NOTES ON FOURIER ANALYSIS (XVIID):
ABSOLUTE SUMMABILITY OF SERIES
WITH CONSTANT TERMS.®

By

Gen-ichiro Sunouchi.

The object of this paper is to prove some theorems concering absolute
summability systematically. In § 1, key theorems are proved, from which
theorems of the remaining sections are derived. One of the key theorems
reads as follows: when (1,) is a given sequence and (y,) is defined by

Yn=0an, o Xo+Qny: X1+ - -- +a@ym 2t ,
where (a,, ) is an infinite matrix, then

«

Elanq.l m‘_‘an,ml<M (m=1, 2,......)

is the necessary and sufficient condition that any E]xn | <oo implies Z}Ay,,|
< oo. By this and the similar key theorems we prove theorems of Merlb'cerlan
type (in § 3), inclusion relation between absolute Riesz summations of
different types (in § 4) and Tauberian theorems (in § 5)

§ 1. Key theorems. Let (x,) be a seduence of real number and its linear
transformation be

€0 yn=éoan,;; L7

Theorem 1. In order that anync:zolxnl <o implieséolAynl <o, it is neces-
sary and sufficient that
@ | Zlansn—ann| <M.

Proof., Necessity. We have
AYrn=Yns1 —Yn= 3 (aus L m— An, m) Xm
m=0

which is a linear functional on (/). If we put 2=(as)e(]), Ay= Un(a),
then W(a) = ElUn (x)| satisfies the assumption of the Bosanquet-Kestelman
theorem (2). Hence we have

ZJU )| SM]a.

If we put x,=1(r=m), 2,=0 (n+m), then we get (2). Thus the necessity
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of the condition is proved.

Sufficiency. On the other hand, if the condition of the.theorem is
satisfied, then

P
‘ IAVM , =3 j 3 (an+1 =@, m) -’21:1]
W= l) =0 m=(
w0
= El-\amlzlan+l m—au ml <M\ Iknu
=0

Thus the convergence of Ix,,l implies that of |Ayﬂ
We Wlll now remark that the necessity of the condmon can be derived
from Gelfand’s theorem (3). For, if we put :=(z,), y=(¥.)=U(x), then U is

a linear operation from (/) onto (bv), by Gelfand’s theorem. By the represen-
tation theorem,

el
Vo= S Gusm X
He =4

where A.=C21,m, @2, my-+---- Y Gy iy e ) lies in (bv) and the norm of A,
in (bv) 1is uniformly bounded, which is nothing but the condition of
the theorem. ~

More generally, we will consider the transformation,

(3) [62] (Z) = Z (pm (Z) Xonee

n=

Then we get

Theorem 2. In order that any 3, Ix,l <oo implies the existence of
i

@ im [ |d® @),

it is necessary and sufficient that

5) lim . |d P (2 <M.

rroof runs similarly as that of Theorem 1.
We have also

Theorem 3.9 In order that any 3 [Ax.| <oco implies X [Ayn| <o, it is
oo n=0 n=1
necessary and sufficient that 3, ¢, converges for all # and
k=1

6) SIS (@eri—an )| <M(m=1,2,......).

n=0k=1

Proof. After S. Izumi (5) we have

)  After preparcd this note, 1 have learned this theem is prove:d by F.M. Mears,
Absolute rerularity and Norlund mean, Annals of alathn, 78 (1937) S48 ],
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Yn = > An, w Acim+ Au;

=0

where

m

A w =S an, A,=lim A, », and z=1lim gz,.

-3 = H=pco

Thus we get the theorem by Theorem 1.
Theorem 4. In order that any I Az, <o implies (4), it is necessary

=0

and sufficient that E 9:(z) converges for all z and
k=0

1) im [|dd. ()] <M,  ®u(2) =é)¢k<z).

2-52,

§ 2. Absolutely regular transformation. Linear transfomation (1) (or
(3)) is absolutely regular provided that it transforms all absolutely

convergent series into absolutely summable ones.
Theorem 5. Riesz’s method of summation is absolutely regular.

Proof. Riesz mean of E a, is defined by

n=0
13 o N . VNL k -
Clw)/w _A% (1= Y an.
This is a transformation of the type (3). Now the condition (5) is satisfied,
since
. «© Aa \F! T @ A ’i‘-‘\)@uy )
fim | (- ) =tm k] (=) TG de
1 )“'”,, Ko
=tm{(1- 5=t

The following theorems are proved by the similar method.
Theorem 6. Abel's method of summation is absolutely regular. More

generally the summation by Dirichlet series is also.

Theorem 7. In (1), if Toeplitz condition is satisfied and (am,.) is

a monotone sequence of # for each m, then (1) is absolutely regular.
Corollary. Riesz’s (R, pn)-summation is absolutely regular, if p,>0 and

Py—oo.
(R, ps)-summation is defined by
In=(PiS;+puSst - +busa) [ Puy
where
Sy = ﬁ Xy P,= ﬁ D
m=1 m=1

§ 3. Theorems of Mercerian type.
Theorem S. If y=0Q+an)..—an 2.-1 (€:>0), then SolAy,,! < oo implies
n=
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S

{3

P lenl <L 0.

- Proof. Putting a,=1/a, and expressing x, by (y.),
(1+a1) (14 ), y

PR ot (1+a1)az Yok eenn .
II(+a,) 111(1+av) H (+a,) *
v=1 v=

= Qu Y1+ g Yot oo - - +@ns 0 Yn,
say. By Theorem 3, it is sufficient to prove that the transformation satisfies

the condition (6).
m
xE an,k={a1+(l+a1) a,+
!=;

[ i1 (1+av>-1]/ﬁ1<1+av> (m=m),
v=1 v=

o tan) s Q@) am}/lfIl(Hav)

-—1/ ﬁ (1+a,) (m>i2).
v=1

co M _ a, _ m _ |
215 e = 1 f—{ T aray -1}l ava,

which is evidently bounded uniformly. This theorem has been proved by

the author (6] by direct calculation.

Corollary. If ¢>—1, p.>0, P :%11%_,00 and
yn=$\'cn+q (pl Tt +pn xn)/Pu;

then | Apa| <oo implies 3 | A ] <oo.

For put
Xz:(ﬂl kI R +pn xn)/ (P;+ ------ +Pn):

then we have

This theorem includes Bosanquet’s (1] and Hayashl s results (4]
§ 4. Inclusion relation of absolute Riesz’s summations of different

Let us suppose that p,>0, Pn—z pm——>oo and put

yn=(q+1+

types.

} =1 S$i+paSet et +Pn Sn)/Pn«
then we have

(8 : Sp = — n— e

Theorem 9. In order that ElAyn[ < oo impliés ElAsn|<oo it is necessary

and sufficient that Pn/Pn,1>a> 1
Proof. It is sufficient to prove that the condition (6) in Theorem 3 is

satisfied. If we put (8) in the form
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ca

S= 3 an; n Yms
m=

then
@y n=1=—Pucr[Pn; @n, n=Pu]pn,
and the other a,,, becomes zero. Thus the left-hand side of the condition (6)
becomes
! P,
== o
which is bounded if and only if
Pu/pns1 <M, ie., Pu/(Puiy—Pu)<M.

This is equivalent to the condition of the Theorem.

Theorem 10. If po../Pu<gu+1/Qu, then the |R,q,-summation implies
|R, pul-summation.

Proof. Let us put

h=(g1 81+ St - oo - +quSu)/ Qns

which is equivalent to

‘7Pm S 2 Pm
P+ = Pma

+ 1,

o m
> 21 (an+1, r—Qu, k)

n=1k=

+1'+

Sp=— ’%1{}' tn—l +

@n t,.
qn

We have

(P1 S;‘l‘i)z Syt ... +pn Sn)/Pnz P pm. p:n+1 ) Qm, tm,

n e 1 qnm gm+1

+ g: zz tn—-lg_lﬂm mn tm,

say. Then for m<#»n we have
1 3 b _Prer
Pn L 1( qx qr+1 ) Qk, n>m

P (Po = @), nsm

where the left-hand side is equal to 1 for m=#. Hence we have

oo

u

2 Qny k=

m
L_EI (@ns1y 5—Quy 1)

n=1

P m+1 @ n+ < 1 1
=|Pus1 §1»¢+i Py -1 . + (Pm f]nwi Q ) k=§z+1 (ﬁ - Pk—ﬂ)

<2 g1 L Be) <

By Theorem 3 we get the implication relation required.

If we denote the consequence of Theorem 10 by
IR) Pn[ D lRy an:
symbolically. Then we have, by Theorem 10,



62 G. SUNOUCHI

|R, 1/ log 2 log, #] = |R, 1/ log #| D |R,1/#]|
DR, 1| = |C 1| 23 |R, k"| = absolute convergence.
§ 5. A Tauberian theorem. Hyslop (7] has proved a Tauberian tneorem
for absolute Abel summability, which may be generalized in the following
form:

Theorem 11. If
(1°) ®(a,) is continuous and 0@ (s, t)<1,
(2°) @(a,t) is monotonic with respect to z,

(3% f P(x,t)dA(t)—A(2) is bounded variation in any finite interval of
z uniformly to #, and monotonic withly respect to x from a fixed gz,

(4°) f P(ut)dA(t) —A(u)=0(1),
0

(5°) lim f {?J(x,t)—l}dx(t) exists and is bounded then, any function
#7od )
s(t) which is absolutely summable ¢:
D)= f p(atyds(t) e BV(0,00),
)

d(z) being an absolutely regular transformation, is absolutely convergent
(s(t) ¢ BV(0,0)), provided that

f A(t) ds(t) e BV(0,00),

A( )
where
Ax)=eMN",
Proof. If we put

1 '
@ S(x)—mf“ A(t) ds(t),
then
2) f ldS(x) | <M.
Solving (1) with respect to s(x), we have

dA(t)

3 s(a)= S(x)+f S22t A

—seos [ 8 dac.

0
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Substituting this into ®(x), we get

d)(x):f P(xt) dot) +f PQxt) &) dt)=L+1,, -
n 0

say. Since & is absolutely regular, I, is absolutely summable and then

f P(:,8) 8() dN(E) e BV (0,00).

1]

Now
f‘/’(x,t)r?(t)dh(i)—s(x)
n
=fr P(x,t) 8(t) dx(t)—[ 8(t) da(t)—d8(x)
n v o0
= f D) 8 d (D) —8C).
0
where

P(x,)—1, if 0<i<x,
P(x,b), if x<t.
Since 8(x) s BV (0,0), if we can prove that

¥ (_x,i)={

€] f Y(x,t) 8 ()dn(t) ¢ BV (0,00),
then s(x)&BV(0,00) which is required. By 8(x) ¢ BV(0,00) and Theorem 4,

2

if lim ‘\Ir(x,t)dx,(t) exists and

n—yeoJ
-
f(l

then we get (4). Now

d[ Y(xt) d A | <M,
J o |

[ id.r,f' Yzt d AW

=f ’df «Ir(x,t)dx(t)|+f d,,f \!f(x,t)dm)[
0 [} i i o

:I1+Izy

r

von

=f ‘ da: f ‘/f(x,t)dk(t)~7\(.‘c)]
0

D]

1

da{f {ql(x,l)—l}dk(t)-}—f” Pt d )\’(l)J
0 ;

];:
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§K+{f ¢(u,t)dx(t)—x(u)}=0(1),
0

by (4°). Since ®(a,t) is monotonic,

-

=tim | {pGt-1}d 2 )~ f " {own—1}arwm
0

30 J

dmfn {paan—-1} d at 1

0 i

=0,
by (4°) and (5°). Thus we get the theorem.
Corollary. If ®(x)= f e """ u(t) dt ¢ BV(1,00)
1
and
1 xr
“f u(t)t dt ¢ BV(1,0),
* 1
then
f | u(t) | di<co.
1

This is a Tauberian theorem for | A|-summability, proved by Hyslop (7).
Proof. As by A(t)=t, and A(t)=log}t,

w 1
f e t—dt—log x

1

is monotonic from some z, and

f e’”“% dt—logu:f (e“”“—l)Lt dt=0(0)
1 1
and

. RDSETPENS S

im | (e”"" 1)+ dt=0.

i£->00 1

Covollary 2. If cb(x):f u(tyeos Ol gy
1

=f u(t " dt ¢ BV (1,%0),
1
and

1 .C 1
T()g—xfl u(t) logT~ dt e BV(1,%0)
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then

f fut)| dt<co.

1
This is a Tauberian theorem for the absolute summability of the ordin-
ary Dirichlet series.
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