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All groups which we shall consider in this note are locally compact. If G
is a group, let G° be the connected component of the identity in G. Under
the restriction of connectedness a necessary and sufficient condition for G to
be maximaly almost periodic (m.a.p. for simplicity) is, as well known, that G
is decomposed into a direct product of a compact group and a vector group.
In the present note, we shall consider the non-connected case where however
G/G° is compact. Firstly, an analogous proposition as above is not valid in
this case (cf. Remark 1), and only the space of G is decomposed into the to-
pological direct product of the space of a compact subgroup and that of a
closed subgroup which is isomorphic with a vector group (cf. Remark
to Theorem A). Moreover, the criterion for the maximally almost periodicity
of G is given by that of G \ In fact, if G° is m.a.p., G is also m.a.p. (Theorem
B).

The author is indebted to Prof. H. Tόyama for highly suggestive conver-
sations during the preparation of the present note.

LEMMA I1). Let N be a closed normal subgroup of G. If N is a vector group

and G/N is a compact group, G contains a compact subgroup K such as K-N= G,

K{]N={e }2>

THEOREM A. Let G/G° be compact and G{) be m.a.p. Then G contains a

compact group K and a vector group N such as

PROOF. AS G° is connected and m.a.p., G° = Kι x N, where id is a compact
normal subgroup of G and N is a vector group. As Ki is compact, G0/Kί (=N)
is a closed normal subgroup of G/Ki and (GjK^I{Gϋ

tK^ is ccmpact. By
Lemma 1, there exists a compact subgroup K of G containing Ki such as

•> Received Sept. 8, 1949.
1) This lemma is obtained by K. Iwasawa. For the proof see Iwasawa [2], esp* Lem. 3.8.
2) In this note e denotes the identity of groups.
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G/Ki = K/KfGo/Ki, KjKx Π G°/Jd = ( e }* Thence iC Π G° d Ku and in particular
K Π JV= { e }* Therefore G = K G° = K>KvN= K Ny Kΐ]N={e }*

LEMMA 2. Let G° fo m*a*p* Lie group, and let G/G° be compact* As G° is
m*a*p* 'and connected, we can put G° = K x JV, where K is a characteristic
compact subgroup G and N is a vector group* If here we take suitable JV, JV is
also a normal subgroup of G*

PROOF. Let Z be the center of G°, and let Z° be the connected component
of the identity in Z* It is easy to see that Z° = T x JV, where T is torous group
and is the connected component of the identity in the center of K* Transfor-
mation by an arbitrary element g of G induces an automorphism Ag of Z°:
Z°3χ->g-1xg. Ag is a linear transformation of local vector group V which
is a sufficiently small neighborhood of the identity in Z°, and since T is a
normal subgroup of G, V Π T is invariant by arbitrary Ag* Let A be the
group consisting of the totality of Ag* Since for any element g of G°, Ag is
an identity transformation, A is isomophic with a factor group of G\G\
which is compact and 0-dimensional. On the other hand, A is a matrix group.
This means that A is a finite group. As any representation of a finite group is
completely reducible, V contains a local linear subspace JV which is locally
isomorphic with JV On computing JV explicitly by making use of the co-
ordinates in V and the matrix form of Ag, it is easy to see that JV generates
a closed subgroup M which is isomorphic with a vector group and that G° =
K x M. As M is invariant by all of A, M is a normal subgroup of G*

REMARK TO THEOREM A. As K is compact, it is easy to deduce from The-

orem A that the space of G is topological direct product of those of K and

N*

LEMMA 3. Let H be a finite matrix group of degree r and order s, H = {Ai,
Ai, •••> As}* Let G be the linear group consisting oj all matrices of the form

ί A- S\
\ Xr!
v 0 0 0 1

where xj are real numbers {j = 1, •••, r ) and i— 1, •••, s* Then G is m*a.p*

PROOF. We put

Q _ If A% ι\\ xj are complex numbers, I

\ Xr j — 1 , •••> r\ i = 1 , •••, s*\
V H ) O . O 1 7 }
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BAi B~lX.2 \ XJ are complex numbers, I #

Λ 0 0 . . . 0 f/ J = ^-'^^h-,s]

Taking a suitable B we can get a group G2 whose element has a following
foπn

A
1 °

•0 0- 1 0

where for each /έ= 1, 2, •••, /, 4̂» - > ^ is an irreducible representation of the

finite group H. Let »A be the degree of this irreducible representation.

Put

and

Put

! Xj are complex numbers, j ~ 1, , r,

Xt I
M>0 0 1/

s — Jί A\ x~ i x; are complex numbers, I

^00 0 1

Γ — )\ R* *^2 15 Atf a r e comlex numbers, I

]1 ' xJ 7 = 1 , - , s;ί=l,~> s.)

where A* -> R* is the regular representation of the finite group H Put further

Q^ __ )l CRi C'1 X2\; XJ are cojmplex numbers, I

Taking a suitable C we can get a group G6 whose element has a follwing form
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where for each h = 1, ?, •••, p, A% ~> R\ is an irreducible representation of H*

As is well known, any irreducible representation of H is equivalent to one

of the reprsentation A% •> R*» Let ^4* -> ̂ 4* be equivalent to At -> R? * . Put

Rl .
?\
0

[\00

0

tf 0 I
0 1 /

XJ are coimplex numbers,

4-

for each k -= 1, 2, ••, /. Clearly, G c d , d = G2,

x ... x GJ,

j , G3 =G\χ G*

G* S G*, G* cr G6, £ - 1,2, , /, and G6 = G«.

Therefore our proof is completed when we can prove that G$ is m. a. p. Put,

for this purpose,

n2

]

\

I

E \ \\ m a*e mtegrs, j = 1,2, ••-,.? k

o i

m are integers, j = 1, 2, ••-,
I nsV'2

u o o l

where E is an identity matrix of degree s Since each component of the matrix
R* is an integer, we can see easily that Di and D 2 are both normal subgroup
of G5. Moreover, Dx Π D2= {e}> and GrJD% are compact groups for / = 1,2.
Thus Gg is an m.a.p. group, which completes our proof.

COROLLARY TO LEMMA 3. If G/G° is compact, and if G° is isomorphic with

a vector groups then G is m*a*p.

PROOF. Let G° be an r-dimensional vector group. The transformation by
any element g of G induces an automorphism Ag of G°.
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Λg : G°3 a + g~Jag.

As G° is a vecto r group, Ag is a linear transformation and its matrix may be

also denoted by Ag. Let A be the group consisting of Ag* A is a finite

group (cf. the proof of Lemma 2). By Lemma 1, G = K G°, K Π G° = {*!. It

is easy to see that G »g = kg', (k εKy g' = (x1} x2, •••, *>) e G°),

o...o v

is a representation of G. Let Z be the kernel of this representation. Then
Z ί l G ° = U}> and by Lemma 3 G/Z is m.a.p. On the other hand, G/G0 is
m.a.p. Thus we have proved that G is m.a.p.

THEOREM B. Let G/G° be compact. A necessary and sufficient condition for
G to be m a.p. is that Gθ is m a p.

PROOF. Only the sufficiency has to be proved. Taking the same notation
as in Theorem A, G = KN} K Π N = {e}> and G« - Jd x N where Kt zz K.

(i) When GJ is m.a.p. Lie group. Then by Lemma 2 iV can be taken as a
closed normal subgroup of G which is isomorphic with a vector group. G/N
is m.a.p., and by Corollary to Lemm 3, GjKι is also m.a.p. This means that
G is m.a.p.

(ii) When G() is m.a.p. As K is compact, there exists a collection {A*}
of normal subgroups of K such that

Π A* = W, K An is a Lie group.

Put B* = A* Π Ki As Bo, is contained in Kly any element of B* is com'
mutative with any element of N, and moreover Ba is a normal subgroup of
K. This i^eans that Ba is a normal subgroup of G. As

KxlBm = KJ(A* Π id) = KiA* 'AM a K/A« ,

Ki!B« is a Lie group. It is easy to see that (G/B«y = Gd/B<*.

Summalizing the above results, there exists a collection {B«} of normal

subgroups of G contained in G° such that

Π B« = {*}, (G/JB«)0 is m.a.p. Lie group,

G/B«XG/B«)° is compact.

T h u s we have proved t h a t G is m.a.p.

PEMARK 1. W e can n o t extend the s t ructure t h e o r e m of a connected
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locally compact m.a.p. g r o u p t o o u r non-connected case, a n d van Kampen ' s

conjecture is n o t valid 3 ) . F o r example 4), consider t h e . fol iowng linear g roup

G,

ίίεχ\ )
G = <[. e = ± 1, x = real number}-.

l\oi/ J
G is a locally compact group, GΊ consists of the matrices of the form ( Q
and is isomorphic with the additive group of real numbers. Put

1 n\
h « = integer

o l /
1 «l/2"\

5 n = integer
0 1 /

Then D± and D2 are normal subgroups of G, GDγ and G/D2 are compact
groups, and Γ>i Π ί>2 =

 (e). Therefore G is m a.p. Assume that G = ίCx N,
where ίC is a compact group and JV is a vector group. Then it is easy to see
that K ~~ G/G° and JV= G°. Hence G is a commutative group, which is a
contradiction.

REMARK 2. That G° is the component is essential in Theorem A. In fact
from the fact that H is an m.a.p. normal subgroup of G and that G/H is a
compact group, we cannot deduce in general that G is m.a.p. For example,

sin0 a\
G = \\ — sin θ cos θ b 0 <S θ < 2π\ a> b real numbers

0 0 1/

III 0 a\ I
H= i\ 0 1 b \\ a, b real numbersj

(\0 0 1/ )

H is an m.a.p. normal subgroup of G, and G/H is compact. But G is not
m.a.p.

Mathematical Institute, Nagoya University, Nagoya.

3) See van Kampen [3J.
4) This example was obtained jointly with H t Tδyama,
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