REMARKS ON THE METRIZATION PROBLEM*)

By
Toshio Nishimura

§1. Let E be a topological space. We call E a general metric space when to every two points a and b in E there corresponds a non-negative real number $a b$, called distance function. A general metric space is called a metric space when it satisfies the following conditions:
I. $a b=0$ if and only if $a=b$.
II. (Symmetry) $a b=b a$.
III. (Triangle property) $a c \leqq a b+b c$.

Further, when a general metric space satisfies I and II or I and III, it is said to be a semi-metric or a quasi-metric space, respectively. It is well known that II is implied by the following condition III' (Lindenbaum):
$\mathrm{III}^{\prime} . a c \leqq a b+c b$.
We shall here consider the following conditions IV - VI besides I, II and III :
IV. $a b<\varepsilon$ and $c b<\varepsilon$ imply $a c<2 \varepsilon$.
V. (Uniformly rezular). For every $\varepsilon>0$ there exists $\varphi(\varepsilon)>0$ such that $a b<\varphi(\varepsilon)$ and $c b<\varphi(\varepsilon)$ imply $a c<\varepsilon$.
VI. For every $\varepsilon>0$ ant every $a \in E$ there exists $\Phi(a, \varepsilon)>0$ such that $a b<\varphi(a, \varepsilon), c b<\varphi(a, \varepsilon)$ and $c d<\varphi(a, \varepsilon)$ imply $a d<\varepsilon$.
E. Chittenden proved the following theorem:

Theorem A. A topological space E is homeomorphic to a metric space provided that a distance function ab is dofined in E ant satisfies the contitions I, II and V.

In the proof he used the new distance function defined by

$$
d(a, b)=\underset{x_{1}, \ldots, x_{n} \in R}{\mathrm{~g} . \mathrm{l}_{n}}\left(a x_{1}+\cdots+x_{n-1} x_{i}+x_{i} b\right) .
$$

Moreover, E. Chittenden and A. H. Frink proved the following :
Theorem B. A semi-metric space is metrizable provided that the distance function satisfies V.

Also, A.H. Frink proved the following two theorems ${ }^{1)}$:

[^0]Theorem (. A quasi-metric space satisfying the condition V is metrizable.
Wheorem 1). A quasi-meiric sface satisfying the condition VI is metrizable.

The object of this paper is to prove the following two theorems:
Theorem 1. A general metric space satisfying the conditions I and V is metrizable.

Theorem 9. A general mestic space satisfying the conaitions I and VI is metrizable.

These theorems are generalizations of Theorems C and D. For the proof we use Theortm A and the well known lemma due to Alexandorff and Urysohn. The latter reads as follows:
l.emma. The follcuing condiiicns are necessary and sufficient that a neighbourhood space E is meirizable:

There exists in the space E a sequence of families of seis $\left\{G_{1}\right\},\left\{G_{2}\right\}, \ldots$, $\left\{G_{n}\right\}, \cdots$, each family $\left\{G_{n}\right\}$ covering whole space E, such that:
A. If two sets G_{μ} and G_{n}^{\prime} of the n-th family $(n>1)$ have a common point, then there is a set of the $(n-1)$-th fawily, containing boih G_{n} and G_{n}^{\prime}.
B. If a and b are disiinct paints, there exists an n such that no set G_{r} of the n-th fawily contains boith a and b.
C. Lei $S_{n}(x)$ be ihe sum of all sets G_{i} of the n-ih family, containing the paint x. Then the sets $\left\{S_{n}(x)\right\}$ orm a complete system of neighbourhood of the point x.
§ 2. Proof of Thoerem 1. Let $b=a$ in V. Then $c a<\varphi(\varepsilon)$ implies $c a<\varepsilon$. Hence, $a a_{n} \rightarrow 0$ is equivalent to $a_{n} a \rightarrow 0$. If we define $d(a, b) \equiv \max$ ($a b, b a$), then $d(a, b)$ is symmetric and equivalent to $a b$ (and so $b a$) topologically. Putting now $\varphi^{2}(\varepsilon) \equiv \varphi(\varphi(\varepsilon)), \quad d(a, b)<\varphi^{2}(\varepsilon)$ and $d(c, b)<\varphi^{2}$ (ε) imply $a b<\varphi^{2}(\varepsilon)$ and $c b<\varphi^{2}(\varepsilon)$. On the other hand $a c<\varphi(\varepsilon)$ implies $c a<\varepsilon$. Then we have

$$
d(a, c)=\max [a c, c a]<\max [\varphi(\varepsilon), \varepsilon]=\varepsilon,
$$

by $\varphi(\varepsilon)<\varepsilon$. If we put $\varphi^{2}(\varepsilon) \equiv \psi(\varepsilon)$, then $d(a, b)<\psi(\varepsilon)$ and $b(c$, $b)<\psi(\varepsilon)$ imply $d(a, c)<\varepsilon$. Since we can take $\psi(\varepsilon) \leqq \varepsilon / 2$, if we define $r_{1} \equiv 1, r_{2} \equiv \varphi\left(r_{i}\right), \cdots, r_{n+1} \equiv \varphi\left(r_{n}\right), \cdots$, then $r_{n} \rightarrow 0$.

Let us now introduce a new metric $\rho(a, b)$ such that,

$$
\begin{array}{ll}
\rho(a, b) \equiv 1 & \left(a b \geqq r_{1}\right) \\
\rho(a, b) \equiv 1 / 2^{n} & \left(r_{n}>a b \geqq r_{n-1}\right) \quad(n=1,2, \ldots) .
\end{array}
$$

As easily may be seen, $\rho(a, b)$ satisfies the condition IV and is equivalent to $d(a, b)$ and then t , $a b$ topologically. The symmetricity is also preserved.

Therefore, by Theorem A, E is metrizable by using

$$
\delta(a, b) \underset{x_{1}, \cdots, x_{n} \in \mathcal{B}}{\equiv \mathrm{~g} .1 . \mathrm{b}} \quad\left(\rho\left(a x_{1}\right)+\cdots+\rho\left(x_{x_{-2}, i} x_{l}\right)+\rho\left(x_{i} b\right)\right)
$$

as a new distance function. q.e.d.
We can see that the condition V in Therrem I may be replaced by the following :
V^{\prime}. For every $\varepsilon>0$ there exists $\rho(\varepsilon)>0$ such that $b a<\varphi(\varepsilon)$ and $b c<\varphi(\varepsilon)$ imply $a c<\varepsilon$.
§\%. Proof of Theorem $\boldsymbol{2}$. Let E be a general metric space which satisfies the conditious I and VI. Let $U_{n}(a) \equiv E(a x<1 / n)$, which gives the same topology as the original one. $\left\{U_{n}(a)\right\}$ is decreasing and by the conditions I, $\wedge_{i} U_{l}(a)=a$. Let us now put

$$
\begin{gathered}
n_{1}(x) \equiv 1, \\
n_{2}(x) \equiv \min \left[m ; 1 / m<\varphi\left(x, n_{!}(x)\right)\right] \\
n_{r+1}(x) \equiv \min \left[m ; 1 / m<\varphi\left(x, n_{r}(x)\right)\right] ;
\end{gathered}
$$

and

$$
U_{u_{r}(x)}(x)=V_{r}(x) .
$$

$\left\{V_{r}(x)\right\}$ is obviously the equivaleat system of neigabourhoods to $\left\{U_{u}(x)\right\}$. We shall prove that, $\left\{V_{r}(x) ; x \in E\right\} \equiv \operatorname{Mn}_{r}$ satisfies the conditions A, B and C of Lemma.

Let $n \wedge 1, V_{r}(a) V_{r}(b) \neq 0$ and take $x \in V_{r}(a) V_{r}(b) . \quad n_{r}(a) \geqq n_{r}(b)$ implies $a x<n_{r}(b)$ and then $b x<n_{r}(b) \leqq n_{r}(a)$. Hence

$$
b y<n_{r}(b) \leqq n_{r}(a) \text { for all } y \in V_{r}(b)
$$

From the condition VI, $a y<n_{r-1}(a)$ and then $y \in V_{r}(a)$, hence $V_{r}(b) \subset$ $V_{r-1}(a)$. By $n_{r}(a) \leqslant n_{r}(b)$, we have $V_{r}(a) \subset V_{r-1}(b)$. Therefore A is satisfied by $\left\{M_{r}\right\}$.

Let $a \neq b$. Form $\wedge_{i} U_{i}(x)=x$ there is an n such as $b \bar{\in} U_{n}(a)$. If we take $m \equiv \min [m ; 1 / m<\varphi(a, n)<1 / n]$, then $V_{m i}(x)$ does not contain both a and b. For, if $a, b \in V_{m}(x)$, then $V_{m 2}(x)=U_{n_{m}(x)}(x) \subset U_{m}(x)$ and $U_{m}(a)$ $\subset U_{n}(a)$; therefore $a \in V_{m}(a) V_{m}(x)$. Since $x a<\varphi(a, n)$ and $x \jmath<\varphi(a, n)$ from the codition VI, we have $a b<1 / n$; i. e., $b \in U_{u}(a)$, which is a contradiction. Therefore B is satisfied by $\left\{\mathcal{M}_{r}\right\}$.
$S_{r}(a) \equiv \vee V_{r}(x)$ for $a \in V_{r}(x)$. So that $S_{r}(a) \supset V_{r}(a)=U_{u_{r}(a)}(a)$. Hence it is sufficient to prove that there is an m such that $S_{m}(a) \subset V_{r}(a)$ for every $V_{r}(a)$. Take $V_{r}(a)=U_{n_{r}}(a)$, and put $k \equiv \min \left\lceil k ; 1 / k<1 / n_{r}(a)\right]$. Taking l such as $\varphi(a, k)>1 / l$, we have $S_{1}(a) \subset V_{r}(a)$ for this l. For, $b \in S_{:}(a)$ if and only if there is $V:(x)$ such as $a, b \in V_{z}(x)$. So that $b \in$
$S_{l}(a)$ if and only if there is an x such as $x a<1 / l$ and $x b<1 / l$. For such $x, x a<1 / \ell<\varphi(a, k)<\varphi\left(a, n_{r}(a)\right)$. And then $\min \left\{1 / m: 1 m<\varphi\left(a, n_{r}(a)\right)\right\}$ $>\varphi(a, k)$: that is, $\left.n_{r+1}(a)=1 / m>\varphi(a, k)\right)$. The same is true for $x b$. Hence $a b<n_{r}(a)$, and then $b \in V_{r}(a)$. q.e.d.

Tôhoku University, Sendai.

[^0]: *) Received Jun. 10th. 1949.

 1) Cf. A. H. Frink, "Distance functions and the metrization problem". Bull, Amer. Math. Soc., 43(1937).
