh,/h,—1. Then

I<(m+1? ifl=5 (mod§;

3 2\?
l<§<n+§) if /l=3 (mod§.

PrROOF.  For simplicity, let
cogr /2" +sin(r/2"th +1 2
cogrw/2+1) + sm(n/2"+1) -1- cos/2"+tL) + sin(r/2 1) — 1

Y2 = COS—— — sin +1_2«/_cos cos(Z L)

Y=

on+1 2n+l on+2

Since

T
co 2n+l

. T T T
tsin—— —1=2J2 SNz co{— + —)

2/1+1 4 2/1+2
V2 T T T Ty
= on+l Coszn+2 co 4 + on+2 | T ont2’

2n+3

it follows that

y1 <1+ .
Y2

Therefore, noting that lag + 23/ (y2)) < 109(2"+3/(mry2)) + my2/2" 3, we obtain

logy, _ 5 log(my2) Ty2
log 2 log 2 2n+3log 2’

We now consider the cage= 5(mod 8. By Lemma 11,

8

al — az 2”+2 ar Iog Y1

[ lo
= log 2 d T log 2

However, simple calculations show that the right-hand side of (8) is smallerthdnHence,
l<(@—a)n+1)+axn+)=arn+1 <Vim+1),

and, consequently,
Il < (n+ 1)2.

We next consider the case whére 3(mod 8 so that: > 3. In this case, the right-hand
side of (8) is smaller than + 2/3 and hence, by Lemma 11,

l — o i + + — ( + ) + —
< az\n < (a a n .
g 2 3 1 2 3
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Furthermore,
3 3(a? + 2a3 — 2a5)2
5~ @+a? = “’1%“9 a1t az)? = M 0.

We therefore obtain

l ,/31 +2 ie, [ 3 +22 o
< E}’l § . .e., <2}’l 3 .

For each positive integen, let 0,, denote the set of all odd positive integersvith
Im — 1) < u < Im. For each integer relatively prime td, letr(«) denote the least positive
residue modul@. If [ is congruent to 5 modulo 8 and any integeis given, letU1(d) denote
the set of all integers such that

ue 01U02U03U04, u=d (mod2*?),
let Uz(d) denote the set of all integenssuch that
u—2"€ 01U0,U03U 04, u=d (mod2+?),

and let
(_ 1) (u—-1)/2

1
s1(d) = a1 Z %’ s2(d) = az Z m

uels(d) uelz(d)
LEMMA 13. Assumethat! iscongruentto5modulo 8 and dividesh,,/ h,,—1. Then, for
anypair (d,d’) € Z x Z withd = d’ (mod 2+1), either

s1(d) + s2(d) = s1(d") +s2(d")  (mod!)

or
51(d) — s2(d) = s1(d") — s2(d’)  (modl) .
Furthermore,
[>2n 1,
PrROOF. Inthe casa > 3,
artas & = DR@EE =% (§ =D +1)*?
1 N+ DM+ D)% it + 1A — i)
p—az _ (¢ =D+ (=1 —i)?

i+ DMGg - D2 @ + DU+ i)
In the caser = 2,
piatazd (¢ =1 —i)* pia—a2® (¢ =D +i)* .
jartaz(¢ + 1)a1(g + i)’ [1792(8 + 19 —i)*2
On the other hand;+%2® or y“1-42% is anith power inE, by Lemma 274 — 1 is relatively
prime to/, andi’ = i holds. It therefore follows from [2, Lemma 5] that
€ =D+ D@ + D) (g — i)

= (¢! —Du! + D! 4 iyroee! — i)y (modi?),
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wherex is equal to 1 or-1. This implies that
-1 -1

!
e+ - l)alz ( >§C(—1)l‘” — ¢ =D+ —ar ) <C)€C
c=1

+ ¢ =D+ (! —l)Kazz(> il

-1

— ¢ =D + (& +,)Ka22( ):“(—i)"‘

c=1
=0 (mod?),

because
-1

¢+ = +d)y 1<§ + o +w2(> ¢ ’C) (mod/?)

for eachw € Z and each algebraic integewith ¢/ + o/ # 0. Hence, by the relation
l -1 Y
< ) = T modr?)
C C

for each positive integer < I, we have

-1 é-() ( )c lé-()
2 ! [ -
ai( +1)<<¢ +1>§l - 1)2 )
o p (_)cllcé-c lllcc
+ Kkaz(¢ —1)(@ - )Z— (¢ +i ) >EO (modl) ,
c=1
namely,
y (- 1)/2§2b (I-1)/2 21
a1 +1>( Z ; Zb_l)
=172 . po2b (=172 4 poob1
A a2 =D°¢ o (=1%¢ ) _
+ kaz(¢ 1)( ¢ ; — ¢ }; ) =0 (mod).

Therefore, in view of the definitions 6f(d), s2(d) for d € Z, we know that the first assertion
of our lemma is proved by Lemma 9. The second assertion follows from the first. Indeed, if
1 <21 then
4 —1<2l—1+42" < 2"+,
so that we obtain
U2 —1+2Y =0, U2 —1+42") ={2—1+ 2"},
U2l —143-2 =02l —-14+3-2") =0
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which imply that

s120 =142 =0, 522 -1+2" =

-1

5120 —14+3-2") =522 —1+3-2") =0. O
Next, let
O34={u € O03U04|u=3 (mod4}.

If / is congruent to 3 modulo 8 andis any integer, leU1(d) denote the set of integessfor
which

u=d (modZ"+2), ue€ 01U O02UO0sU Og;
let Uz 1(d), U2,2(d), andU2 3(d) denote, respectively, the sets of integersongruent tal
modulo 2+2 for whichu — 2"~ belongs to0; U 03, to 034, and toOs U Og; let Uz 1(d),

Ui 2(d), andUs 3(d) denote, respectively, the sets of integersongruent ta/ modulo 2+2
for whichu — 3-2"~1 belongs to01 U 03, to 03,4, and toOs U Og. We then put

1
s1(d) = a1 Z Tu)’

uelUy(d)
Z (_1)[(u+3)/4] Z 2(_1)(u+l)/4 (_1)[(u+l)/4]
s2(d) = “2( o1y o1y o1y
uels 1 (d) ru =27 uelsz 2(d) ru =275 uelsz 3(d) =277
(_1)[(u+3)/4] 2(_1)(u+l)/4

+Zm+2m

ueUsz 1(d) ueUsz o(d)

(=1)lt+D/4]
+ Z r(u—3- 2"_1)) ’

ueUz 3(d)
where, for each real numbet [x] denotes the greatest integer less than or equal ¥e
also put

Ua(d) = Uz1(d) U U2 2(d) U Uz 3(d), Us(d) = Uz a(d) U Us2(d) U Us3(d) .
LEMMA 14. Assumethat/ = 3(mod 8,n > 4,and! dividesh,,/ h,—1. Then, for any
pair (d,d’) € Z x Z withd = d’ (mod 2+1), either
s1(d) + s2(d) = s1(d’) + s2(d’)  (mod)
or
s1(d) — s2(d) = s1(d) — s2(d’)  (modl).
Furthermore,
2"+ 1
3

=
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PROOF. Let

po=emil4 = 42"*1
for simplicity, and note that

w=—-pt=pi, p?=i.

In the case: > 5, since ' ° = 1+ 21 4+ 2"+1 (mod 2'+2), we have

R (et i ! @i (—p "t + 1)*®
i 4+ D@i%2(—pg + 1)%2(—p~1¢ — 1@
I e (e T i (e (O
i + DA — p R 4 p)®
yaai — & = D ps D2 (—p e =)@
i + D@ (—pg — D)92i92(—p~1¢ + 1)%2
(¢ — D¢ — pHe2(s + p)*
i + DA +p 2@ —pe

bl

In the caser = 4,
yertars &= DA = phH2E + w®
i + DA + phHee( —pye’
ar-apo _ (£ = DPE +pH®2E — 1)®
191 + DU — puhHe2E + )2
We also know that 8 — 1 is relatively prime td. Therefore, by the assumption, Lemma 2 and
[2, Lemma 5] give us
€ =D&+ D7+ pH (G — T — ) (g 4 )T
= @' = D@+ DT = T R e
(mod/?),

n

wherex is equal to—1 or 1. Hence, as in the proof of Lemma 13, we obtain

-1 -1
l l
¢+ e+ 1>a12 ();C(—l)l—f — ' =Y+ Dary <c>¢f
c=1
(l) c,c—l
(e

1
+ @ =D = HE? —icaz Z( ); (=)'

c=

+ @7 =D+ wE? +z>:<a22

-7 =D - +z>:<a22

=
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l
c

-1
— @7 =D+ —ikaz ) ( )écu’c =0 (mod/?
c=1

and, from this, we see that

(1—1)/2{21, (-1)/2 -1
al(;‘”+1>(c’ >t 2 Zb_1>
b=1 b=1

¢-n/2 . (I-vn/2 -
/leCZb . /,le{,'Zb l)

+I<612(€21—1)(§21+i)<€l > % 1
b=1 b=1 -

(9)

=bs2 .4 =b/2 .1 -
pil-be2 ~ pil=be2 1>

+Ka2(¢2’—1><421—i)<¢’ Y
o 2b o 2b—1

=0 (mod)).

It further follows that

=-D/2 .p.op (A=1H/2 . op_q1
2A | 1 pime nivg
« +’)(§ 2, 2, 51 >

b=1 b=1
(I-3)/4 +n/4 . _
— 2+ pc! Z p(=1m g _¢! Z M
— Am o dm — 2
(lf):/4 M(_l)m§-4mfl N (l'il):/‘l Ml(_l)mé-4m73 D1 + uiD
_ - - —_— ] = 1 s
dm—1 4m—3 pELT 2
m=1 m=1
where
Dy (l-‘til-):/4 (_1)m+l§-4m—3 N (_1)m§-l+4m—2
= 4m — 3 4n — 2
. (1§/4 (_1)m+1§-21+4m—1 . (_1)m§-3l+4m
— 4m —1 4m ’
[-3)/4
Dy — ( 2):/ (_1)m+l§-4mfl N (_1)m§-l+4m
= 4m — 1 4m

(+1)/4 (_1)m§-2l+4m—3 (_1)m+lé-3l+4m—2
* mX=:1 < 4m — 3 dm — 2 ) .

We have sinlilarly
-n/2 .q_ -n/2 .q_ —
/ul bé-Zb Iul b§2b 1

2 _ - 1 Lt S = > Y —
¢ l)(é' ; % ; 1 ) uiD1+ uDy.
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Hence,

I-1H/2 p.oop (-D/2 . op_1q
A aver2 ooy Al e wi”g
@ -1 +z)<¢ > 2. —Zb_l)

b=1
(1-1)/2 .1— (1-1)/2 - 2h—1
i ngb Wi bé- b >

2 20 1 s s
+@? =)@ z)(@ > T 2 oo

b=1
= (u+ pui)(¢? = 1)(D1+ D).
The congruence (9) thus means that

(ll>/2< ¢ -1 [l A2l g51+2b)

2b—1+ 2b * 2b—1 * 2b

ay

b=1
(+1/4

(_1)n1§4m73 (_1)m+l§-l+4n172
Z ( 4dm — 3 + dm — 2 )

+raxc? T+ 43'211)(
m=1

(-3)/4

—1)m 4m—1 -1 m+1s14+4m
+ Z (( )" +( )" >
m=1

4m — 1 4m

(+1H/4 2(—1ymtig2+4m=3 (_qym3l+dm-2
+ > ( + )
m=1

4m — 3 2m —1
(I+1)/4

—1)m 4Al+4m—3 —_1)ym+1 51+4m—2
n Z (( )" ¢ (=D""¢ >
m=1

4m — 3 + 4n — 2

(-3)/4

(_1)m+l€.4l+4m—l (_1)m§-5l+4m))
+ Yy ( + =0 (modl).
o} dm —1 4m

Therefore, combined with the definitions Qi(d), s2(d) for d € Z, Lemma 9 proves the first
assertion of the present lemma.
Next, let

=2 —14+3.2"% dp= 917_1:41+%,
If I < 2"=2, then we easily obtain
6l —1+2"" 1 <dy <21, 61 —1+3.2""1 < gy + 201,
which imply that
Ui(d1) = Ua(d1) =0, Us(d) = Uza(dr) = {d1},
Ur(dy+ 2'h) = Ua(dy + 2" = Us(d1 + 2T = 0,

so that
az

s1(d1) = s1(d1 + 2" = sp(dh + 27 =0, sa(dn) = .
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If 272 <[ < (2" +1)/3, then
2(11 n—+1 n—+1
s1(d2) = 1 s2(d2) = s1(d2 +2"77) = s2(d2 + 2"77) = 0;
because

2<dr—2"1<3, do=1 (modd, dr<32"1 61—1+3.2"1 < gp2mt,

and, hence,
Ui1(d2) = {d2}, Ua(dz) = U3s(d2) =9,
Ui(do + 2" = Us(do + 2" = Us(do + 2"H = 9.
Thus, the second assertion of the lemma follows from the first. a

PropPoOSITION 3. If [ is congruent to 3 or 5 modulo 8, then the /-class group of the
Z-extension B, over Q istrivial.

PrROOF Assume that dividesh, / h,_1 contrary to the assertion of the proposition. We
first deal with the case= 5(mod 8. In this case, Lemmas 12 and 13 yield

21 o] < (n+1)2,

whence we have < 6. Itis known, however, thais = 1 (cf. [1, Theorem 1]). Therefore,
(/, n) must equal37, 6). Since
(a1,a2) = (6,1), U1(127) = Up(127) = {127, 127=237-3+ 16= 2%+ 37+ 26,
U1(255 = Up(255 =0,
we see that
51127 = ==5 (mod3%, s2(127) = —%3 =27 (mod37,

$1(255) = 52(255 = 0.

ool w

Lemma 13 then implies that 37 does not divigg 5, but this is a contradiction. Thus, the
proposition holds whenevér= 5(mod 8.
Let us next deal with the case= 3(mod 8, supposing that > 6. In view of Lem-

mas 12 and 13, we obtain
2'+1_, 3 +22
< = - .
3 ='~2\""3

Hence, the pai(l, n) belongs to the set
{(43,6), (59,6), (43, 7),(59,7), (67, 7),(83,7), (107, 8)} .
If (I,n) = (59, 7) so that(a1, az) = (3, 5), then Lemma 11 implies that

3 T 5 cogn/28) + sin(m/28) + 1
%9 < jog2 '°g<°°t§> " iog2 lOg(cos(n/ZS) Fsin(/28 —1)°
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but the right-hand side of the above inequality is certainly smaller than 59. Similarly, when
(1, n) belongs to{(59, 6), (83, 7), (107, 8)}, Lemma 11 leads us to one of the following con-
tradictions:

3 b 5 cogn/2") +sin(z/2") + 1
—>_jog( cot | 1
> log2 og(COt 28) " log2 Og(cos(n/27) Tsing2n —1) = b

8 ; 8
83 < 92Iog(cot1> 1 Iog(cos(n/z ) + sin(zT/2°) + 1) <74,

log 29 + log 2 coqm/28) + sin(r/28) — 1
3 T 7 cogr/2% + sin(/2% + 1
107 < —— | — | 4.
07 < log 2 og(cot 210) + log 2 © <cos(7r/29) +sin(m/2% — 1 <8

Hence,(l, n) must be(43, 6), (43, 7), or (67, 7). Assume now thatl, n) = (43, 6). Because
of the facts

(a1,a2) = (5,3), U1(12D =0, 127=2°+43.-2+9¢€ Uz (127,
127=2°.3431€ U31(127), Ux(127) = U3(127) = {127},
255=43.5+40€ U1(255, 255=2°+43.5+8¢ Uz3(255,
255=25.3+43.3+30€ U32(255, U1(255 = U(255 = U3(255 = {255 ,

we have
(1279 =0 127 = E + i =30 (mod43 (255 = i =14 (mod43
s1 =0, s2 =9 t31= , 51 =10- ,
1 1
2 =—-—4—=—=7 43.
52(259 T (mod 43

Lemma 14 therefore implies that 43 does not diviggéhs, which contradicts our assumption.
If (I,n) = (43,7), then
(a1,a2) = (5,3), 255=43.5+40¢c U1(255, 255=20+43.4+19¢ U2.3(255),
255=26.3+43+20¢ U31(255, U1(255 = Uy(255 = U3(255 = {255},
U1(511) = U»(511) = U3(511) =@,

and, therefore,

3 3

51(511) = s5p(511) = 0,

51(259 =

ool )

but Lemma 14, together with these, shows that 43 does not divigles. Furthermore, if
(I,n) = (67,7), then
(a1,a) = (7,3), 255=67-3+54¢c U1(255, 255=204+67-2+57¢ U2, 2(255),
255=20.3+63¢ U31(255, U1(2595 = Uz(255 = U3(255 = {255},
U1(511) = U»(511) = U3(51) =0,
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and, hence,

7 2 1
51(255 = g; =51 (Mod 67, 52(255 = 75+ 5 =2 (mod 67,

51(511) = 52(511) = 0.
However, together with these, Lemma 14 still shows that 67 does not diyitdes. Con-
sequently, our assumption thativides i,/ h,_1 turns out to be false. The proof of the
proposition is now completed. a

REMARK 3. Inthe case where= 5(mod 8 and 2< n < 5, one can obtain the fact
that/ does not dividé:, / h,—1, only using Lemmas 11, 12, and 13; also in the case where
3(mod 8 andn is equal to 4 or 5, the same fact can be deduced from Lemmas 11, 12, and 14.

Finally, let us prove Theorem 3. By the assumption, the cyclotomic field of eighth roots
of unity containsF. The extension ilP+, = B (i) of degree 8/2 over Q(i) is the cyclo-
tomic field of 128th roots of unity, and the relative class number of the cyclotomic field is
known to equal 14 21 121. It therefore follows from [2, Theorem 1] that, for any positive
integeru, [ does not divide the relative class number@@”i/z“*l), the cyclotomic field of
2"th roots of unity (see also [7, IV]). On the other hand, Proposition 3 means that, for any pos-
itive integeru, [ does not divide the class number of the maximal real subfie@(@i”'/zu_l).

Thus, the theorem is proved.
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