
Notes on Fourier Analysis (XVI).*'

By

Shin-ichi Izumi

This paper consists of four independent parts. The first is devoted to

the study of the Cesaro summability of Fourier series, the second to the

divergence character of Fourier series, the third to a new definition of the

Stieltjes integral, and the last to a certain series of functions.

Part I.

§ 1. It is well known that, if

Γ
Cl) / 19^001^ = 0(0,

0

then the Fourier series of /CO 1 S summable (C, k) (k> 0) at x.

The condition Cl) may be replaced by the more general condition

\ φ(2)

(3)

But these conditions does not depends on the order k of summability. On

the other hand, the Hardy-Littlewood condition is that for (C, &+£) summa-

bility, but not for (C, &) summability. It will be interesting to find the

CC, &) summability condition depending on k, which becomes as weaker as

k increases. In this case, it must be remarked that Cl) holds almost every-

where, so that the seeked condition must also be so for k.

§ 2. Theorem 1. If

(2) I <px

and

*) Received Sept. 1,1949.
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7tjn

then the Fourier series off(t) is summable (C, 1) at x.

Proof. We have

-L Γ ^n sin2O+l)ί/2 ,.
< t + 1 ) j ^CO s i f l3 f/£ dt

As usual we divide the last integral into two parts, that is,

say. By integration by parts we have

τt\n

/

o o

t

by (1), where Φ* CO = (<Px (u) du.

π 2 nt

J C θ S

tt\n u\n

-±
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say. Now, by (1), we have

τt\n

On the other hand
f*Tt

dtF
it\n

1 Γ*+* /. n \ co

•όtlzn N x

cos 2nt

'6τt\ln '

* * * ' • ; . ( < -

say. We have-easily 1,3 = 0 (1) and Lo = 6

c o s

ί /2W

say. By integration by parts and (1), we have M2=0(1), and

by (4).
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We remark that (4) is derived from (1). For

f ιp.(o-y-*7»oι dt ^ 2f "
Ttjn

Tcjn τt\n

where Φ.J (/)- I \φxCu)\du. Hence (2) and (4) holds almost everywhere.
o

But (4) and (3) are mutually exclusive.

§ 3. Theorem 2. If

(2) I <Px(u) du — o ( 0
o

and

/

•&

—'— 77χτ '— dt — o (nk},

then the Fourier series offCO is summable CC,k) at x, k being>—l1^.

We prove the case — 1 < k <0, since the contrary case is similarly and

more easily proved.

For the proof we need a lemma due to Szegδ :

Lemma. The n-th Cashro mean of order kC^>k>—l) of the series

1 /2 -f cos x + cos 2x + 4- cos nxΛ

becomes

V 2 / 2 J k ^ y , / sin
Ak

nC2 sin#/2)fc+1 2(n4-l) =x \ sin

where Cpμ%n) is a positive sequence such that

We will now prove Theorem 2.

™ Ct)dt

in μx/2 V
sin ΛT/2 /

ϋ τc\n

say. For positive h\K£\O\S&n an d t n e n I^° Cl) For 0> ^ >—1 we
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will use the expression in Lemma of the kernel K^ (O Then

1tι(2sint/2)k+L

2{n + l)i

say. Since

n J -
1 Γ

WJ
\<Pχa)-9>g>a-π/n)\

F&

We get

by Theorem 1, and then

Thus we have

^(2sin//2) f c + 1 dt + od)

J o

+ ~ )J ΦΛ
0 C2 sin d t

sin

Thus we have / = o (1).

Now
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= J

In the estimation of the last integral, we can follow the line of calculation

of Kλ in the proof of Theorem 1.

The case k = 0 is the Lebesgue's convergence criterion of the Fourier

series and the case k = 1 is Theorem 1. (1) implies (5) for k > 0, but not

for k <: 0. In fact (4) is not the local property for k < 0, which, combined

with (6), is consistent with the fact that the Cesaro summability of Fourier

series of negative order is not the local property.

Incidentally we have proved that

Theorem 3. If (2) and (4) holds, then the necessary and sufficient

condition that the Fourier series of fit) is (C,k) summable (0 > k > — 1), is that

lim —jr \
n^oo nh J

COSΓ(M + ^ΊΓ'Ϋ ~ ̂ V π

(2sinί/23fc+1 • dt-υ.

Part II.

§ 1. Partial sum of Fourier series. It is well known that the

Fourier series of /CO is summable (C, δ) (δ > 0) at a point #, provided that

(1) J \

Then the condition (1) may be replaced by the following more general

one :

<PAu)du = o(t\ J \<Px(u)\du^ 0(0.
0 ϋ

The generalization of this kind was done in analogous problems by many

writers. Importance of such generalization lies in that, if the latter of the

condition (2) is supposed, then the first becomes necessary in such theorems.

We will show that such generalizations are sometimes impossible. Let

s,Xx) be the ^-th partial sum of Fourier series of f(x). It is well known

that

(3) sn Or) = o (log n)

under the condition (1). But (3) does not hold under the condition (2)2>.

For the proof3*, let (n*) and (μθ be the increasing sequences of odd
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integers and they will be determined later. Let us put

and h be the interval O/M, π/Nk-O Finally, l e t / ( 0 be an even function

such that

f (20/2 == sin Mkt (tslky

Let π/Nk < t < π/Nk-i. Then

sin Mp udu ~ \ sin MP u du = -^- / sin μp u du = 0,

I sisin ^ duI sin Mfc ̂  du

Since μk->°°f we have

J f(u)du = 0(0.
0

On the other hand, the boundedness of /(#) implies

We will now show that sn CO) is not o (log n). Putting srt. (0) ΞΞΞ s/}., we

have

* . =
sin (n sin

= Σ~ sin

Let us put w = (Mk — l)/2 = mA, and

For /> >

*,= /si.mMp t t
sinί

at

/
cos(Mp — Mic)t ,. f cos (M,, + M^ί

t i t
IP
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/ Mp Mje \ it f 31 p + Mk

Λ*wV*-l Ni-x) C Q S t Γ\JS'P Λ'p .

J f 3IP _ Jffc \ * J ( Mp _ Mk \

*Λ JSp-χ Λ'li-L) n\ -Λ'P Np /

Thus we have

Let us estimate /.

) = β CD-
J

P

For p < k we have

We have also

1 /' dt 1 /'cos 2Md1 Γcos 2

^ - J — /
log«fc-O(l).

2
Thus we have / ;> -g—log »* — 2 ^°^ nv —

t = l

and then
fc-l

7r smj(. ;> _l_log Wfc — 2 !og wP — O (1) .
2 i=i

If Wfc > n\-ι (Jk = 1, 2, ), then TΓ s7nfc ̂  (l/8)logwt. This shows that

sn*o(logri), which is the required.

§ 2. The Hardy-Lettlewood problem. Hardy and Lettlewood proved

that, if / O ) satisfies the condition
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and the Fourier coefficients of / ( 0 are O (l//*δ) (δ > 0), then the Fourier

series of f(t) converges at t = x. They proposed whether (4) may be

replaced by

(5) Jφx (fθrf« = o (t/log^y ]\<Px(u)\du^O (//log-y-) .
0 0

We can answer this problem negatively.

For the proof we take (nk), O,0; (Mfc) and (MO as in the begining of

§ 1, and put ck = I/log N& Let /(O be an even function such that

/(2O/2 = c* sin ΛW (/ € /*).

Then / ( / ) is continuous at t = 0. For Z in 7fc = (π/Nic, π/Nk-0,

f

and also

I \f(ju)\du — Ch \ IsinMkUΪdu i-^ cP I [si;

Thus the above defined function satisfies the condition (5).

Let us estimate SMk as in § 1. Dividing sMk into I and /, we can see

easily / = 0(1). We will now estimate I. For p < k

i,=2 [ sin M,t ***.***/
J S1Π Z

IP

cos (Mjc — Mp) / ,. / cos (Mfc •+• Mp) t ,. . ( 1 λ. Λ_j . d^°\jrP)



NOTOS ON FOURIER ANALYSTS CXVI) 153

rf( λ k

Thus

Hence if we take nk such as wt = nf^, we have

Thus sn does not converge.
Concerning Fourier coefficients of f(t) we have

Γ ^ f .

7t an = / /CO cos nt dt ~ >. cί> / sin M«;

If iVfc+i > Mk > Nic, Nk+i > n>Nk, then we put

7r flrΛ = cic I sin MA; t cos ̂  Jί + rk,

where the integral term is

for \Mk — n\> Nk-i, and for \ Mk — n\ <; iVΆ_i the left hand side is

Since rk is of lower order, we have completed the proof.

§ 3. Jump of functions. Lukacs proved that, if

(6) J \ψχ ίιι) -l(x)\du = o (O, Ψ* («) = /CΛΓ + u) -fix
0

then
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lim sn 0)/log n = — / (x)Jπ,

where ~5rt (ΛΓ) denotes the n-th partial sum of conjugate Fourier series of

fix). Mr. Matsuyama proposed whether (6) may be replaced by

0 0

or not4). This can be answered negatively. For this proof it is sufficient

to take /(O as odd function and ck = ( — 1)& in the example in § 2.

§ 4. The Riesz βummaMlity of the derived Fourier series. It is
known that if6)

(7) r\, m

then the derived Fourier series of / ( 0 is summable (C, 1 + 6) (6 > 0), but

not summable (C, 1). Therefore it arises the problem whether it is

summable by the Riesz logarithmic mean of order 1, or not under the

condition (7)7).

But this can also be answered negatively.

Part III.

§ 1. Let /O) and g (x) be integrable functions with period 2τr such that

(1) / /(*)</*=/ gζx)dx=0
0 0

and their Fourier series be
oo

/oo~2 (β«cos * ^ ^

2 c^» c o s ^̂  + ̂ s i n n*)'
» = 1

If f(x) is continuous in (0, 27τ) and ^(^) is of bounded variation, then we

have

/

lit oo

/(*) dg (x) - 7τ 2 n {an βΛ - bn an) (C, 1),
«_1
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which means that the right-hand side series is summable (C, 1) to the left

hand side integral. This relation holds for Young-Stieltjes integral8), that

is, if feVp, g£Vq (l]p + 1/q > 1), then (2) holds. Therefore we can adopt

(2) as the definition of the Stieltjes integral9).

In general, let f(x) be an integrable function defined in (0,20 and g(x)

be continuous there, and

' o~ + J>, Can cos nx -f- bn sin nx),

—%- + 2 (a<1 C0S HX

The Stieltjes integral of f(x) with respect to g(x) is defined by

(3) J f(x) dg(x) = - i {̂ C2τr) - g (0)}J/OO Jjr
0

+ π^Σ*n Qanβn, - bnan) (C, 1).
n = i

§ 2. In the following we will consider the case when (1) is satisfied.

The general case can be treated quite similarly.

Let Kn O) be the Fejer Kernel, that is,

K cr^ ~ 1 sin* (n

Then (2) becomes

Thus (4) may be used as definition. Since K,Ί(x) has singularity at x = 0,

the integral is a sort of singular integral. Singular integrals are used as

representation of functions, but it is rare to use them as the definition of

the integral. Definition of the fractional integral are on this line.10)

§ 3. Let us consider the existence condition of our integral. If /(#) is

bounded almost everywhere and g (x) is differentiable almost everywhere,

with integrable differential coefficient, then the Stieltjes integral exists.

For, the right hand side of (2) may be written as

Γ 2 *
lim I <r

where σn (x, /) denotes the w-th arithmetic mean of the Fourier series of
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fix). Since σn (x, / ) is essentially bounded, above limit exists.

Since the definition of the integral is symmetric with respect to fix)

and g(x), it is desirable to find the symmetric existence condition. For

this purpose we prove the following theorem.

Theorem 1. //

Γ Γ\f(χ)g(y)-f(y)g(χ
(x-yy dxdy < oo,

then the Sίieltjes integral of fix) with respect to g(x) exists and is equal to

zero.

Proof. It is sufficient to prove that

/ == lim-i-J f(x)dxj g (y) Kn

r (x - y) dy = 0.
-it -it

I f w e p u t x — y Ξ 2U, X + y = 2 v , t h e n χ = u + v , y = v — u , a n d

I = l i m / dυ \ f(u + v) g (v - u) Kn' (2u) du,

where

cos

= — Ln (u) + MΛ («),

say- Now

In = I άtf J /C V + M) g(V — U) Ln («)

dvj F(u, v)Ln(u)du,

where

F(^; v) Ξ/CV+ u)g(v-u) -f(v-u)g(v+ u).

Dividing the inner integral of /„,

Ik

say. Then we have"

/

rtVΊΓ J njcKn+l*) /»τrv/ 2 -t '\
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dv J I F(u, v) I ——— du = (n + 1) I
0 0 0

0

where we put

G (u> szf"1

-it 12

By the hypothesis

Γ^G(u) . ^ Γ Γ\fωg(y)-f(y)gω\ 7 . ̂
I . du<^ J I ( _ x a dxdy< co.

— It — 7T

Thus Pn = ί> (1).

We have

/

ity/ 2 Λ7ίv/ 2 -V

dvj \F(u,

Ί^J lFCu,p)\dv =

Thus we have proved /Λ' = Pw + Qw = 0 (1).

On the other hand

dvj f(u + υ)g(v-u) Mn (u)du

dvj F(u, v)Mn(u)du

We see /„" = ί?(l) by the Riemann-Lebesgue theorem. Thus we have

/ = lim (// + /Λ") = 0,

which is the required.

Theorem 2. If there is an s such that

Cχy)\ dxdy < ^
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then the Stielies integral of f(x) with respect to g(x) exists.

Proof. If we consider

/.--£- j f (χ-y) KTv (x-y)dxdy

instead of In ΞΞ In -4- In"} then we can proceed as the proof of Theorem 1".

§ 4. If /Or) and g(χ) satisfy the condition of Theorem 2, then (3) and

the proof of Theorem 1 imply
n?+h pjj+h

I f ('γ\ rja (γ\ — - —— — 1 f (iΛ /If A- π (Λ ^

x-h x-h

as h —• 0. If /CΛΓ) is continuous,

x-h

This is the differential property of the Stieltjes integral gotten by Burkill

for Young-Stieltjes integral8).

§5, We will now extend the above method to the Hellinger integral.

Let

~ 9 + >. (an cos nx + fe» sin ^jr),
2

» = 1

g U) — -^- + 2 (an cos WJT + βn sin ^Λ:),

Since the Hellinger integral J d*^x) S\XJ J S ordinarily defined as the limit

of

as the norm of division Or*) tends to zero, we can suppose that a0 = tf0 = 0.

If

converges in the CC, 1) sense, then we say that / 00 and^C^:) are integrable

in the Hellinger sense, and denote the integral by

Γ
J dx
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We can easily see that, if g(χ) is absolutely continuous, then the above

integral reduces to the Stieltjes integral, defined in § 1. The (C, 1) mean

of (1) is given by

(3) π* lϊm I f(χ)dx g{t) K\[ (x - t)dt.

Corresponding to Theorem 1; we have

Theorem 3. //

/ • / •
dxdy < oo,

then the integral (2) exist and is equal to zero.

Proof. If is sufficient to prove that the limit (3) is equal to zero. Puttnig

x — t = 2u, x + / = 2v, the integral in (3) becomes as h -» 0.

(4) ~-J dvj

Now,
s m 2

(n + l)sin2 u
l)u cos n sin- (n -f l)u . 3 cos2 u sin'2 (n -f 1 ) ^

sin3 u

ί2 C_w + 1)^ _ cos & sin2 C^ + 1)M
ί sin3 ^

say. Let I; be the integral (4), replaced K'ή (2u) by Li (u).

Then; putting F(u, v) ΞΞΞ/(V + u)g(v — u) —f(v — u)g(v + w),

) ^3 CM) rfw/

ΐv/ 2~ /»7

-7lV 2"

-7Γv/ 2 0

say. Concerning P, we have

rfw\J- + J

"TJ
cosJ 2/smJ

sin4

/ J» / |FC

-/> / t, / FO*, # ) T



160 SHIN-IOHI IZUMI

which is o(l) as n -> oo, by the hypothesis. We have also

\Q\S / du\ iτyr X I

J J

r»7ί/υ2nτtjv2 /»*v/ i -u

τtlQι+1)

Thus h = P + Q = o (1). Similarly we have Λ + Lz ~f h + Jδ = ̂ C1)- Hence

the theorem ie proved.

Theorem 4. If

dxdva ayΓ
- Tt

He I linger

n it

1
-Tt

f(χ:

integral

g(y)

C3) t̂ists and ec

Part

) — s(

lual t(

1Ύ.

x — yy12

§ 1. M. Kac proved the following theorem^.

Theorem. Let ψ (x) be a periodic function with period 2τr; belonging to

the class Lip a (0 < a <| 1), such as

(1) J
o

If Πic is the integral multiple of 2π and nk+1/nk > q > 1 (k = 1, 2, ), and
oo

Σ /»'' <^ rjn fvlPffl fwlP ^Pφΐ0^.

converges almost everywhere to a function in (L2).

In this part we consider the series (2) with Ψ(x) belonging to Lip (oc} r).

The class Lip (oc} r) (0 < a g 1, r > 1) consists of functions ^ (Λ:) such

as

l/r/ * * l/r

N \<Pdχ + t) - <p(x)\rdx\ =

More generally we consider the class Lip (tf, /?, r) which consists of

function ψ O) such as
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\ 1 / r / i\

dx) = θ(t* log yJ, (t > 0).

Especially we concern the class Lip (0; β, r).

§2 Theorem 1. Let φ{x) be a periodic function with period 2τr, belonging

to the class Lip 'κa, 2) CO < a ^ 1, r > 1). If

ntic+i/nik >P>1, nk+ι/nk > q> 1 (k = 1,2, •••.,)

sequence

converges almost everywhere to a function in (L2).
Lemma l For <P(x) satisfying the condition of Theorem 1,

I Ψ Qni
o

Proof. Let i<j. By the periodicity of <P(x), we have

I ΞΞΞ I φ (n, x) <P(nί x)dx = I ψ (nj x) ψ Qm x + 2τrkni/nj') dx
J J
0 0

for & = 1, 2, . Let iV be the greatest integer such as Nm/nj

Putting ξΞΞΞ2τrNni/nj, we have

i - Cm x+t) dt\ dx

/

lit - &

\ dx.

Now

Γ^P
litkn^liij

^ + O|
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/

2 7r(fc + l ) ί ? , /ϊ?, f*"2τc 1/2 /»2τ£

/ j j, \ f I ί

\J J J \J V

1/2

2<fcni/ίϊi

Since 2τr — f ^ Λ;//ί/, we have

which was to be proved.

Lemma 2. Under the assumption of Theorem 1 the series (2) converges

in the (U)-mean.

Proof. Let 1 <; m
2-rt n

/

2-rt n (> »ί /»27t

j1k=

Poof of Theorem 1. We can suppose tnat

φ (.%) — 2 ^ ί W !

and put
n

Sn (X) = 2 tf^1'* *

Hence

Ψ (fik x) ~ 2 βve*™**.

By φζ Lip C<̂ , 2)

/ Γ 2 7 t \ι/2 /Γ 2 7 t

(J L<P(nk x) - s^Cwib^D2 dx\ ^ Π [

If w e t a k e yufc = fc<1+6>Λ, t h e n

'2τί oa

o
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where ψ O* x) = ψ (m x) — sμk (n^ x). Thus the series 2 Cfc ^ ^n]c χ) c o n "
verges almost everywhere. By Lemma 2, the series

CO

2c*
converges in the CL2>mean. Let us take p such as

μmk+i > P μmk (k = 1, 2, — ),
and put

c = 0 (nι2v-ι < / < ^ / ) , cf' = Cί. Cw/ < i<: W/+1),

α = Cf + c ' C/ = 1, 2, ••••)>

t h e n t h e s e r i e s
OO CO

(3) 2 < ^ Λ C«* Λ:), 2 <•' 5 ^ (»*Λ:)

converge in the CLa>mean. The w2i+i-th partial sum of the first series

of (3) is the μm2ι+1-th partial sum of Fourier of the function represented

by the series. Hence, by the Kolmogoroff theorem13), the sequence

2 cίc Sμ-k Cwλ X)
k = i

converges almost everywhere. Similarly, concerning the second series of

(3), the sequence

2 ck S

converges almost everywhere. Hence

^Ckψ CWfc ΛΓ) = 2 C'tc Ψ
fc=l 3k = 1 fc = l

converges almost everywhere.

Theorem 2. Λi Thecrem l,the condition ^ € L i p (cc,2) may be replaced

by φe Lip CO, β, 2) (β > 1).

Theorem 3. In Theorem 1, we can replace the condition of (mk) and

(nk) by

0 < p < m /ky <q(y<l,k = l,2,3, ••••),

Wfc+i > ^ + c l + δ ) - Λ γ C6 > 0 , fe = 1, 2 , . . . . ) •

§3. Theorem 4. If<P(x\ (mό and Cm) satisfy the conditions in

Theorem 1 or 2, then
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Proof is contained in that of Theorem 1.

Theorem δ. Under the conditions of Theorem 1 or 2,

]>t ckφ (njc x) < oo

almost everywhere.

Proof. Theorem 1 holds good even if we replace ck by ± ck Qk = 1,2,

— ) . If {ris (u)} denotes the Rademacher system, then, for almost all u,

lim sup 2 ( 2 CJΦ (nί ^V^W) < oo

for almost all x. Hence, by Fubini's Theorem, we have, for almost all x,

lim sup 2^i ^ cjφ (fij x) )rk (u) < oo

for almost all u, and then the series of the square of coefficients converges

for almost all x, which is the required.

§4. We will now prove some category theorems.

Theorem 6. If n/c+1/nh > q > 1 and 2 cl<°°> ^ e n there is a measurable

set L in C0; 2?O such that

1) For all φ ^ Lip CO, β,r) the series C2) convergas almost everywhere
in L, and

2) For all φ € Lip CO, β, r), except a set of the first category, ive have

lim sup 2 < oo

almost everywhere in CL.

Proof. If we put

UnCΦ) ^ ^

then un (Φ~) is linear in Lip CO, β, r), norm being that of CL'1). Since the

set of trigonometrical polynomials is a deise set in Lip CO, β, r), and the

series

converges almost everywhere, un (Φ) converges in a dense set of Lip CO, β,

r). By a theorem due to Saks, we get the theorem.

Theorem 7. // m »A + 1 (k = 1, 2, — ) and 2 cl <°°> then the following
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two cases are possible:

1) For all φ € Lip CO, β, r) (2) converges almost everywhere.

2) For all Φ € Lip CO, β, r), except a set of the first category,

C4) lim sup = + oo

almost everywhere.
Proof. Without loss of generality we can suppose r = 2. Let us

suppose that there exists ΦQ € Lip CO, β, 2) such that
converge almost everywhere. Since nJnjc+ι,

does not

C5) lim sup

almost everywhere. In order to prove the theorem, it is sufficient to prove

that the set H of Φ such that (5) does not hold, is of the first category.

If we put

' n m n t n = 1 2 - - } ) ">φWv =( Φ\ measί/;
V \

then J7 = V CΦr,i/* r, s = 1,2, ). Now φ ^ are closed. For,

I φ — -φ 12 dx < £'2 implies

I ( 2 Gt [9> C/ifc O - Ψ1 Cw/o O] ) Λ ^ <? const.,
J

o \k = m /

which may be seen from the proof of Theorem 1 and 2. If we put

•-(,; (nkt) - ψ

then we have | £ | M\ < £ const. Thus C ΦM^ is open, and then Φ>iη is

closed.

It remains to prove that φΛΓ)n is non-dense. Otherwise φ j f ^ contains a

sphere S. Since trigonometrical polynomials form a set D dense in Lip

CO, β} 2), there are fa w € £> and r > 0 such that

>; J
Since

2τε

has the Hadamard gap, 2θtW Ord) converges almost everywhere.

. On theoI2 dt%rι and the hypotheses imply that ψ =
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otherhand, by (5) ψl=[φ3r,η, which contradicts S ^

Foot-Notes.

1) Mr.G. Sunouchi kindly remarked me that analogue of Theorem 2 is

proved by J.J. Gergen in Qurterly Journal of Math., vol. 1(1930). Since

we can easily see, from the proof, that the condition may be replaced

by (0, r) mean of/CO is o(l) and difference in C5) may be replaced

by the difference of any order, Theorem 2 may be written in the Gergen

form.

2) This problem was proposed by Mr. G. Sunouchi, whom the author exp-

resses his hearty thanks,

3) Cf. Lebesgue, Series trigonometriques, 1906. p. 85.

4) Matsuyama, Real Analysis Monthly, vol. 1, No. 6 (1946) (in Japanese).

cf.O. Szasz, Trans. Am. Math. Soc, 42 (1942) and S. Izumi, Journal of

Math. Soc, vol. 1, No. 2 (1948).

5) S. Izumi, Tohoku Math. Journ., 28 (1930).

6) Concenning this result the author owes much to Messrs N. Matsuyama, G.

Sunouchi and S.Yano.

7) L.C. Young, Acta Math., 67 (1937); Burkill, Journ. London Math. Soc, 23

(1948).

8) Cf. S. Izumi and T. Kawata, TΓhoku Math. Journ., 44 (1938)

9) Zygmund, Trigonometrical series.

10) M. Kac, Annals of Math., 43 (1942).

11) We can prove this lemma by the method of M. Kac, but our Method allows

us a generalization used in Theorem 4.

12) For the general case we use the Littlewood-Paley Theorem.

13) This theorem contains a theorem due to T. Kawata and the author, Tohoku

Math. Journ., 1940.

14) After written up this paper, A. Zygmund sent me the paper due to him, Kac

and Salem, Trans. Am, Math. Soc, 48 (1948), where is found a theorem

near Theorem 2 in this parts. Author expresses his hearty thanks to Prof.

A. Zygmund who gave him valuable remarks.




