ON NON-CONNECTED MAXIMALLY ALMOST
PERIODIC GROUPS*®

By

MasATAKE KURANISHI

All groups which we shall ¢considet in this note are locally compact. If G
is a group, let G° be the connected component of the identity in G. Under
the restriction of connectedness a necessary and sufficient condition for G to
be maximaly almost periodic (m.a.p. for simplicity) is, as well known, that G
is decomposed into a direct product of a compact group and a vector group.
In the present note, we shall consider the non-connected case where however
G/G"is compact.  Firstly, an analogous proposition as above is not valid in
this case (cf. Remark 1), and only the space of G is decomposed into the to-
pological direct product of the space of a compact subgroup and that of a
closed subgroup which is isomorphic with a vector group (cf. Remark
to Theorem A). Moreover, the criterion for the maximally almost periodicity
of G is given by that of G". In fact, if G" is m.a.p., G is also m.a.p. (Theorem
B).

The author is indebted to Prof. H.Téyama for highly suggestive conver-
sations during the preparation of the present note.

Lemma 10, Let N be a closed normal subgroup of G. If N is a vector group
and G|N is a compact group, G contains a compact subgroap K such as KN= G,
KN N={e}>.

TueoreM A. Let G/G° be compact and G° be map. Then G contains a
compact group K and a vector grouwp N such as

G =K-N, KN N={e}.

ProoF. As G°is connected and ma.p., G° = K, x N, where K; is a compact

normal subgroup of G and N is a vector group. As K; is compact, G/K, (=N)

is a closed normal subgroup of G/K; and (G/K))/(G"K,) is ccmpact. By
Lemma 1, there exists a compact subgroup K of G containing K; such as

*) Received Sept. 8, 1949,
1) This lemma is obtained by K, Iwasawa. For the proof see Iwasawa [2], esp., Lem, 3.8,
2) In this note e denotes the identity of groups.
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G/K,= K/Ky+G"/Ky, K/Ki Nl G°/K;= {e}. Thence KN G*<=K;, and in particular
KN N= {¢}. Therefore G =K-G°=K-KyN=K-N, KN N={e¢}.

Lemma 2. Let G° be m.ap. Lie group, and let G/G® be compact. As G° is
map. ‘and connected, we can pat G°=K x N, where K is a characteristic

compact subgroup G and N is a vector group. If here we take suitable N, N is
also a normal sabgrosp of G.

Proor. Let Z be the center of G°, and let Z° be the connected component
of the identity in Z. It is easy to see that Z° = T x N, where T is torous group
and is the connected component of the identity in the center of K. Transfor-
mation by an arbitrary element g of G induces an automorphism A4, of Z°:
Zsx—>glxg Agis alinear transformation of local vector group I/ which
is a sufficiently small neighborhood of the identity in Z° and since T is a
normal subgroup of G, IV n T is invariant by arbitrary 4, Let A be the
group consisting of the totality of Ag Since for any element g of G° A, is
an identity transformation, 4 is isomophic with a factor group of G/G’,
which is compact and 0-dimensional. On the other hand, .4 is a matrix group.
This means that 4 is a finite group. As any representation of a finite group is
completely reducible, I/ contains a local linear subspace N which is locally
isomorphic with N. On computing N explicitly by making use of the co-
ordinates in 7/ and the matrix form of A4, it is easy to see that N’ generates
a closed subgroup M which is isomorphic with a vector group and that G°=
K x M. As M is invariant by all of .4, M is a normal subgroup of G.

Remark To THEOREM A. As K is compact, it is easy to deduce from The-
orem A that the space of G is topological direct product of those of K and
N.

Lemva 3. Let H be a finite matrix group of degree r and order s, H= {A,,
Ay vy Aske Let G be the linear group consisting of all matrices of the form

X1
<Ai ’F‘*)
Xr
00---0 1

where xi are real numbers (=1, -, r) and i =1, -, 5. Then G is m-ap.

Proor. We put

xr j=1, 0y i=1, oy s

X1
G = {( Ai  %2); xj are complex numbers, }
0001
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/ x;\
Cs = { B.A; B‘l"fz); xj are complex numbers,

Xr .]':1’ vy 1 1=1) ety S

00--0 1

Taking a suitable B we can get a group G, whose element has a following
form

where for each £=1, 2, -, #, A4i - A% is an irreducible representation of the
finite group H. Let #, be the degree of this irreducible representation.
Put

14 s
0 Xz
[ |
G:=i{ o ':{ + i (i x; are complex numbers, j =1,--, r,
’ A; x,/ =15 ]___]"..’ 4 :
00 eeeeeeeeeen) 1 J
and
X1
Gk — J Ak X2 )5 xj ate complex numbers, |
* ( 00 0";‘:%/ j= 1, *tty Uk, 7 = 11 tty S
Put
X1
Gy = ’ Ri %21 xj are comlex numbers,
)\oo o’f‘ J=1 v si=1

where A4; » Riis the regular representation of the finite group H. Put further

) X1
Gio= CR;: C? x2 ; xj are complex numbers,
000 1 J=Y v si=1 s

Taking a suitable C we can get a group G; whose element has a follwing form
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.l;1 x,\,
0 *2

0 ™~ :
Rf Xs
0 0..0 1
where for each =1, 2, -, p, Ai > R* is an irreducible representation of H.
As is well known, any irreducible representation of H is equivalent to one
of the reprsentation A4: » R Let Ai ~ 4% be equivalent to 4: ~ R¢*. Put
0 \

. ) 'x"H‘l
Gk = R&#F e semyrul s xj are complex numbers,

1
) J=mtl  mtm,i=1,
Rf i) W= 4, -+ I;,»“" SR o /1250

/

for each £=1, 2, -, z. Clearly, G=G;, G1=G,, G, =Gy Gy=Glx G?

x e x G,
Gf-—:— G:, GI;CGQE) k=1)2)“':f’ and GG:‘— G:'r‘

Therefore our proof is completed when we can prove that G5 is m.a.p. Put,
for this purpose,

D, = E : ); nj are integrs, 7 =1,2, -, p,

. ) ; #j are integers, j =1,2, s

where E is an identity matrix of degree 5. Since each component of the matrix
Ri is an integer, we can see easily that D, and D, are both normal subgroup
of G;. Moreover, D, 1 D,= {¢}, and G;/Di are compact groups for ;= 1,2.
Thus Gj is an m.a.p. group, which completes our proof.

CororLary T0 LemMa 3. If G/G° is compact, and if G° is isomorphic with
a vector group, then G is m-ap.

Proov. Let G® be an r-dimensional vector group. The transformation by
any element g of G induces an automotrphism A4, of G".
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Ag: Gsa > glag.
As G° is a vector group, A is a linear transformation and its matrix may be
also denoted by A4;. Let A be the group conmsisting of 4;. A is a finite
group (cf. the proof of Lemma 2). By Lemma 1, G=K-G°, K G°= {e!. It
is easy to see that G s g= kg, (keK, g = (5, X, -, %) € G,

X1

X

. ( 4 )
Xr

00---0 1

is a representation of G. Let Z be the kernel of this representation. Then
Z N G°={e}, and by Lemma 3 G/Z is m.a.p. On the other hand, G/G° is
m.a.p. Thus we have proved that G is m.a.p.

TueoreMm B. ILc# G/G° be compact. A necessary and sufficient condition for
G to be map. is that G® is m.ap.

Proor. Only the sufficiency has to ke proved. Taking the same notation
as in Theorem A, G=KN, KN N= {¢}, and G*= K, x N where K; =K.

(i) When G is ma.p. Lie group. Then by Lemma 2 N can be taken as a
closed normal subgroup of G which is isomorphic with a vector group. G/N
is m.a.p., and by Corollary to Lemm 3, G/K; is also m.a.p. This means that

G is m.a.p.
(i) When G" is ma.p. As K is compact, there exists a collection {Aa}

of normal subgroups of K such that
NAe={e, K A« is a Lie group.
Put Bs = As N K, 'As Bs is contained in K;, any element of Bs is com-

mutative with any element of N, and moreover Bs is a normal subgroup of
K. This means that B, is a normal subgroup of G. As

Kl/Bw = Kl/(Am n K1) = KA "Aow = K/Aa ,
K./B «is a Lie group. It is easy to see that (G/Ba)’ = G°/Ba.
Summalizing the above results, there exists a collection {Bs} of normal
subgroups of G contained in G° such that
N B« = {e}, (G/Ba)° is m.a.p. Lie group,
G/Bs,(G/Bs)° is compact.

Thus we have proved that G is m.a.p.

Pemark 1. We can not extend the structure theorem of a connested
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locally compact m.a.p. group to our non-connected case, and van Kampen’s
conjecture is not valid®. For example®, consider the. followng linear group

G,

ex

G={< >;s=i],x=real number}.
01

G is a locally compact group, G" consists of the matrices of the form (6’1" )
and is isomorphic with the additive group of real numbers. Put

1n
D, = {( > ; n = integer },

V01

1n/2
D, = {< v ) ; m = integer )g
0o 1 |

i

Then D, and D, ars normal subgroups of G, G D, and G/D, are compact
groups, and D, N D, = ‘¢}. Therefore G is m.a.p. Assume that G =Kx N,
where K is a compact group and N is a vector group. Then it is easy to see
that K ~ G/G° and N= G°. Hence G is a commutative group, which is a
contradiction.

Remark 2. That GO is the component is essential in Theorem A. In fact
from the fact that H is an m.a.p. normal subgroup of G and that G/H is a
compact group, we cannot deduce in general that G is m.a.p. - For ~xample,

coséd sinéd a
G =1:—sin@ cos@ b|; 0<6 < 2=; a, b real numbers
o 0 1 ,

10 «
H=40 1 b |; a b real numbers}.
0 01

H is an m.a.p. normal subgroup of G, and G/H is compact. But G is not
m.a.p.

Mathematical Institute, Nagoya University, Nagoya.

3) See van Kampen [3].
4) This example was obtained jointly with H, Téyama,
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