ON THE PRINCIPAL GENUS THEOREM CONCERNING
THE ABELIAN EXTENSIONS

Fumivyukt TERADA
(Received May 31, 1952)

Introduction

The principal genus theorem in a cyclic extension plays an important
role in the study of the class field theory. A generalization of this theorem
in the case of an abelian extension will be shown in this note. It was a
long standing conjecture of Professor Tadao Tannaka.

Let K be an abelian extension of an algebraic number field £, and { and
& be the conductor and the “Geschlechtermodul” of K/k respectively. Let m
be an integral module in .. Let us denote the ray (“Strahl”) mod. mf in &
and mod. m% in K by R, (mf) and Rx(n), respectively. H.Hasse proved the
following so-called principal genus theorem for a cyclic extension (Cf.[1],
pp. 304-310):

If K/k is a cyclic extension, following two conditions concerning an ideal
A of K are equivalent :

(¢h) N U € R(mf),
2) A = Bi-9(A), (A) € Rx(mF),
where o is a generator of Galois group G of K/k.

The generalization in quite the same form seems to be difficult, and we
take up the transformation set instead of the norm in (1). Namely, starting
from a given ideal, define an ideal A (¢*) corresponding to each element
o® of G as the following:

AV =1, Uo) =Y, (o) = Ao)* " Wao*1) (0<a<e o =1).

Then, on the one hand, the condition (1) is equivalent to the condition

(3) A(P) AT A(pr)~* € Ri(mf)
for all p, 7 in G. And, on the other hand, the condition (2) is equivalent to
the existence of an ideal % such that

“) Ap) = B-7(A(p)), (A(p)) € Re(mF)
for any p in G. Moreover, these numbers A(p) satisfy the condition:
(5) A(p)"A(m)A(pr)~'=1 mod. mf, and is contained in %

for any p,r in G. So that, in the case of a cyclic extension, the assertion
(1)>(2) is equivalent to the assertion (3)->4), (5).

In an arbitrary abelian extension K/k, we shall deal with a generalization
in this form. Let us denote by {d(p)} a system of ideals in K corresponding
to the elements of Galois group G of K/k. The main theorem in this note
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is the following generalization of Hasse’s result.

THEOREM 1. In an arbitrary abelian extension, a necessary and sufficient
condition for a system {N(p)} to satis/y the condition (3) is that there exist
an ideal B and numbers A(p) in K such that the conditions (4) aud (5) are
satisfied.

As a sufficient condition to get (3), - the conditions (4),(5) are not an
actual generalization of the condition (2)—— we get (3) from (4), (5) imme-
diately, although we have to use Lemma 2 in §1 in order to get (1) from
(2). In this respect, we may have to take Theorem 1, which is shown in
§1, instead of Theorem 1 as a direct generalization of the Hasse's result.

In the case in which we do not consider the classification of numbers
in K, a generalization of the principal genus theorem of a cyclic extension
was proved by E.Noether making use of the theory of algebras (See [5]). If
K/Ek is unramified abelian, and if m =1, our Theorem 1 is equivalent to
Noether’s result. As for the proof of our theorem, it depends only upon
arithmetical results, and will be given in §1. The preceding Hasse's result
is translated to a group-theoretical one by Artin’s law of reciprocity, and
this is directed from a property of a meta-abelian group (Cf.[37],[4]). In
our case, however, the condition (3) is not a property of classes mod. mg,
and we are not able to translate it to a group-theoretical one.

In §2 we first prove the following theorem which was proved by
H. Hasse in the case of the fields of prime degree (Cf.[1], pp 298-302).

THEOREM 2.2 By a cyclic extension K|k, the jfollowing two conditions

concerning a number A of K are equivalent to each other :
(6) Ngi.A =1 mod. mj,

@) A=B'7 mod. m{,
where o is a generator of Galois group of K[E>.
This will be used in §1 to obtain Theorem 1 without proof there,
Moreover, we may consider naturally a generalization of this theorem
in an arbitrary abelian extension. Concerning this, we have
TueoreM 3. If {A(o)} is a system of numbers in K corresponding to the
elements of G such that
@®) Alp) Am)A(pr)~ = 1 mod. mj,
© A(py=t = Afryp- |
for all p, T in G, then there exist a number B such that

1> In proving the necessity of the conditions (4) and (5), we do not assume that
the principal ideals (o)™ U(DN(pr)-1 are generated by elements which form a factor
set. But after proving (4) and (5), it is shown that they are generated by a factor set
which splits into a transformation set A(p) with = I mod. m

2) Perhaps this result may have been proved already by some one. But I am not
able to find the proof anywhere.

3). It is not necessary for 4 to be prime to the module mj.
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(10) A(p) = B'-? mod. m§
Jor all p in G..

This Theorem 3 is equivalent to the following result.

" THEOREM 3. Let {a(p,)} be a factor set in K, satisfying the condition -
a(p,7) =1 mod. mf, a(p,7)= a(r, p)?

for all p,r in G. Then, if {a(p, )} splits into a transformation set {A(p)} in
K, it splits into a transformation set such that =1 mod. m{F.

This will be proved also in §2.

The author wishes to express his thank to Professor Tadao Tannaka
who have conjectured the above generalization of the principal genus theorem
and encouraged me during my study of these theorems.

§1

1. Lemmas. Let K be an abelian extension of degree m over an
algebraic number field 2. Let p be a prime divisorin k2, and V; (=12, ....)
be the Hilbert’'s sequence of subgroups of G corresponding to p, V,; being
the inertia group of p. Let p= (P;-...Pyy = P be the decomposition of p
in K. Denote the order of the group V; by N; (:=1,2,....), especially N,
= ¢. For a finite prime spot p, the p-component D(K/k), of the different
D(K/k) of K[k is given by P=¥e-1} (7= 1,2, ....). In imitation of this formula,
for an infinite prime p.. in 2, we define a module ®(K/k)y.. by

VK] E)yo = {%w( = Poy1 P myz) if Do re.?l and P.. imaginary,

1 otherweise.

In this note, we shall denote TIy D(K/E)y Ilp. D(K/E).. by D(K/k), and call
it the different of K/Z.

Let v be the number with Ny, =1, Npiy= 1, and # be an integer

defined by # + 1= J%TE?:% N;. The p-component of the conductor {(K/k)

and of the “Geschlechtermodul” F(K/k) are given by

1 (K[ k) = pu+t, F(K[R)p = $o+?

respectively. Then it follows from the above definition of D(K/%Z) and from
these formulas that {(K/k) = D(K/k)-F(K/k).

LemMA 1. If K' is an intermediate field of K|k, we have

(12) SK/K WK/ R) = DK [R)F K| RK]K),
(13) S(K' KWK/ k) = DK/ K)FK]RIK [ F).
PROOF. HK/K)NK[R) = FK/K)VFEK/RDEK]F)

= §(K/ KK/ KK/ DK [ k)
= (K[ K)JK/RDK k),

which is (12), and we have also (13) by the same way, q.e.d.

LemMMA 2. Let K/k be an abelian extension and m and n be mtegrali
modules in k. Denote the numbers in K by A and numbers in k by a. Then

4) If a factor set a(p, ) in K satisfies the condition a(p, v)=alr,pD, then it'is shown
easily by a simple computation that all the numbers a(p,r) lie in k.
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1. #f A =1mod.mf, we have Nx,A =1 mod. mf;

2. i a=1mod.mj, there exists A such that a = N A mod.mn} and
A=1 mod.m.

ProoF. Let @\ and A, be elements in £ and K respectively with @\ =1
mod. p* and A, =1 mod. P7. Then it follows from Hasse’s result concerning
the norm residue (See [2], pp.210~223) that
14) NiBAovires:s C Quaran (r=0),
(15) NixAoire Quars1r = Quar (r=1).

The first statement of our lemma follows from (11) and (14) immediately.
As for the second statement, applying (15) successively to the given number
a, we can find a number A, such that

Ap = 1mod. (mJ)y, @ = NxAv mod. (mnf)y;
then a number A such that A = A, mod. (mng), for all p | mnf will satisfy
the desired condition. q.e.d.

LemMma 3. In a p-adic case, any number a in ky such that =1 mod. mf
is the norm of a number A in Ky such that = 1 mod.mg,

Proor. This follows from the successive application of (14), which are
also true in a p-adic case, immediately. q.e.d.

Now let us decompose Galois group of K/k into cyclic subgroups G, -- -,
G,. Denote a generator of G; by o:;, and a corresponding subfield of K by
K;. For the sake of simplicity of the description, we shall use the following
notations :

Ai=1l—0ay Mi=1+4 o4---- + o? (=1,----,m),

where m; is the order of the group G;. These symbols will be used in this
note without further mention.

LEMMA 4. If a system {Ai; i=1,....,n} of numbers in K satisfy the
Jollowing conditions :
(16) Nix, A, (= A =1 G=1,----,n),
17) A = AP (Gj=1,--,m),

then there exists a number A in K such that A;= A% (i=1,....n). This
is also true for ideals instead of numbers. Moreover, if these elements A;
satisfy the additional condition

(18) A; =1 mod. (m)N (i=1,-...,m),
where m is the order of the group G and W is an arbitrary integral module
in K, such that M =M, then we may select the preceding number A as it
satisfies the following additional condition :

19) A =1 mod. M.

Proor. Let us arrange the groups G; in a fixed order. For each element
o=o}---.0fr (0< a;<m) of G, define a number A(s) in K by
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Al)=1. A(ey)= A;, Alo)=Al(c} a2 --a'}‘:)“iiA(d'[l).

Then it follows from (16) and (17) that
A(o) A(m)A(er) 1 =1

for all o,7 in G. Let @ be an arbitrary generator of the extension K/k.
Then we may find a number A = 0 under the following # numbers: B; =
3:A(0)6° (i = 0, ...., m —1), which satisfy B?A(o) = B; (Speiser’s lemma).
Now, if {A;} satisfies (18), so does {A(s)}. Let /== 0 be a rational number
such that /@ is divisible by (m)@. Then, ¢ = 1 4 f@ is also a generator of
the extension K/k and = 1 mod. (m)M. Therefore, all the numbers B; = 3
Al@)d (i=1,-.... m) satisfy the following condition

B =31=m mod*(m).

This shows that we may find our number A with (19) under the m numbers
Bj/m. q.e.d.

2. Modification of Theorem 1. The assertion that (3) follows from
(4) and (5) is trivial, as it was mentioned in the introduction, and we are
interested only in the necessity of the conditicns (4) and (5).

After putting p = o; and T = ¢} into (3), take the product letting @ run
from O to m; — 1. Then we have, for U(oy) = U,
(20) AYs = (@), (@) € Ry(mi) (@G=1-....m).

Moreover, also in (3), let p = o;, T = o; on the one hand, and p = oy, T =
o on the other hand. Canceling (s; o) in these two relations out, we have

Aps = i@y, 5), (@i, 5) € Rafmf) (G,j=1,.---,n).
Since Ay M; =0 (i=1,....,7n), we have from this by operating M;M;

(@, )" = (@, " =1 Gj=1,----m),
which means (a;, ;) = 1. Therefore we have the following :
(21) Abs = Y Gj=1,.-..,m),

To prove our assertion getting (4), (5) from (3), we need only prove the
following :

THEOREM 1 A necessary and sufficient condition for a system {U} of
ideals in K to satisfy the condition (20), (21) is that there exist an ideal B
and numbers A; in K such that
(22) A, = Bai(4;), A; =1 mod. mF(K/R)D(K/L;) (i=1,....,m),
(23) Adi = A,Ai Gj=1,....,n),
(24) A =AA7, Aje L, A =1 mod. wFK/E)DK/k) (G=1,-.-.,m),

where L; is a subfield of K corresponding to the subgroup G;x ---.xXG;_, %

5y The statement (3)-3(4), (5) is actually a generalization of the statement (1)-(2).
In the case of n=1,i.e,, if K/k is a cyclic extension, the conditions (21),(23) and (24)
in Theorem 1' have no meaning, and Theorem 1’ is exactly the Hasse’s result.
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Gis1X -+ XGy of G.

In fact, we get Theorem 1 if we can prove the statement (20), (21) > ’
(22)~(24), as it is shown in the following..

Firstly, it may be shown that A, satisfies ihe following
(25) AMi =1 mod.mi(K/k) andc b, E=1,----,m),
Proor. From (22) and (24) the number A’ € L, satisfies the condition
A} =1 mod. mF(K/E)YD(K/L,),
and then it follows from (13) in Lemma 1 that

A; =1 mod. mi(K/R)YF(Li/k)/i(L:/ k) E=1,-...,m).
Applying Lemma 2 to the cyclic extension L;/k arid to the number A} € L,
A =1 mod, mi(K/%) G=1,----,m)

Applying the above method also to the cyclic extension K/K; and to the
number A;’, which is = I mod. mF(K/k)D(K/k), we have

A} = 1 mod. mi(K/k) G=1,----,m).

These two results show the first part of (25). On the other hand, operating
M; to the equality (23), we have A}+* =1, which shows that Al is in K,
N NKi-y N K:iN---- N Ky, and we have the second part of (25) as
well as the fact that A lies in K;.

NOW, for an arbitrary element p= 0'?11. . -a‘%: = oy, T in G, we obtain

by using (3)

Mp) = W W(r) mod. Ry(mi(K/E)).
Using this, it is easy to derive (4) from (22) by an ‘inductive method, and
we do not go deep into its detail. In this process, the elements A(p) in (4)
may be constructed from A; as we did in the proof of Lemma 4, and the
relations (23), (25) shows the additional condition (5).

Thus we need only to prove the previous Theorem 1’. Inithis time also,
the sufficiency of the conditions (22)~(24) is proved easily. That is, on the
one hand, since (25) was derived from (22)~(24) only, we get (20) from (22)
taking (25) into consideration; on the other hand, (22) and (23) show the
condition (21). So that, we are interested only in the necessity of the
conditions (22), (23) and (24). Concerning this, we shall proceed to a more
simplified modification. '

Let n be an arbitrary integral module'in k. Applying Lemma 2 to the
cyclic extension L;/k and to the element a; in (20), we may find a number
A} in L; such that

(26) AMi=a  mod. mni(K/k), R
@en - A=l mod. mF(L/ kR)(K/R)[{(L:/ k) = mF(K/R)D(K/L).

These 7 elsments A; also satisfy
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for all 4,7 =1, ....,n. These elements A} are just the elements which we
described A] in Theorem 1’. It follows from (20), (21), (26) and (28), that
the ideals U] = UA;/(A)) satisfy the following conditions
(209 A = (a}), a; =1 mod.mni(K/k), a, € k E=1,....,m),
1) ‘ Wfds = WA (Zji=1,..-.,m).
Now, if we cén prove - from these, for a sufficiently large n, the
following relations:
22" A = B24(A)), A =1 mod. mF(K/k)(K/k) @G=1,....,m),
(23) Apss = A Gj=1,---.,m),
where YK/k) = N D(K/k), then we have the desired relations (22)~(24)
taking (27),(28) in mind at the same time. Moreover, as the module n can

be taken sufficiently large, the module md(K/k) in (22') may be denoted again
m, and consequently, we concern only with the following

THEOREM 1”. If a system {0} of ideals in K satisfies the conditions
(207) W = (@), a; =1 mod. mni(K/k), a; € k G=1,....,n),
(21”) s‘)IiA‘I =QI?‘ (i:j;:lr M) n)

for a sufficiently large integral module 1 in k, then there exist an ideal B and
numbers A; such that

(22") A, = Bai(A;), A; =1 mod. mPK/k) G=1,-.--,m),
(23,/) AZA-I = AjA‘ (i;j = 1: crtey n)
3. Proof of Theorem 1”. Now, we shall proceed to the proof of

Theorem 1”. From now on, we shall repeatedly use the relation (12) in
Lemma 1, especially the following

12 BK/RYD(K | k) = F(K| KWK R)/ (K| Ki).
This will be used by applying Lemma 2 to several cyclic extensions, and
we do not notice in each time.

I. We may assume that all the ideals U, are prime to mn{(K/k).

Proor. Let us decompose U; = A", where A, is prime to mnf(K/k)
and A" consists of only the prime divisors of mnf(K/k). Then it follows
especially from (20”) and (21”) that these ideals ;" satisfy the conditions

WH =1, A8 =A% Therefore, by Lemma 4, there exists an ideal B”
such that %" = 8”2 This shows that we need only prove (22”) and (23”)
concerning the ideals %, which are prime to muj(K/k). q.e.d,

II. We may find an ideal B, which is prime to mni(L/k), and a number
A, such that
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(29) A =B (A,), Ay =1 mod. mnF(K/E)D(K,/k).O
(30) A gk

Proor. Let us apply Hasse’s result described in the introduction to the
cyclic extension K/K; and to the ideal 2;, Then we get such a relation as
(29) immediately. Moreover, operating M, to (29), it follows from (20”) that
(31) 1=Al=@a & =& mod.mnj(K/k),
where &; is an unit in K;. Since &; is a norm residue in the cyclic extension
K/ K, there exists a number B; in K such that
(32) 81 = Bi”l, (B]) == ‘SB]AI
The latter in obtained from the so-called Hilbert’'s lemma (Lemma 4 in the
case of # = 1). Then, it follows from (31), (32) especially that B’ =1 mod.
mnf(K/k), from which it follows from Theorem 2 that there exists a number
C in K such that
(33) B, = C* mod. mn(K/R)D(K,/ k).

Now, the number A:C*/B, satisfies both (29) and (30), which means that

A,C*/B,; is a desired one. That we can assume (B, mnf) = 1 is an immediate
consequence of (29).

III. We shall conclude the proof of Theorem 1” by an inductive method.
Let the module n, which can be taken sufficiently large, be as large as to be
divisible by (m)"d(K/k)**, where m is the order of the group G and b = b (K/k)

= Ng®(K/k).? And define a module n, = n/(myd» (r=0,1,-...,n) in k.
Now let us assume, concerning Ui, ---. 2. (r < m), that there exist an
ideal B, which is prime to mnf(K/k), and elements A,, ..-.A, such that
(34) W = BA(A;), A; =1 mod. mu,F(K/k) (E=1,-....,7),
(35) Alic k (Z=1,....,7),
(36) AP = A (G j=1,....,7)

In the case of 7 = 1, these conditions are fulfilled, that is, the conditions
(29) and (30) are just (34) (35), respectively, and (36) has no meaning at this
time. Moreover, in the case of » = %, these conditions are just the desired
conditions (22”) and (23”). Accordingly, we may prove our result by an
inductive method, that is, we need only prove (34)~(36) concerning %, ...,
.., under the preceding assumption (34)~(36) concerning U, .. .., Us.

Proor OF THE INDUCTION. According to the conditions (34)~(36), the
numbers By = A%+ (i =1, ....,7) satisfy the following conditions

B, =1 mod. mn,yK/k), BYt =1, Bp = B} @G j, =1 7).
Applying Lemma 4 to the abelian extension K/K,  ---- | K, and to these

6) As-the module 11 may be taken as large as we desire, it is not necessary to
give it explicitly, and also to describe D K/kD, D(K/k), (m) in (29),(33),etc. I give only
a rough bound of y;.

7y Cf.4).
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numbers By, -. .-, By, there exists a number B such that

(37) Abr+1 = B; = B4 G=1,....,7),
(38) B =1 mod. mn,F(K/k)/(m).
Then, it follows from (21”), (34) and (37),

Q[f_t'_l = 91?7‘-0-1 = (EBAHI(B))AA (=1 ....,7).
Therefore, if € is an ideal defined by
(39) Uy 4y = BAr+1.(B)E,
it satisfies 64 =1 (i =1, ....,7). As the ideals %,,,,B and (B) are prime to
f(K/k), so also is €, whence € is an ideal in K, N ..-. (1 K;. Operating
M,., to (39), it follows from (20”) that
(40) (@r41) = (BYr+1) GMrer, (Gray) € Ry(mnf).

Now, on the one hand, operating M,,, to (37), we get Br+1a,=1 (7= 1.
...,7), which shows

(41) Bhye KiNl - N Kr N Kraar

On the other hand, operating M,,; to (38), we get

(42) BYr+1 =1 mod. mn,j(K/E)/(m)d = mite..§(K/k)Dd.

Therefore, the ideal € in K;  -..- N K, satisfies thé condition
G+l € Rig N -+ o+ N Ky (M f(F/ B)D).

We may apply Hasse’s result to the cyclic extension K, ] -..- | K/Ki N
.... N Ky+1 and to the ideal €. This shows that there exist an ideal 3’ and
a number B’ in K; ] -...- | K, such that

(43) € = Bar+y(B’), B’ =1 mod. mn,.,(K/k)D,
whereby we used the result of the following computation which follows
from Lemma 1:
CEDME N - NESE N e N Er)] SN - NEKJEK N N Krs)
= [DK/B)/DEN -+ - NE/ K (- | K) ]S B).
It follows from (38), (39) and (43)
(44) Wpyy = (BY)2+1 (BB'), BB’ =1 mod. mny,F(K/E)D.
Now, the followings are just analogously as we get (30) from (29). Since
B eKiN..-.N K, and B satisfies (41), (BB )!r+1€ K, \-...( Kr+1. Then,
analogous to (31), we get from (20”) and (44),
(45) 1= (BB'Y'+1 = @py1 Eps1 = Eryy mod. mily,1 f(K/R),
where &1 is an unit in K (....) K..;. Consequently we may find a
number B” and an ideal B” in K; ] .... ) K, such that
(46) &= B W+1 (B") = ¥'"%,,1, B” =1 mod. mt,.1 F(K/k).
We have consequently, on the one hand, from (44), (46)
Wy = (BEY")+1(BB’/B”), BB'/B” =1 mod. mity, FK/E),
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and on the other hand, as B!, B” are in K; .... K, we get from (34)
A; = (BB'YB")8+(A4;), A; =1 mod. mn,F(K/E),

whence mod. mn,,; 3(K/k), for i = 1,....,mn. These two relations show that
(34) is also true for r + 1ideals %, ...., %, making use of the ideal BB'B"
and numbers A, .-.., Ay, Ar.1= BB’/B”. In addition, since B’, B” € K\
....NK,, it follows from (37)

Alér+1 = (BB’/B”)At (1=1,....,7),
which shows. together with the conditions (36) concerning A;, ....A,, the
desired relation (36) for A, -..., A,:;. And finally, it follows from (45),

(46) that (BB’/B”)¥r+1 = @,., € k, which is nothing but (35) for A,., = BB’/B".
Thus we conclude our induction.

§ 2.

4, Proof of Theorem 2. In this section we shall prove Theorem 2
which was assumed by proving Theorem 1. The sufficiency of the condition
(7) is an immediate consequence of Lemma 2, and we are interested only
in its necessity.

I. We can confine our attention to a number A which is prime to the
module mf.

ProOF. Let us suppose that A is not prime to mf. Then the ideal (A4)
is decomposable into a part 2 which is prime to mj and a part A’ which
consists of prime divisions of mf. It follows from (6) especially that Nx,A
is prime to mf, and the ideal A’ satisfies Ngz %' = 1. Then the so-called
Hilbert’s lemma shows that there exists an ideal B such that U’ = Bi-,
Now, take a number A’ such that B’ = B(A’) is prime to mf, and it is shown
easily that AA'-° satisfies (6) and is also prime to mf. This shows the
preceding statement. q.e.d.

II. It is shown easily that we may reduce our Theorem 2 to one
concerning the prime-component of the modules, that is, we need only
prove the following

THEOREM 2'. Let p be a prime divisior in k. If a number A satisfies the
condition

6) Ny = a =1 mod. (mf)y,
then there exists a number B such that
7) A = B-° mod. (m)y,

where the sign ( )p means the p-components of these modules.

III. We may confine our attention to the case in which the ground field k
is the splitting field of p. '

Proor. Let us denote



ON THE PRINCIPAL GENUS THEOREM ETC. 151

K. the splitting field of p, G. the splitting group of p,

P=p---.pp = (B;....R,) the decomposition of p in K, and in K respectively,
A number in K prime to (nf), with Ng A =1 mod. (mf),

By number in K with B}~ prime to (mf)y,

B number in K prime to (mf)y,

C number in K =1 mod. (mg)y,

a number in 2 =1 mod. (mf),,

and ‘'we occasionally understand by the same symbols A, .... also groups
generated by them, respectively. Since B}~C < A, we need only prove the
following

@7) (B:Bi~+C) < (B: A).

Now, on the one hand, a correspondence B/C-»NixB -a/a shows that (B: A)
= (NxBa: a), which is equal to #,((mf),)/e, where #, is the Euler’s function
mod. (mf), in k. On the other hand, we have
(B:B'-7C) = (B:B'-7 C)/(B)-° C:B1-°C) = (D: C)/(B}-"C: B1-°(),

where D is a number in K such that D'-° = 1 mod.(m%), and is prime to
(mP)p. Let IT and = be numbers in K and % with P;| IT (=1, .--.,9) and
P = respectively. Then, for each number B, there exists an integer a
such that B,/II* is prime to (nf),, i.e., By/II* = B. Accordingly, the quotient
group Bj-°.C/B-°- C is a cyclic group generated by the class of II!-°.
Since II° = #B, the order e* of the preceding quotient group is a divisor

of e. Hence, the inequality (47) which we wish to prove is reduced to the
" following

(48) (D:0)/e* = P((nho)/e,

where e* is the least positive integer such that

(49) (I1#)~° = B~ mod. (mg),.

Let us now assume that we have proved Theorem 2’ concerning K/K. and
prime divisors p; (= 1,....,9) of p in K,. In this case, let us denote all
the preceding symbols A,C, -...,e*, .... by A+,Csy4, -+ -+, €, -- --, Where we
may assume Il.,; =II ({=1, ..--,9). Then it follows from our assumption
that ‘

(50) (D:,s:Cx, )/ e:-,z < Pr(m)ps)] € foralli=1,..-.9.

We have of course {(K/K.)y = {(K/k)p and F(K/K:)p = F(K/k)», and we denote
them by f, and @ respectively in the following. Since o7 is a generator
of G., e,,is the least positive integer such that (IT*%:)!~°" = B};"“mod.
(mf)y,. B); operating o, it is shown easily that ¢;; does not depend on 7,
and we may denote it by €. Now operating 1+ o+ ---. + %! to (49),
~we get
(Y=o = Bi=o mod. (), (=1 --9),
which shows especially
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(51) e<e

Next, it can be shown that »

(52) © (D:C) < (Dey1:Csy) S

In ﬁct, it follows from the definition of D that D'~??=1 mod.( m%)g‘ (z = 1,:
..+, 2, and this means D< D.,; (i=1, ..., 8. That is to say, D is con-

tained at most in (D:,1:C:,1) classes mod. (mF)y « Moreover, if DO = D®
mod. (m3F)y,, we get from the definition of D that D™ = D® mod. ()

forall p;(i= 2, ----, g, which shows D® = D® mod. (mg),. Accordingly also
D is contained at most in (D:,::Cs, 1) classes mod. (m),. Thus we get the
inequality (52).

Now it follows from (50), (52)
(D:C)/e* < (Dey1:Cy,1)/ €, < Pro{(B))/ € = Pr((mi)y)/e.

This is the desired relation (48), and we have gotten the preceding statémeht.
q.e.d. ‘

IV. Thus we may confine our attention to the case in which the ground
field is the splitting field of p, Then it is easy to see that we may reduce
our Theorem 2’ to one concerning p-adic number field, and in this case the
statement follows from Lemma 3. That is to say, for the number a in (6'),
there exists a number C such that

NgilA = a = NKICC, C =1 mod. (m%})p,
and it follows from Hilbert’s lemma that we may find such a number as
A/C = B'-°
This completes the proof of Theorem 2’ and accordingly Theorem 2.

5. Proof of Theorem 3. We may prove Theorem 3 quite analogously
as by the proof of Theorem 1. All the arguments of the proof of Theorem
1 in which ideals are replaced by numbers hold true after some amendent
which is seen easily, and we does not refer to the minute detail of this
proof. As for the condition (9), we must assume it in order to get (21)
and AYi € k. Moreover we get Theorem 3" if we describe A(p)"A(r)A(pr)™!
in Theorem 3 by a (p, 7).
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