REMARKS ON THE METRIZATION PROBLEM*)

By

Toshio Nishimura

§1. Let E be a topological space. We call E a general metric space when to every two points a and b in E there corresponds a non-negative real number ab, called distance function. A general metric space is called a metric space when it satisfies the following conditions:

I. ab = 0 if and only if a = b.

II. (Symmetry) ab = ba.

III. (Triangle property) $ac \leq ab + bc$.

Further, when a general metric space satisfies I and II or I and III, it is said to be a *semi-metric* or a *quasi-metric* space, respectively. It is well known that II is implied by the following condition III' (Lindenbaum):

III'. $ac \leq ab + cb$.

We shall here consider the following conditions IV - VI besides I, II and III:

IV. $ab < \varepsilon$ and $cb < \varepsilon$ imply $ac < 2 \varepsilon$.

V. (Uniformly regular). For every $\varepsilon > 0$ there exists $\varphi(\varepsilon) > 0$ such that $ab < \varphi(\varepsilon)$ and $cb < \varphi(\varepsilon)$ imply $ac < \varepsilon$.

VI. For every $\varepsilon > 0$ and every $a \in E$ there exists $\mathscr{P}(a, \varepsilon) > 0$ such that $ab < \mathscr{P}(a, \varepsilon)$, $cb < \mathscr{P}(a, \varepsilon)$ and $cd < \mathscr{P}(a, \varepsilon)$ imply $ad < \varepsilon$.

E. Chittenden proved the following theorem :

Theorem A. A topological space E is homeomorphic to a metric space provided that a distance function ab is defined in E and satisfies the conditions I, II and V.

In the proof he used the new distance function defined by

 $d(a,b) = \underset{x_{1,\ldots,x_{n}\in E}}{\text{g. 1. b.}} (ax_{1} + \cdots + x_{n-1} x_{n} + x_{n} b).$

Moreover, E. Chittenden and A. H. Frink proved the following :

Theorem B. A semi-metric space is metrizable provided that the distance function satisfies V.

Also, A. H. Frink proved the following two theorems¹):

^{*)} Received Jun. 10th. 1949.

¹⁾ Cf. A. H. Frink, "Distance functions and the metrization problem". Bull, Amer. Math. Soc., 43(1937).

TOSHIO NISHIMURA

Theorem C. A quasi-metric space satisfying the condition V is metrizable. **Theorem D**. A quasi-metric space satisfying the condition VI is metrizable.

The object of this paper is to prove the following two theorems:

Theorem 1. A general metric space satisfying the conditions I and V is metrizable.

Theorem 2. A general mestic space satisfying the conditions I and VI is metrizable.

These theorems are generalizations of Theorems C and D. For the proof we use Theorem A and the well known lemma due to Alexandorff and Urysohn. The latter reads as follows:

Lemma. The following conditions are necessary and sufficient that a neighbourhood space E is metrizable:

There exists in the space E a sequence of families of sets $\{G_1\}, \{G_2\}, \dots, \{G_n\}, \dots, \text{ each family } \{G_n\} \text{ covering whole space } E, \text{ such that :}$

A. If two sets G_n and G'_n of the n-th family (n > 1) have a common point, then there is a set of the (n - 1)-th family, containing both G_n and G'_n .

B. If a and b are distinct points, there exists an n such that no set G_n of the n-th family contains both a and b.

C. Let $S_n(x)$ be the sum of all sets G_n of the n-th family, containing the point x. Then the sets $\{S_n(x)\}$ orm a complete system of neighbourhood of the point x.

§2. Proof of Theorem 1. Let b = a in V. Then $ca < \varphi$ (\mathcal{E}) implies $ca < \mathcal{E}$. Hence, $aa_{\mathcal{A}} \to 0$ is equivalent to $a_{\mathcal{A}}a \to 0$. If we define $d(a,b) \equiv \max(ab,ba)$, then d(a,b) is symmetric and equivalent to ab (and so ba) topologically. Putting now $\mathcal{P}^2(\mathcal{E}) \equiv \mathcal{P}(\mathcal{P}(\mathcal{E})), d(a,b) < \mathcal{P}^2(\mathcal{E})$ and $d(c,b) < \mathcal{P}^2(\mathcal{E})$ imply $ab < \mathcal{P}^2(\mathcal{E})$ and $cb < \mathcal{P}^2(\mathcal{E})$. On the other hand $ac < \mathcal{P}(\mathcal{E})$ implies $ca < \mathcal{E}$. Then we have

 $d(a,c) = \max [ac, ca] < \max [\varphi(\varepsilon), \varepsilon] = \varepsilon,$

by $\varphi(\mathcal{E}) < \mathcal{E}$. If we put $\varphi^2(\mathcal{E}) \equiv \psi(\mathcal{E})$, then $d(a,b) < \psi(\mathcal{E})$ and $b(c, b) < \psi(\mathcal{E})$ imply $d(a,c) < \mathcal{E}$. Since we can take $\psi(\mathcal{E}) \leq \mathcal{E}/2$, if we define $r_1 \equiv 1, r_2 \equiv \varphi(r_1), \dots, r_{n+1} \equiv \varphi(r_n), \dots$, then $r_n \to 0$.

Let us now introduce a new metric $\rho(a, b)$ such that,

 $\rho(a,b) \equiv 1 \qquad (ab \ge r_1)$

 $\rho(a,b) \equiv 1/2^n \quad (r_n > ab \ge r_{n-1}) \quad (n = 1, 2, \dots).$

As easily may be seen, $\rho(a, b)$ satisfies the condition IV and is equivalent to d(a, b) and then to ab topologically. The symmetricity is also preserved.

226

Therefore, by Theorem A, E is metrizable by using

$$\delta(a,b) \underset{x_{1},\dots,x_{n} \in E}{\equiv} g.1.b. \quad (\rho(ax_{1}) + \dots + \rho(x_{d-1},x_{n}) + \rho(x_{d}b))$$

as a new distance function. q.e.d.

We can see that the condition V in Theorem I may be replaced by the following:

V'. For every $\mathcal{E} > 0$ there exists $\rho(\mathcal{E}) > 0$ such that $ba < \varphi(\mathcal{E})$ and $bc < \varphi(\mathcal{E})$ imply $ac < \mathcal{E}$.

§ 3. **Proof of Theorem 2.** Let *E* be a general metric space which satisfies the conditious I and VI. Let $U_n(a) \equiv E_x(ax < 1/n)$, which gives the same topology as the original one. $\{U_n(a)\}$ is decreasing and by the conditions I, $\bigwedge U_i(a) = a$. Let us now put

$$n_{1}(x) \equiv 1,$$

$$n_{2}(x) \equiv \min[m; 1/m < \varphi(x, n_{1}(x))],$$

$$n_{r+1}(x) \equiv \min[m; 1/m < \varphi(x, n_{r}(x))],$$

and

$$U_{u_r(x)}(x) = V_r(x).$$

 $\{V_r(x)\}\$ is obviously the equivalent system of neighbourhoods to $\{U_x(x)\}\$. We shall prove that, $\{V_r(x); x \in E\} \equiv \mathfrak{M}_r$ satisfies the conditions A, B and C of Lemma.

Let $n \wedge 1$, $V_r(a) V_r(b) \neq 0$ and take $x \in V_r(a) V_r(b)$. $n_r(a) \ge n_r(b)$ implies $ax < n_r(b)$ and then $bx < n_r(b) \le n_r(a)$. Hence

 $by < n_r(b) \leq n_r(a)$ for all $y \in V_r(b)$.

From the condition VI, $ay < n_{r-1}(a)$ and then $y \in V_r(a)$, hence $V_r(b) \subset V_{r-1}(a)$. By $n_r(a) \le n_r(b)$, we have $V_r(a) \subset V_{r-1}(b)$. Therefore A is satisfied by $\{\mathfrak{M}_r\}$.

Let $a \neq b$. Form $\bigwedge_{i} U_{i}(x) = x$ there is an *n* such as $b \in U_{n}(a)$. If we take $m = \min[m; 1/m < \varphi(a, n) < 1/n]$, then $V_{m}(x)$ does not contain both *a* and *b*. For, if $a, b \in V_{m}(x)$, then $V_{m}(x) = U_{n_{m}(x)}(x) \subset U_{m}(x)$ and $U_{m}(a) \subset U_{n}(a)$; therefore $a \in V_{m}(a)V_{m}(x)$. Since $xa < \varphi(a, n)$ and $xb < \varphi(a, n)$ from the codition VI, we have ab < 1/n; i.e., $b \in U_{n}(a)$, which is a contradiction. Therefore B is satisfied by $\{\mathfrak{M}_{r}\}$.

 $S_r(a) \equiv \bigvee V_r(x)$ for $a \in V_r(x)$. So that $S_r(a) \supset V_r(a) = U_{u_r(a)}(a)$. Hence it is sufficient to prove that there is an *m* such that $S_m(a) \subset V_r(a)$ for every $V_r(a)$. Take $V_r(a) = U_{n_r}(a)$, and put $k \equiv \min [k; 1/k < 1/n_r(a)]$. Taking *l* such as $\varphi(a,k) > 1/l$, we have $S_l(a) \subset V_r(a)$ for this *l*. For, $b \in S_l(a)$ if and only if there is $V_r(x)$ such as $a, b \in V_l(x)$. So that $b \in V_r(a)$ $S_{l}(a)$ if and only if there is an x such as xa < 1/l and xb < 1/l. For such x, $xa < 1/l < \mathcal{P}(a,k) < \mathcal{P}(a,n_{r}(a))$. And then min $\{1/m : 1m < \mathcal{P}(a,n_{r}(a))\}$ > $\mathcal{P}(a,k)$: that is, $n_{r+1}(a) = 1/m > \mathcal{P}(a,k)$. The same is true for xb. Hence $ab < n_{r}(a)$, and then $b \in V_{r}(a)$. q. e.d.

Tôhoku University, Sendai.

.