THE GENERALIZED PERRON INTEGRALS.®

By
Gen-ichird Sunouchi and Masatomo Utagawa.

Introduction. The notion of differentiation’ was generalized in many
directicns. Amcng them we ccensider the approximate derivative and Cesaro
derivative.  ‘As the inverse of those derivatives, approximately continuous
Perron integral and Cesaro-Perron integral are defined by J.C. Burkill (1),
(2], using the Perron method.

In the definitions of these integrals, he assumed the contintity property
of upper and lower functions. Recently S. Saks (3] defined the ordinary
Perron integral without using any continuity property of the upper and
lower functions, and proved the continuity of the indefinite integral. Hence
it arises the problem, whether the notion of continuity of upper and lower
functions are superfluous in the Burkill integrals or pot.

We will, in this paper, answer this problem affirmatively. By this, the
d efinition of the integrals becomes simply in some vgay. In §1 we define the
approximately continuous Perron integral, or simply (AP)-integral and prove
the approximate continuity of the indefinite (AP)-integral. In §2 we define
the Cesaro-Perron integral, or simply (CP)-integral and prove the  Cesiro
continuity of the indefinite (CP)-integral.

1. The approximately continuous Perron integral or (AP)-integral.

Theorem 1.1. If measursble function f(x) has a non-negative lower
approximate derivate at each point of [a, bJ, then f(a)=f(b).

Proof. Since the lower approximate derivate of f(x) is non-negative at
x=a, AD f(a)=0, and then, for any small &(>0), the set
¢)) Ss={x|f(@)—f(®) | =—Ex—a))
has the point ¢ as a point of density. For a given & (0<k<1), we can find
x, sufficiently near a, such that

f(x)—f(a)=—E(x—)
and that the set S has average density in (7, x,) greater than %k  Again
starting from x, we can find x, such that
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Fla)—f(x)=—&(w—x)
and that the set {x|f(x)—f(x)=—E(x—x,)} has average density in (x;, x.)
greater than k. So that [SA(%, %) | >k|x,—x,|. Thus proceeding, we get a
sequence {x,} which tends to & If £=b, the proof is completed, Let £<b.
Since the set S has average density greater than £ in every intervals (x.,
Xnsy), if (Xu—2x,)/(E—2,)=1-8, then

ISANGEE) | ISAG, £) | - [ SA G, ) |
E—xn, = E—‘xn = Xm—Xn (1—8)

>k(1—$), that is lim _%ﬁl >h(1—8).

N—p o
Hence the set S has not £ as a point of dispersion. If we assume
F&—fa)<—E(E—~aw),
then & is not the point of dispersion of the set
x| fE—f D)< —EE—x), E>x).
So ' AD f(B)=-¢,
which contradicts the hypothesis. Consequently
F@®—-fwz—-EE—a),
that is
Fb)—fla)=z—E(b—a).
Since & is arbitrary, we have f(b)g'f(a).
Definition 1.1. U(x) (L(x)]) is termed upper [lower] function of a mea-
surable f(x) in (a, b], provided that
@O U@=0 (L(a)=0],
(2) AD U(x)>—o [(AD L(x)<-+] at each point zx,
(3) AD U(x) = f(x) (AD L(x) =f(x)] at each point x.
Theorem 1.2. The function U(ax)—L(x) is increasing and non-negative.
Proof. This follows immediately from Theorem 1.1.
Definition 1.2, If
(1) f(x) has upper and lower functions in (a, b,
2 1.11’:b. L(b):g.l;!J. Ub),
then f(x) is termed integrable in the approximate Denjoy-Perron sence or
(AP)-integrable. The common -value (2) of the th bounds is called the
definite (AP)-integral of f(1) and denoted by (AP) f fx)dx.
Theorem 1.3. If fx) is (AP)-integrable in‘[a, “'b], then f(x) is also in
every interval (a, xJ, a<x=b.
Proof. This is evident by Theorem 1.2.
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Theorem 1.4. The indefinite integral F(x)=(AP) f At)d: is approxi-
mately continuous.
Proof. For any £>0, there exist U(x) and L(x) such that
1 I=sUW—-Fn=¢, 0=F—-L(xnsE,
(2) AD U(x)>—x, AU L(x)<+w.
Hence the theorem is immediate.
Theorem 1.5. F(x) is approximately differentiable almost eveywhere
and AD F(x)=/(x), a. e.
Proof. For any >0, we can take an U(x) such as
U —-L(hy<éE
Since H(a)=U(x)—F(x) is increasing, F’(x) exists almost everywhere and
[{x| F'(2)=&}| <E.

So that
AD U(x)=F'(x)+ADF(x). a.c.
and
AD F(x)>—>, a.e.
Since

AD Fx)z AD U(x)—€= fln) =€,
except a set of &-measure, we have '
AD F(x)=fx), ae.
Similarly, using lower functions, we get
AD F(x)<f(x), ae.
Thus we have AD F(x)=f(x), ae.
2. The Cesaro-Perron integral or (CP)-integral.
Definition 2.2, We put

C(f; a, b')zbflafd fx)dx,

where the integral is taken in the restricted Denjoy sense.

If im C(f; x5, %+ h)=/(x), tnen f{x) is termed Cesaro-continuous at z,.
I

Definition 2.2. ¥ CD f(x)=CD f(x), where
B (CCF %0 2ot h) =)} g h=CD) fCx),

=0
then j(x) is called Ceeiro differentiable at x, and we denote the common

value by CD f(x).
Theorem 2.1. If CD f(x)=0 at each point in (g, b), then we have f{a)<f(b).
Proof. Since CD f(x)=0,

b (C(fa, D)) (- Z—E,
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for all a<x<x, where xu' is sufficiently near va. If we denote the line
y—f(x)=—E(x—a), by [, then, for all x in a<x=<x,, there exists an x, such
that the point {x,, f(x,)} lies above the line /.. For, if not so,

a+h i+
= f CAD—fadt <~ [ (t—a) dt=—€, (a<ath<m).

That is,

[

(Cfrar)—fa} g -y <—&,

which contradicts (1).
Thus we can find an x; sufficiently near ¢, such as

(2) ) —a)=z—E(xn—a),

@) CU: @, %) —f(a)Z ———E(x—a).

Similarly we can find an x, near x;, such that

3) J(x)—f(2,)=—E(—x1),

@) S 1 20— fC0) 2 8.

Thus proceeding, we find a sequence {x,} which tends to & If £=b, the
proof is completed. We suppose that £<b. Then by (2), (3), ----, we have
(4) C(,f; xm, x/t) _'f(a)zccf; xdl} xn) ‘_‘f(x,ll)—“s(x;n_‘a)

and by (2), (3), ----, we have
-1 n-1

(5) . /”f(t)dt—Zf(xz)(xm ——x)Z ““;"82(9“ ! ;xi)2

Using the inequality
f(.l'z) = f(xm) —E(Xi—xn) (i=m)
and (5), we have

i
(6) f(t)dt "‘f(xm) (xn“‘x:u,)z —_ ;—5(% ‘—xm)z.

Tm

From (4) and (6), we have
C(f.; xm, x,z) —f(a)z -6(xm—-a)'—%—6(xn—xm)-

That is
) s ) =@ 2 —E ) =g ECE ).

Since CD f(£)=0, we have
(8) C(,f; xnl: E) _f(f) > “;(E_x:l)

for sufficiently large . By (7) and (8)
fE)—fa)=—E(xu—a)—EE—x)
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that is

& —i(a)=—EE—a).
Consequently

o) —fla)=z—E(b—a),
that is

S zfa).

Definition 2.3. U(x) [(L(x)) is termed upper (lower] function of a
measurable f(x), provided that if

(1) U(a)=0 (L(a)=0],

(2) CD U(x)>—oo[CD L(x)< +0o0] at each point z,

(3) CD U= fx)[CD L(x)<f(x)] at each point x.

Theorem 2.2. U(x)—L(a) is increasing and non-negative.

Proof. This is evident from Theorem 2.1.

Thus we can develope Cesaro-Perron scale of integration by the usual
method. This (CP)-integral has the following properties. The proof is done
analogously as in §1.

Theorem 2.3. If f/(x) is (CP)-integrable in (a,b], then f(1) is so also in
any subinterval.

Theorem 2.4. The indefinite integral F(1)=(CD) f . f(t) dt is Cesaro-con-

tinuous.
Theorem 2.5. F(x) is Cesaro-derivable almost everywhere and

CD F(x)=f(x), a.e.
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