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Introduction

The principal genus theorem in a cyclic extension plays an important
role in the study of the class field theory. A generalization of this theorem
in the case of an abelian extension will be shown in this note. It was a
long standing conjecture of Professor Tadao Tannaka.

Let K be an abelian extension of an algebraic number field k, and \ and
3 be the conductor and the "GeschlechtermoduΓ of K/k respectively. Let m
be an integral module in k. Let us denote the ray ("StrahΓ) mod. mf in k
and mod. m$ in K by Rk(m\) and Rκ(jn^), respectively. H.Hasse proved the
following so-called principal genus theorem for a cyclic extension (Cf. p.],
pp. 304-310):

If Kjk is a cyclic extension, following tiυo conditions concerning an ideal
21 of K are equivalent:

(1) Λfe*Sl€ft(mf),
(2) 21 - 8 ι-'(A), (A) e Rκ(m%),

where σ is a generator of Galois group G of K/k.
The generalization in quite the same form seems to be difficult, and we

take up the transformation set instead of the norm in (1). Namely, starting
from a given ideal 2ί, define an ideal 21 (<τa) corresponding to each element
σa of G as the following:

31(1) = 1, 2ί(σ) = 31, 2ί(σα) = 2i(o-K'12i(<r(l-1) (0 < a < e, σ* = 1).

Then, on the one hand, the condition (1) is equivalent to the condition

(3) 2ί(p)τ2ϊ(τ)2ί(pτ)-1 € RM)
for all p, T in G. And, on the other hand, the condition (2) is equivalent to
the existence of an ideal 33 such that
(4) SI(p) = W-p(A(p)), (A(P)) € ΛKmS)

for any p in G. Moreover, these numbers A{p) satisfy the condition:

(5) A(p)τA(τ)A(pτ)-ι = l mod. mf, and is contained in k

for any p,τ in G. So that, in the case of a cyclic extension, the assertion
(l)-»(2) is equivalent to the assertion (3)->(4), (5).

In an arbitrary abelian extension K/k, we shall deal with a generalization
in this form. Let us denote by {2ί(p)} a system of ideals in K corresponding
to the elements of Galois group G of K/k. The main theorem in this note
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is the following generalization of Hasse's result.

THEOREM 1. In an arbitrary abelian extension, a necessary and sufficient
condition for a system {5ί(/>)} to satisfy the condition (3) is that there exist
an ideal S3 and numbers A(ρ) in K such that the conditions (4) aud (5) are
satisfied. 2>

As a sufficient condition to get (3), the conditions (4), (5) are not an
actual generalization of the condition (2) we get (3) from (4), (5) imme-
diately, although we have to use Lemma 2 in §1 in order to get (1) from
(2). In this respect, we may have to take Theorem Γ, which is shown in
§ 1, instead of Theorem 1 as a direct generalization of the Hasse's result.

In the case in which we do not consider the classification 'of numbers
in K, a generalization of the principal genus theorem of a cyclic extension
was proved by E. Noether making use of the theory of algebras (See [5]). If
K/k is unramified abelian, and if m = 1, our Theorem 1 is equivalent to
Noether's result. As for the proof of our theorem, it depends only upon
arithmetical results, and will be given in §1. The preceding Hasse's result
is translated to a group-theoretical one by Artin's law of reciprocity, and
this is directed from a property of a meta-abelian group (Cf. [3], [4]). In
our case, however, the condition (3) is not a property of classes mod. m§,
and we are not able to translate it to a group-theoretical one.

In §2 we first prove the following theorem which was proved by
H. Hasse in the case of the fields of prime degree (Cf. [1], pp 298-302).

THEOREM 2.2) By a cyclic extension K/k, the following two conditions
concerning a number A of K are equivalent to each other :
(6) NKJCA = 1 mod. mf,

(7) A=Bι~σ modrng,
where σ is a generator of Galois group of K/k3*>.

This will be used in § 1 to obtain Theorem 1 without proof there.
Moreover, we may consider naturally a generalization of this theorem

in an arbitrary abelian extension. Concerning this, we have

THEOREM 3. // {A(σ)} is a system of numbers in K corresponding to the
elements of G such that
(8) A{PYA(τ)A{pτ)-1 ΞΞ 1 mod. mf,

(9) A{pY'1 = Airy-1

for all p, T in G, then there exist a number B such that

1) In proving the necessity of the conditions 0 3 and (5), we do not assume that
the principal ideals ^ C P ^ O O ^ I C P T ) - 1 are generated by elements which form a factor
set. But after proving C4) and (5^, it is shown that they are generated by a factor set
which splits into a transformation set AQp) with = 1 mod. tnδr

2) Perhaps this result may have been proved already by some one, But I am not
able to find the proof anywhere.

3> It is not necessary for A to be prime to the module mf
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(10) A(ρ) = B1-P mod. mg

for all p in G

This Theorem 3 is equivalent to the following result.

THEOREM 3'. Let {a(ρ,τ)} be a factor set in K, satisfying the condition
a(ρ, T) Ξ 1 mod. tnf, a(ρ, r) = a{τ, p)4)

for all p, r in G. Then, if {a(p, r)} splits into a transformation set {A(p)} in
K, it splits into a transformation set such that == 1 mod. m%.

This will be proved also in §2.
The author wishes to express his thank to Professor Tadao Tannaka

who have conjectured the above generalization of the principal genus theorem
and encouraged me during my study of these theorems.

§1

1. Lemmas. Let K be an abelian extension of degree m over an
algebraic number field k. Let p be a prime divisor in k, and Vι (i = 1,2, )
be the Hubert's sequence of subgroups of G corresponding to p, Vτ being
the inertia group of p. Let p = ( $ r . •$<?)* = ψ be the decomposition of p
in K. Denote the order of the group F έ by Nt (i~ 1,2, ), especially Nτ

= e. For a finite prime spot p, the p-component ^(K/k)p of the different
%)(K/k) of K/k is given by φ2*^-1) (f = 1,2, - . . . ) . In imitation of this formula,
for an infinite prime p^ in k, we define a module ^)(K/k)poo by

(*\fjrih\ J °̂°( = ί*00*1 $~,»»/2) if ĉo real and $«, imaginary,
Φ ( ^ k Ί l otherweise.

In this note, we shall denote Πp Φ(jfiΓ/A)p II>» ^(K/k)Voo by ^(K/k), and call
it the different of K/k.

Let v be the number with Nυ+ι * 1, Nv+* = 1, and w be an integer

defined by u 4-1 = -TT- Σ?S M The p-component of the conductor \(K/k)

and of the "GeschlechtermoduΓ %(K/k) are given by

(ID \(κik), = r+1, W f t = φv+1

respectively. Then it follows from the above definition of Ί){Kjk) and from
these formulas that \{Kjk) = ^(K/k)^(K/k).

LEMMA 1. If K is an intermediate field of K/k, we have
(12) %{K/K')\{K/k) =
(13) %(K'/K)\(K/k) -

PROOF. %{K/K')\(K/k) - %(K/K')%{K/kMK/k)

which is (12), and we have also (13) by the same way, q. e. d.

LEMMA 2. Zgί ϋf/β Z;̂  «^ abelian extension and m «wJ n #£ integral
modules in k. Denote the numbers in K by A and numbers in k by a. Then

4) If a factor set a(p,O in ίΓ satisfies the condition α(p, τ)=α(τ,p), then it is shown
easily by a simple compulation that all the numbers αCp»τ) lie in Jc.
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1. if A ~ 1 mod. mf, we have NKkA = 1 mod. mf
2. if a~\ mod. mf, f/?̂ rβ £x*sfc A s#c/z f&atf Λ = NKkA mod. mnf

A = l mod.m^.

PROOF. Let «λ and Aη be elements in k and if respectively with aλ = 1
mod. pλ and A,, == 1 mod. ̂ . Then it follows from Hasse's result concerning
the norm residue (See [2], pp. 210-223) that

(14) NKkAυ+re+i c au+r+, (r > 0),
(15) NκjcAv+redu+r+1 = β»+r (r > 1).

The first statement of our lemma follows from (11) and (14) immediately.
As for the second statement, applying (15) successively to the given number
a, we can find a number Av such that

Ap == 1 mod. (m$)p, a = NKhA* mod. (mnf)p

then a number A such that A = Av mod. (mn^p for all p \ mnf will satisfy
the desired condition, q. e. d.

LEMMA 3. In a p-adic case, any number a in kp such that === 1 mod. mf
is the norm of a number A in Kp such that = 1 mod. m§\

PROOF. This follows from the successive application of (14), which are
also true in a p-adic case, immediately, q. e. d.

Now let us decompose Galois group of K/k into cyclic subgroups G b ,
Gn. Denote a generator of Gt by σif and a corresponding subfield of K by
K{. For the sake of simplicity of the description, we shall use the following
notations:

Δi = 1 - σ-i, Mi = 1 + σ-ί + σfi-1 (ί = 1, .. ., n),

where mi is the order of the group Gι. These symbols will be used in this

note without further mention.

LEMMA 4. If a system {At i - 1, ., n} of numbers in K satisfy the

following conditions :

(16) Nκικ, A, ( = AtMή - 1 (i - 1, . , n),

(17) Ap^Af ( ί , / = l , •••-,«),

then there exists a number A in K such that At = AΔ« (/ = 1 , n). This
is also true for ideals instead of numbers. Moreover, if these elements A%
satisfy the additional condition

(18) Ai~l mod. (m)3R (i = 1, , n\

where m is the order of the group G and 931 is an arbitrary integral module

in K, such that Sίσ == W, then we may select the preceding number A as it

satisfies the following additional condition :

(19) A = 1 mod. 3K.

PROOF. Let us arrange the groups d in a fixed order. For each element

σ = a-*! σ

n.r (0 < rt < mij) of G, define a number A(σ) in K by
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= 1. A(σ{) = Au A(σ) = ζ g ^

Then it follows from (16) and (17) that

A(σ)τ A(τ)A(στ)-1 = 1

for all cr,T in G\ Let # be an arbitrary generator of the extension K/k.
Then we may find a number A Φ O under the following m numbers: Bt -
2σA(σ)ίσi ( 2 ^ 0 , . . - . , w — 1), which satisfy B<[A((r) ~ £* (Speiser's lemma).
Now, if {At} satisfies (18), so does {A(σ )}. Let / Φ 0 be a rational number
such that fθ is divisible by (m)9Jί. Then, ff = 1 4- / # is also a generator of
the extension Kjk and ΞΞ 1 mod. (m) 9ft. Therefore, all the numbers B\ = Σ
A(σ)ffσi (i = 1, . w) satisfy the following condition

This shows that we may find our number A with (19) under the m numbers
B'Jm. q. e. d.

2. Modification of Theorem 1. The assertion that (3) follows from
(4) and (5) is trivia], as it was mentioned in the introduction, and we are
interested only in the necessity of the conditions (4) and (5).

After putting p = σt and T = σ\ into (3), take the product letting a run

from 0 t o w i - l . Then we have, for 9I(σ<) = %„

(20) 2ϊf« = fa), (ad € i?fc(mf) (ί = 1, ...... n).

Moreover, also in (3), let p = σi} τ = σj on the one hand, and p = σ-j, τ ==
crt on the other hand. Canceling 9l(α-t σ j) in these two relations out, we have

%p = 3t?«te, j), to, j) € Λtftnf) (i, / = 1, ., n).

Since Δ« Λf£ = 0 (i = 1, , w), we have from this by operating ΛfίM/

to, ^ Λ = (aiy jΓ**' = 1 (i, / - 1, •-..»,),

which means (au f) = lfc Therefore we have the following:

(21) Slfi=3ίf« ( ί , / = l , •••-,»).

To prove our assertion getting (4), (5) from (3j, we need only prove the
following:

THEOREM 1!5) A necessary and sufficient condition for a system {%} of
ideals in K to satisfy the condition (20), (21) is that there exist an ideal 93
and numbers At in K such that

(22) % = SMA,), At = 1 mod. m%(K/kyS)(K/Lt) (i = 1, . . . . , w ) ,

(23) Afi = Af« (ί,/ = l, •••-,*),
(24) A = A AΓ, A; € &, AΓ = I mod. m%(K/k) ®(K/k) (i = 1, . . . . , *),

where L>, is a subfield of K corresponding to the subgroup dx

5) The statement (3)-K4), C5) is actually a generalization of the statement C0->C2>
In the case of 71= 1, i.e., if K/k is a cyclic extension, the conditions C20,(23) and C242)
in Theorem Γ have no meaning, and Theorem Γ is exactly the Hasse's result.
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Gi+iX . . . . x f t ofG.

In fact, we get Theorem 1 if we can prove the statement (20), (21) -»
(22)^(24), as it is shown in the following..

Firstly, it may be shown that At satisfies the following

(25) A*t = 1 mod. nή[K/k) and € k, (f = 1, . . . . , Λ ) .

PROOF. From (22) and (24) the number A' € Lt satisfies the condition

and then it follows from (13) in Lemma 1 that

A\ = 1 mod. mKK/kMLt/kyKLί/k) (f = 1, . . . . , Λ ) .

Applying Lemma 2 to the cyclic extension Lt/k arid to the number A\ € Lif

A'** = 1 mod. mf (#/*) (f. = 1, . . . . , n).

Applying the above method also to the cyclic extension K/Kt and to the
number A", which is = 1 mod. m^(K/k)^(K/k)y we have

Aϊ** ΞΞ 1 mod.πιf(/Γ/A) (i = 1, ., n).

These two results show the first part of (25). On the other hand, operating
Mi to the equality (23), we have Af^i = 1, which shows that Af* is in KΎ

Π Π AVi Π Kt+1 (Ί f l ^ , and we have the second part of (25) as

well as the fact that Afi lies in Kι.

Now, for an arbitrary element p = σ^ 1 —σ^ = σtι-τ in G, we obtain

by using (3)

3Kp) = SIS Sl(τ) mod. R^mKK/k)).

Using this, it is easy to derive (4) from (22) by an inductive method, and
we do not go deep into its detail. In this process, the elements A(p) in (4)
may be constructed from At as we did in the proof of Lemma 4, and the
relations (23), (25) shows the additional condition (5).

Thus we need only to prove the previous Theorem Γ. Imthis time also,
the sufficiency of the conditions (22)~(24) is proved easily. That is, on the
one hand, since (25) was derived from (22)~(24) only, we get (20) from (22)
taking (25) into consideration; on the other hand, (22) and (23) show the
condition (21). So that, we are interested only in the necessity of the
conditions (22), (23) and (24). Concerning this, we shall proceed to a more
simplified modification.

Let n be an arbitrary integral module in k. Applying Lemma 2 to the
cyclic extension Li/k and to the element a, in (20), we may find a number
A\ in Li such that

(26) A\x* = θi
(27) A\ = 1 mod. tnS(Z,/ft)f(/iΓ/A)/f(£,/A) =

These n elsments A\ also satisfy
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(28) A'fs = A ; Δ < ( = 1) /,• .-

for all i,j = 1, ,n. These elements A' are just the elements which we

described A\ in Theorem 1Λ It follows from (20), (21), (26) and (28), that

the ideals 9ϊ = %/(A',) satisfy the following conditions

(20') &;*« = {a\\ a\ = 1 m o d . mn\(K/k), a\ek (ί = 1, . , n),

Now, if we can prove from these, for a sufficiently large n, the
following relations:

(22') 3T; = 39/Δ<AΠ, A\* == I mod. m%(K/k)b(K/k) (i = 1, .. ., w),

(230 A ; ' ^ = A ; ' ^ ( M = I , ..-.,n),

where b(if/£) = NKj>β)(K/k), then we have the desired relations (22)~(24)
taking (27), (28) in mind at the same time. Moreover, as the module n can
be taken sufficiently large, the module rtώ(K/k) in (22') may be denoted again
m, and consequently, we concern only with the following

THEOREM 1". If a system {%} of ideals in K satisfies the conditions

(20") Slf* = {at), at = 1 mod.nmP7*), at ek (f = 1, ....,«),

(21") 3tfi = 3I^ ( ί , y = l , ,»)

a sufficiently large integral module π in k, then there exist an ideal 33 and
numbers At such that

(22") % = ^i(Ai), At = l mod. m

(23")

3. Proof of Theorem 1". Now, we shall proceed to the proof of
Theorem V'. From now on, we shall repeatedly use the relation (12) in
Lemma 1, especially the following

(12') %(K/k)®(Ki/k) = mK/KiMK/k)/KK/Ki).

This will be used by applying Lemma 2 to several cyclic extensions, and
we do not notice in each time.

I. We may assume that all the ideals % are prime to mn\(Klk).

PROOF. Let us decompose % = %%', where % is prime to mn^K/k)

and %'ί consists of only the prime divisors of mn](Klk). Then it follows

especially from (20") and (21") that these ideals %" satisfy the conditions

%'** = 1, 9I"Δ> = W/Ai. Therefore, by Lemma 4, there exists an ideal 33"

such that a" = 33//Δ<. This shows that we need only prove (22") and (23")

concerning the ideals % which are prime to mn\(K/k). q. e. d.

II. We may find an ideal 33, which is prime to mxήίL/k), and a number

Aι such that
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(29) % = 33Δ* (A,), ^ Ξ l mod. mn
(30) A?* € &

PROOF. Let us apply Hasse's result described in the introduction to the
cyclic extension K/Kι and to the ideal %, Then we get such a relation as
(29; immediately. Moreover, operating Mλ to /29), it follows from (20") that

(31) 1 = ii*i = β l f l Ξ £x mod. mnftfiΓ/*),

where £3 is an unit in KΊ. Since €j is a norm residue in the cyclic extension
K/Ki, there exists a number BΊ in K such that

(32) e, = Bf\ (BΊ) = SΔ>

The latter in obtained from the so-called Hubert's lemma (Lemma 4 in the
case of n = 1). Then, it follows from (31), (32) especially that J3f* == 1 mod.
mn^K/k), from which it follows from Theorem 2 that there exists a number
C in K such that

(33) Bτ = C** mod.xtm%(kK/ky$)(K1/k).

Now, the number .AiCΔl/#i satisfies both (29) and (30), which means that
AiC^jBi is a desired one. That we can assume (93, mnf) = 1 is an immediate
consequence of (29).

III. We shall conclude the proof of Theorem 1" by an inductive method.
Let the module n, which can be taken sufficiently large, be as large as to be
divisible by (m)nb(K/kyn

} where m is the order of the group G and b = b (K/k)
= NKj&(K/k). v And define a module πr = ιt/(»i)rbar (r = 0,1, ....,«) in ^.

Now let us assume, concerning %, ^\r (r < n), that there exist an
ideal 33, which is prime to mn\(K/k), and elements Ah - > Ar such that

(34) % = 23Δ<A;)5 ill Ξ 1 mod. m\\MK/k) (i = 1, . . . . , r),
(35) Λ f * € ^ ( ί= 1, . . . ,r),

(36) ilt

Δ' = il£« ( f , i = l , ••• ,r).

In the case of r = 1, these conditions are fulfilled, that is, the conditions
(29) and (30) are just (34) (35), respectively, and (36) has no meaning at this
time. Moreover, in the case of r = n, these conditions are just the desired
conditions (22") and (23"). Accordingly, we may prove our result by an
inductive method, that is, we need only prove (34)^(36) concerning %, ,
%+1 under the preceding assumption (34)^(36) concerning %, . -.,%.

PROOF OF THE INDUCTION. According to the conditions (34)^(36), the

numbers Bt = Afr+i (/ = 1, , r) satisfy the following conditions

B,, = 1 mod. mnMK/k), B?< = 1, Bf* = Bf* (i, j, = 1, , r).

Applying Lemma 4 to the abelian extension K/Kτ [} f] Kr and to these

6) As the module n may be taken as large as we desire, it is not necessary to
give it explicitly, and also to describe QCJC/k'), bC£"/&)> O?O in (29), (33), etc. I give only
a rough bound of \χ.

7) Cf.4-).
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numbers Bϊt — , Br, there exists a number B such that

(37) Afr+i = £ , = £*< ( ί = l , . . . . , r ) ,

m) B = l mod. m

Then, it follows from (21"), (34) and (37),

Therefore, if 6 is an ideal defined by

(39) » r + 1 = SB̂ +

it satisfies SΔ* = 1 (2 = 1, , r). As the ideals %*,, 33 and (Z?) are prime to
KK/k), so also is S, whence 6 is an ideal in Kτ f| Π JE . Operating
Λfr+i to (39), it follows from (20") that

(40) (Λr+i) = (B^+O e^+i, (βr+ϊ) € /ζtfmπf).

Now, on the one hand, operating Mr+ι to (37), we get BMr+\^t = 1 (ί = 1.
• , r), which shows

(4i) B*r+i € κλ n . n κr n κr+ι.

On the other hand, operating Mr+i to (38), we get

(42) BMr+ι = 1 mod.mnΓKίΓ/*)/(»ι)b = mnr+ιKK/k)b.

Therefore, the ideal S in ϋΓ] Π Π ̂ r satisfies the condition

6 ^ + i € ^ Π Π KM (mπΓ+1f(8f/*)b).

We may apply Hasse's result to the cyclic extension Kv fl Π Kr/KΊ f\
Π Kr+i and to the ideal ®. This shows that there exist an ideal 33' and

a number B' in Kj [} (] Kr such that

(43) e - S'Δ' +iφ'), J5r = 1 moά.mnr+SίK/k)\

whereby we used the result of the following computation which follows
from Lemma 1:

:pr/*)/f(/£i [}.--[} Kr/K! n •••• n / ί ^ α m ^ n - . . . n « /« i n n ^ + 1 )
= :sχ/sτ/*)/©(Ai n n ^ r / f t n n Kr+i)imκ/k).

It follows from (38), (39) and (43)

(44) Sr+i = (SBSBT1-1-1 (BS'λ BB' = 1- mod. mnr+i8f(Λr/*) b.

Now, the followings are just analogously as we get (30) from (29). Since
B' € Kτ Π Π Kr and B satisfies (41), (BB')Mr+1 e κλ Π Π ΛΓr+i. Then,
analogous to (31), we get from (20") and (44),

(45) 1 = (BB')Mr+ι = ar+ι 8M = 6r+i mod. mnr+rf(i5Γ/*),

where θ r + 1 is an unit in ϋΓτ p, Π -^+3. Consequently we may find a
number B" and an ideal 33" in KΛ f] (] Kr such that

(46) €r+1 - B"^+i, (Bn) ^ » 'Λ+ i, B" = 1 mod. mnr+i•$(#/*).

We have consequently, on the one hand, from (44), (46)

'IB"), BB'IB" = 1 mod. mnΓ+i 0<^/*),
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and on the other hand, as 33', 39" are in KΊ f].... Π Kr, we get from (34)

% = (3939'39")Δi-(At), At = 1 mod.m π^WA?),

whence mod.miv+i $(K/k), for *"- 1, ....., n. These two relations show that
(34) is also true for r + 1 ideals %, . . . ., 5ίr+1 making use of the ideal S9S9'39"
and numbers A,, . . . ., Ar, Ar+i = BB'jB". In addition, since £', £ " € 2£i Π
... . 'ή^r, it follows from (37)

Afr+i = (BB'/B")*ι (i = 1, .. ., r),

which shows, together with the conditions (36) concerning Aj, ..-.A,., the
desired relation (36) for Alt ,Ar+i. And finally, it follows from (45),
(46) that (BB'/B"y*r+i = a r+1 £ ^, which is nothing but (35) for Ar+1 = BB'IB".

Thus we conclude our induction.

§ 2

4. Proof of Theorem 2. In this section we shall prove Theorem 2
which was assumed by proving Theorem 1. The sufficiency of the condition
(7) is an immediate consequence of Lemma 2, and we are interested only
in its necessity.

I. We can confine our attention to a number A which is prime to the
module mf.

PROOF. Let us suppose that A is not prime to mf. Then the ideal (A)
is decomposable into a part 31 which is prime to mf and a part W which
consists of prime divisions of mf. It follows from (6) especially that NKΊCA

is prime to mf, and the ideal W satisfies NKk 2ί' = 1. Then the so-called
Hubert's lemma shows that there exists an ideal 39 such that 51' = S1"0".
Now, take a number A such that 39' = 39(Ar) is prime to mf, and it is shown
easily that AA'1'* satisfies (6) and is also prime to mf. This shows the
preceding statement, q. e. d.

II. It is shown easily that we may reduce our Theorem 2 to one
concerning the prime-component of the modules, that is, we need only
prove the following

THEOREM 2'. Let p be a prime diυίsior in k. If a number A satisfies the
condition

(6') NKIC = a ΞΞ 1 mod. (mf),,

then there exists a number B such that

(70 A - B1-* mod.(m3),,
where the sign ( ), means the p-components of these modules.

III. We may confine our attention to the case in which the ground field k
is the splitting field of p.

PROOF. Let us denote
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Kz the splitting field of p, Gz the splitting group of p,
p= pj pg = (% ψg)

e the decomposition of p in Kz and in K respectively,
A number in K prime to (mf)p with NKH A = 1 mod. (mf)P,
Btf number in K with B\~σ prime to (mf)P,
B number in K prime to (mf)p,
C number in KΞΞ 1 mod. (m$)p,
a number in k = 1 mod. (mf)p,
and we occasionally understand by the same symbols A, also groups
generated by them, respectively. Since Z?J-σCc= A, we need only prove the
following

(47; (B:BΪ-°C)^(B:A).

Now, on the one hand, a correspondence B/C->NiocB a/a shows that (B : A)
= (NKicB a: a), which is equal to %.((mf)„)/*, where % is the Euler's function

mod. (m\)p in ̂ . On the other hand, we have

(B : B1-" C) - (B : Bi-° C)I(B\- σ C Bι-°C) = (/): C)!(B\-σC: BlσC),

where D is a number in K such that Dι~σ ^ 1 mod. (m$)P and is prime to
(mf)j,. Let Π and ^ be numbers in ϋΓ and k with φ« || IT (i = 1, , #) and
/> || ̂  respectively. Then, for each number Bo, there exists an integers
such that B0/Tίa is prime to (nφp, i.e., BofH

aczB. Accordingly, the quotient
group B1

0-
σ-C/Bi-σ C is a cyclic group generated by the class of IIι-σ.

Since IP = πB, the order ^* of the preceding quotient group is a divisor
of e. Hence, the inequality (47) which we wish to prove is reduced to the

* following

(48) (D:O/«*SΛ((mf),)/*,

where g* is the least positive integer such that

(49) (IP*)1-* = Bι~σ mod. (m%)P.

t e t us now assume that we have proved Theorem 2' concerning K/Kz and
prime divisors pt (/= 1, — , g ) of p in -K«. In this case, let us denote all
the preceding symbols A, C, — , e*, — by Az, <, C«, *, — , < „ , where we

may assume Π*, β = Π (ί = 1, , g). Then it follows from our assumption
that

(50) ( D * , , : Cz, i)/e*2>i g φκ&mXht)le f o r a l l 7 = 1 , . . . .g.

We have of course ](KjKz)P - f(ΛΓ/*), and %{KjKr)P = 8<iK/ft)p, and we denote

them by fP and ftp respectively in the following. Since σ° is a generator

of Gz, eltt is the least positive integer such that (EFM) 1 -** Ξ SJ-^mod.

(mf)Pί. By operating σ, it is shown easily that e*zi does not depend on i,

and we may denote it by e*z. Now operating 1 + σ + — + σ^"1 to (49),

we get

(IP*)1-** = B 1 - * mod. (mO)̂  (f = l, . . . . , ^),

which shows especially
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(51) <ζ^^

Next, it can be shown that

(52) (D:C):S(Zλ,i:Cz,i).

In ίlct, it follows from the definition of D that Dι~σg= 1 mod. (mS^ (*==. 1,
,g), and this means DaD2it (i - 1, ,<g). That is to say, D is con-

tained at most in (Dz, i: Cz, i) classes mod. (ήu^)ρ1 Moreover, if D ( 1 ) = D ( 2 )

mod. (mg)*,, we get from the definition of D that D ( 1 ) = £>(2) mod. (mdh
for all pi (i = 2 , , g), which shows D c l ) = D ( 2 ) mod. (m$)P. Accordingly also
D is contained at most in (Zλ, i: G?, i) classes mod. (m^)P. Thus we get the
inequality (52).

Now it follows from (50), (52)

(D: C)/e* S (ft, i :C,, 0/< S ^,((m^)p i)/^ = <P*{Wh)/e.

This is the desired relation (48), and we have gotten the preceding statement,
q. e. d.

IV. Thus we may confine our attention to the case in which the ground
field is the splitting field of p, Then it is easy to see that we may reduce
our Theorem 2' to one concerning />-adic number field, and in this case the
statement follows from Lemma 3. That is to say, for the number a in (6'),
there exists a number C such that

NKkA = a = NmcC, C - 1 mod. (m%)p,

and it follows from Hubert's lemma that we may find such a number as
AjC = B1-*

This completes the proof of Theorem 2' and accordingly Theorem 2.

5. Proof of Theorem 3. We may prove Theorem 3 quite analogously
as by the proof of Theorem 1. All the arguments of the proof of Theorem
1 in which ideals are replaced by numbers hold true after some amendent
which is seen easily, and we does not refer to the minute detail of this
proof. As for the condition (9), we must assume it in order to get (21)
and Aξx € k. Moreover we get Theorem 3' if we describe A(ρ)τA(τ)A(pτ)~1

in Theorem 3 by a (ρ,τ).
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