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As in the theory of hypercomplex numbers, it may be expected, the
study of simple algebras gives a foundation of that of operator algebras,
although in the latter each algebra can not be reduced into simple components.
As an approach on this line, simple algebras of a special type, i.e. of
completely continuous operators, will be discussed in this note.

In such algebras, I. Kaplansky [1] proved, they are always isometrically
isomorphic to the full completely continuous operator algebra on a suitable
Hubert space. It shows, the algebraic structure of such algebras is com-
pletely determined within the isomorphism. Therefore, it remains the
relative structure with respect to the given full completely continuous
operator algebra in question. The present note concerns chiefly on it.

In § 1, a simple algebra A of completely continuous operators on a
Hubert space H will be discussed in a connection with the reducibility of
the space. The space H will be considered as an A-module, and it will be
decomposed into direct irreducible summands with a restriction on A
(Theorem 2). Incidentally, Kaplansky's theorem, which is fundamental for
our investigation, will be given an alternative proof (Theorem 1).

In § 2, the commutors of such algebra will be discussed. The com-
mutor is taken with respect to the full completely continuous operator
algebra. A simple argument will show that the commutor coincides with the
annihilator if A is infinite dimensional (Proposition 2). This hinders the
program, which traces an analogue of the classical theory of algebras.

Pseudo-commutor, which will be defined in § 3, will be used to avoid
the conflict. It gives a satisfactory dual object for our purpose. The pseudo-
commutor of a simple algebra of completely continuous operators is the
full matrix algebra embedded in the full operator algebra, and conversely
(Theorem 3). This solution is closedly connected with (and implied by) the
direct factorization theorem of Murray~von Neumann 113]. It reduces, in
some sense, the problems of the relative structure of such algebras into
that of hypercomplex numbers of operators.

Throughout the note, we may use some abbreviations and special use of
symbols for the convenience. We shall list them as follows:

B(H): the algebra of all operators on H;
C{H): the algebra of all completely continuous operators on H;
nos: normalized orthogonal system;
cnos: complete normalized orthogonal system
pio: partial isometric operator;
cocop: completely continuous operator
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e, p, q . projections with the range E, P, Q, respectively.
The term "subspace" will be used instead of closed linear manifold. An
algebra is called "simple" if it has no proper two-sided closed ideal.

1. Let A be a C*-algebra, i. e., a self-adjoint uniformly closed algebra
of cocops on an infinite dimensional (not necessarily separable) Hubert
space H. By the spectral theorem, the following proposition is clear:

PROPOSITION 1. A C*-algebra of completely continuous operators is
generated by the set of all (finite dimensional) projections belonging to the
algebra.

Proposition 1 implies that a C*-algebra of cocops satisfies the condition
[B) of I. Kaplansky [2].

Let e be a primitive projection of A in the sense that 0 < q <:β and
q € A imply q = e. Then exe is a scalar multiple of e for all x in A by
Proposition 1. If φ and ψ are mutually orthogonal vectors in the range E
of e, then

{<Px, ψy) = (<Pex, ψey) = (φexy*e, ψ) = \(<P, ψ) - 0

implies

LEMMA 1. If φ and ψ are mutually orthogonal vectors in the range of
a primitive projection e of A, then φA and ψA are mutually orthogonal.

Now, we shall discuss the "simple" case.

LEMMA 2. Let A be a simple C*-algebra of cocops, and let {<Pλ, , <Pn}
be a cnos of the range E of a primitive projection e of A. Then the closure
Hi of ΨiA is irreducible under A.

PROOF. If Hi is reducible, then there exists a projection p commuting
with A and Hh = Hip + Ht(l — p). Since A is simple, and since Hip is
reduced by A, A is represented on Hip faithfully. Hence, there exists φe
=z φ Φθ with φ € Hip. Similarly Ht(l — p) has φ' with φ'e = ^ ' * 0 .

Therefore

{ φ λ i . . . . , 9 ^ - i , φ , φ f , φ i + ι , . . - . , <pn}

is a nos in E, and this contradicts to the completeness of {φ1} , <pn}.

LEMMA 3. In the previous Lemma, let

M = HΊ + Hs+ . . . . +Hn

and N be the orthocomplement of M. Then M and N are reduced by A.
Moreover, N is annihilated by A, i.e., NA = 0.

PROOF. The first half is obvious. To prove the remainder, by Proposition
1, it is sufficient to show that each projection p of A annihilates each
vector φ of N. If the contrary is true, then φA spans a subspace F on
which A is represented faithfully, since A is simple. Therefore, the
primitive projection e of the previous Lemma has a proper vectof in N.
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This is a contradiction.
It is to be noted that N is the set of all elements ξ of H with ξ x = 0

for all x of A. For, since such ξ is annihilated by each projection of A,
ξ is orthogonal to every proper subspace of the primitive idempotent of A,
and A is generated by such primitive projections. N will be called the
nilspace of A. If N •= 0, A will be called semi-normal on H.

To proceed further, now we shall give a proof of a theorem of I.
Kaplansky, which is described in Introduction.

THEOREM 1 (KAPLANSKY). // a simple C*-algebra of completely continuous
operators is represented normally on H in the sense that ψA spans H, and
if H is irreducible, then A is the algebra of all completely continuous
operators on H and H = ψA.

PROOF. Firstly, we shall show that there exists a one-dimensional
projection e with <Pe = Ψ for some φ. If not, each primitive projection of
A is at least two-dimensional, and by Lemma 1 H is reducible.

Next, we shall show that each ψ with the norm unity such as ψ — φx
for some x ζ A Ίias the one-dimensional projection p such that ψp = -ψ.
Let v = ex. Then y is a pio with initial domain {λ^} and with final range
{\ψ}. Hence v = ψx<P 6 A in the sense that ξ (ψxφ) = (ξ,Φ)ψ. Then v*

= ψxφ and z;* e A. Therefore

belongs to A.
Finally, we shall show, that each φwith ||φ]| = 1 allows the expression

Φ = φx. Let {ψn} be a sequence of norm unity converging to φ, and let
ψn = ^/i where t;w is one-dimensional pio. Then \\vn — vm\\ = l|9*0n — 9ty,Λy->
0, whence there exists # in A with 9°# = φ.

THEOREM 2. // « simple C*-algebra of completely continuous operators,
acts on a Hilbert space, then the space is decomposed into the direct sum of
the nilspace and the finite number of mutually orthogonal irreducible subspaces
each of which is operator-isomorphic. The algebra is isomorphic with the full
completely continuous operator algebra of each irreducible summand.

PROOF. By Lemma 3 and Kaplansky's theorem, it is sufficient to show
the operator isomorphism of Hi. Since Theorem 1 gives Hi = Ψ%A, the
isomorphism is given by φtx <-> ψjX, then clearly Ht and Hj are operator-
isomorphic considering as A-modulo. This proves the theorem.

2. Let A be a simple C*-aglebra of cocops. We shall denote

Ac = {x e C(H) a e A->ax = xd}.

Ac will be called the commutor of A. Clearly, A" = A f\ C{H) where A' is
the commutor of A in B(H) in the sense of Murray-Von Neumann [3], and
AG is a C*-algebra, whence by Proposition 1 it is generated by the
projections belonging to it. Therefore, Ac will be determined by the pro-
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jections of Ac.

LEMMA 4. / / A is a simple C*-algebra of cocops and if p is a projection
of Ac, then x-^xp defines a representation of A on Hp. Moreover, if A is
infinite dimensional, then xp = 0 for all x^A.

PROOF. The first half is obvious. The second half follows from the
fact that A can not allow non-trivial representation on finite dimensional
space.

LEMMA 5. / / A is a simple C -algebra of cocops and semi-normal on H,
then Ac vanishes.

PROOF. Since each p 6 Ac has px = 0 for all x € A, the proper space
P of p is a part of N. Since iV=0 by the semi-normality, p = 0. This
shows Ac = 0.

PROPOSITION 2. / / A is a infinite dimensional simple £*-algebra of
cocops, then Ac is the set of all x with Ax = xA = 0, i. eΛ, the annihilator
of A in C(H). Ac is isomorphic to C(N), whence it is simple.

PROOF. The first half follows from Proposition 1 and Lemma 4: since
an annihilator x is contained in Ac, and since Ac is generated by its
projections. If a projection q having its proper space in N is chosen, then q
annihilates A, whence q belongs to Ac. Therefore, a cocop x having its
domain and range in N annihilates A by Proposition 1, whence the algebra
B of such cocops, which is naturally isomorphic to C(N), is contained in
Ac. On the other hand, B contains each p of Lemma 4, and so B contains
Ac. This shows the second half.

In the classical theory of simple algebras, the commutor of a simple
subalgebra A of an algebra C(with a suitable condition) satisfies (i) Ac is
simple, (ii) Acc = A, and (iii) C = AxAc. Clearly, (i) is true for our Ac.
Whereas (ii) and (iii) fail. For an example, let A be semi-normal and Hbe
reducible, then Ac = 0 and so Acc = C(H) > A, whence (ii) is not true.

In the theory of factorization of Murray—von Neumann [3], more
satisfactory analogue of the classical theory is given: If A is a factor of
type (I), then its commutor A' is a factor of type (I) and (ii)-(iii) are
satisfied. In the factor case, (i) fails. Because, /co-factor is not simple if
H is infinite dimensional (J. von Neumann [4]).

3. In this section, we shall introduce a notion modifying the notion of
commutor as follows

DEFINITION 1. A simple C*-algebra A on a Hubert space H is calledv

(i) an algebra of type (0) if A is finite dimensional and contains 1, (ii) an
algebra of type (1) if A consists of cocops and is semi-normal on H.

DEFINITION 2. The pseudo-commutor A71 of A is the set of all elements-
x such that x commutes with each element a of A and
,i; x is a cocop if A is of type (0),
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<ii) x is linear if A is of type (1).
By the Wedderburn Theorem, A is isomorphic with the full matrix

algebra Kn if A is of type (0). In both cases, the pseudo-commutor A"1 is
a C*-algebra.

LEMMA 6. // A is an algebra of type (0) (or (1)), then A* is of type (1)
(or (0». Hence two notions are mutually conjugate by the pseudo-commutor
operation.

PROOF FOR TYPE (0): Let pk be Γthe projection of A defined by the
matrix {pttJ\ for ai} = 1 if (/, j) = (k, k) and at, = 0 if (ί, ) Φ (Jfe, &). Put
-ft = HP*. Obviously, Pfc's are mutually orthogonal, and so H = Σf P .
Therefore, # is represented by the set of "vectors" ξ = ( £ , . . . , fn), g, ^ /?*.
Since in iΓ^ each pt is unitarily equivalent to pΛ, Pt is unitarily equivalent
to Pi. Identifying with the equivalence, each matrix (βtJ) acts on H as an
operator defined as usually by

(3.1) (ξ,• • ...f,.) {β,j)=(fΊ.••-.?;); f i = 2 A ' ^

Since ^i is reduced by Λ*, ξx € Pi if ? € P and Λ: € A*, whence

(3.2) ί f i , . . . . , f > = ( f ^ > . . . . , f l l * ) .
That is, A% can be considered as a certain C*-subalgebra of C(PY). On the
other hand, since P/s are mutually isomorphic, identifying each operator
of C(Pt), the above equation gives a cocop x on H and x commutes with
A. Thus A* is restricted to C(Pi) on PΛ. This shows A* is of type (1).

PROOF FOR TYPE (1): By Theorem 2, H is reduced into the direct sum
of mutually orthogonal irreducible subspaces Pit each of which is mutually
operator-isomorphic. This shows, ? = (£•:, , f n), ξt € P , if {• = ?i +
+ f „, is a representation in a vector form, and (3. 2) gives a representation

of Λ: of A. It is sufficient to show that A* consists of all operators of the
form (3.1), since such operators are clearly contained in A7".

Let {φΊ, . ' ,Ψn} be a cnos of the proper space £ of a primitive
idempotent e as in Lemma 2. Then φ: A = Pi by Lemma 2. Since A7"
reduces £. c € A* gives a matrix (γo) on E by

Hence, we have

(ξl, ~ ,ξn)C = (ΨΛX, "",φnx)c

= (βx<Pl, βn<P«

for x € A, where & = Σ; γ> This shows
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and proves the statement.
Now, by the previous lemma and its proof, the following theorem*

follows immediately:

THEOREM 3. / / A is a simple C ""-algebra of cornpletly continuous
operators which is semi-normal on H, then the pseudo-commutor \A* of A
satisfies:
(i) A* is simple, (ii) A** = A. and (iii) C(H) ̂  Ax A*.

The finial statement follows from the previous lemma and a result of
a previous paper [5] of one of the authors.

COROLLARY. If A andB are simple C*-algebras of completely continuous
operators and semi-normal on H, then A and B are unitary equivalent if and
only if their psedo-commutors A% and B% are isomorphic, or what is the
same, they have the same ranks.
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