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The notion of the Hubert algebras was introduced by H. Nakano [8]
and W. Ambrose"[l], independently, and their relations were studied by O.
Takenouchi [131. Recently R. Godement [4] has introduced the double unitary
representations of a unimodular locally compact group by the central Radon
measure of the positive type, but their research is clearly reduced to the
one of the maximal Hubert algebras.

The object of the present paper is to obtain the decompositions of the
maximal Hubert algebras of the finite class by the method due to Godement
in the theory of the double unitary representations of a group [4]. But
it is remarkable to obtain the irreducibility of the decompositions without
any separability condition, and these results may be suggestive to the
central decompositions of the arbitrary W*-algebras.

As we have extended the notion of the ^-oparation, introduced by J.
Dixmier [23, to the arbitrary ΫP-algebras in the previous papers [10,II],
we can decompose the arbitrary maximal Hubert algebra in this way, but
we cannot yet prove the irreducibility in this case. Therefore, we shall
discuss these problems in the form of the extension of the Plancherel
formula to a unimodular group in the next paper [12U.

Finally, some related problems are announced by Takenouchi [13], but
it seems to be necessary to introduce the separability condition there.

1. Fundamental properties of Hubert algebras.

Following Nakano [8U,
DEFINITION 1.1. A linear manifold 2ί of a Hubert space £) is called a

Hilbert algebra, if (1; 9ί is dense in & (2) 2ί is an algebra with complex
coefficients; (3) for any #6 21 there is an adjoint element α*6 31 such that
(1.1) < ab,c> = < b,a*c> , < ba,c > = < b,ca* >;
(4) for any a € 2ί there exists a positive number aa such that \\ax\\ ^aa\\x \\
for all x € 21; (5) by (1) and (4), for every a 6 2ί we obtain uniquely a bounded
linear operator La on £> such that Lax = ax for all x € SI. (6) For an element
x € ©, if Lax => 0 for all a € 3ί, then we have x = 0.

DEFINITION 1.2. A Hilbert algebra 21 is said to be maximal, if there is
no extension except itself, that is, a Hilbert algebra containing 2ί as a
subalgebra.

As can be easily verified, we have ([8; § 1])
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L E M M A 1.1. (1) La* = Z«\ (2) La« = ccLa, La+b - La + £&, Zα& == ZαL& (3)
< β,6 > = < £*,α* > , ;!tf*|= l!βj|.

By (3) of the above lemma, we know that, if we put Sa = a* for all
# € 3ί, then S is an involution in £). n

We see easily (by the above definition and lemma): for any a € 51, there
exists a positive number βa such that || *Λ!| < βa \\x\\ for all x € 2ί. Therefore
we obtain uniquely a bounded linear operator Ra on ξ), and
(1.2) Lab =: l&β = 06 for β, & € 9f.
Thus we can define the operators LX,RX for any x € ί> by
(1.3) Lxa = !?„*, Λ»fl = £α* for α € 9ί;
if these operators Lx and Rx are bounded, then we say x € ί> is a bounded
element. For the bounded elements of £), the following facts are known
([13, §1] and 4; Chap.IΊ):

LEMMA 1.2. (1) If x is bounded, then Sx is bounded and
(1.4; Rs*=Rx*, Lsc=Lx*.
(2) Lx and Rx are related by
(1.5) RSx=SLxS,
(3) For the bounded x,y, the product:
(1.6) xy = Lxy =
ί*5 ẑ /̂Z defined and xy is also a bounded element in & satisfying
(Ί..7) Lxy = LXLtιj, RXy = RyRx.

Thus we know that the set $ί of all bounded elements forms an algebra
containing 3ί as a subalgebra. Moreover, Takenouchi £13 Theorems 1 and
2] has proved that for each Hubert algebra 3ί, there exists a unique maximal
Hubert algebra 2ί, and this 31 is characterised by the set of all bDunded
elements of £).

In the sequel we treat only a maximal Hubert algebra £)0 in ί>, and de-
note Lo = {La: a € ©o} and Ro = {Ra; a € ©o}> and the T7|J-algebras'^ gener-
ated by Lo and Ro will be denoted by L and R, respectively. Then, the
following facts are known (cf. [13; § 1 and § 3] and [4; Chap. Ij):

LEMMA 1.3. (1) Lx e L, Rx € R if A € L {or € R), then Axis also bounded
and
(1.8) ALX - LAX, (ARX - R ix),
(1.9) LXA = Z S i , S τ . (ΛA - Zfc ,. f e ).
(2) Lj(or Ro) is a two-sided ideal in ! ι {or R).

Then the following important theorem is proved by [13; Theorem 5]

(which is proved analogously by [4; Theorem lj).

THEOREM 1.1. R' = L and Lf =- R.

i") The involution S is such an operator on φ that Sz=I, QSx, Sj} = Cy, #) and SCasx
ΊSc+βSj for Λ , I / € © .

2) By a W*-algebi\ι, we shall mean a weakly closed operator algebra in a Hubert
space, and by a C*-ctljebra a uniformly closed one, in the terminology of Segal
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Therefore Z = R f| L is the center of the R and L.
Next we shall show

THEOREM 1.2. R = S L S .

PROOF. It is sufficient to prove that if P be a projection in L, then
SPS is a projection in R, because S is an isometry and the set of
projections in a W* -algebra R is uniformly dense in R3). Let P € L be a
projection, then clearly (SPS)* = SPS, (SPS)* = SPS, so that SPS is also a
projection.

< SPS Lax,y > = < SP(SLax),y > = < Sy,PRa x* >
= < Sy,Ra*PSx > - < i?αy\ PS* > ,

< Zα SPSx,;y > = < SPSx,La*y > - < J?α^*, PSΛΓ > ,
therefore we have SPS € R, that is, the proof is completed.

Some other properties of the maximal Hubert algebra can be proved
here, but these will be discussed in the following paper E12H, related to the
extension of the Plancherel formula to the unimodular locally compact
group.

2. The ^-operation.
The ^-operation in a W* -algebra is introduced by Dixmier [_2~\ and this

notion is successfully applied by Godement C4H to the double unitary repre-
sentation of a group. We shall follow the method of Godement with some
modifications.

LEMMA 2.1. Let U be a unitary operator in L, then V = SUS is a unitary
operator in R.

, PROOF. < (SUS) (SUS)x,y > - < SUSx, SUSy > = < x, y > . SUS e R
will be easily proved by the method analogous to Theorem 1.2.
For these pairs of unitary operators U and V, we define

DEFINITION 2.1. x € & is called central if
<2.1) UVx = * for all U € L.
Denote the set of all such elements by £V. But as remarked by Godement
£4], there exists a case of & == (0).

Then by the ergodic theorem, (analogously to [4; Theorem 3U). we have

THEOREM 2.1. Z ί̂ Λ: €Ξ $>, αwdf 7̂ /" i£c &£ //*£ smallest closed convex hull
of UVx (U € L) /7z£/z îΛΓ tos <z unique common point ^ with & Λ* is a
projection of x to iQ* , and x* is characterised by the one of the minimal
norm in Kx.

Clearly the operation #->** is a linear continuous mapping of § on & p

which is reduced to the identity on & .

LEMMA 2.1. The ^-operation conserves the boundedness of ξ). In order that

33 J. von Neumann, Zur Algebra..., Math. Ann , 202( 1932}, p. 391.
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abounded a € £) should be in £)• , # /s necessary and sufficient that
(2.2) Zα= Ra,
that is, La € Z.

PROOF. Let a € £> be bounded, then by Lemma 1.3, UVa is also bounded**
let βa is such a number that JJ.ra;j</3α ff JC ||, then for a bounded x,

|( Z,ί/F« | = || VLMa || - (, FZ*™* β || = |i L f c W Λ, * || ̂  βa IISC/* Sx || = £« |' * |-,
this inequality can be extended to the convex hull Kx; especially we have
(2.3) \\Lxa> | ;<£α \\x\,
this shows a1* is bounded, and || R<f || <; || Ra \. The relation (2.2) can be
proved as follows: let aζ&, then UVa = β,that is, [Λz = F*Λ. As be-
well-known, the set of all the unitary operators £/€ L generates i 4 ) , so
that

< £a,β,^ > =Iim < Ua,y > =lim < F*«,^ > =lim < a,SUS y >
=lim < £/Sy, SΛ > = < LxSy,Sa > = < a,SL*Sy > = < /?^,^ > ,

that is, Lα = i?«. LaζZ will be easily verified, so that we obtained the-
proof.

By this lemma and the properties stated before, we obtain by the reasons
similar to Godement [4; Chap. I. § II],

THEOREM 2.2. Let aζ ξ) be bounded, and consider the smallest weakly
closed convexset Ka, generated by ULaU~ι, in L, then Ka intersects the center
LJ = Z Π Lo at a unique point Ώx .

PROOF. AS we can easily see, Luva— ULaU~ι, so that the proof is suffi-
cient by the one of [4; Theorem 4} Therefore we have

LEMMA 2.2. In Lo we can define the k-operation possessing the following*
properties: (1) L\ =: L^ ,(2) LaeZ, then VΛ = £α, (3) {LJLtf = α δ Z α / ,

(4) if Lais hermitean {or hermitean positive) then L\ is also. (5) ifLa€Z*,
then (LaLrf = LJL% for Z ^ J V

But it may occur to be £* = 0 for any La € Lo

Now, we shall assume that L be of the finite class, in the sense of
Dixmier [2~], that is, for any partially isometric operator W € L, W*W
=! / implies WW* = 7, where 7 is the identity operator in L. In the sequel

we shall say such a Hubert algebra is of the finite class. Then by the-
Dixmier theorem [2; Theorem 10H, L has a ίr-operation to Z, moreover we-
see by [2; Theorem 18], the above £-operation in Lo coincides the one of
L. That is, we have

THEOREM 2.3. Let L be of the finite class, then L has the ^-operation
io Z, and for La 6 Lo,^* - £?,.

3. Decomposition of a maximal Hubert algebra of the finite class.
As be proved by Godement [4; Lemma 15], in a TF*-algebra M of the

43 J. von Neumann, loc cit. Theoreπ; 2.
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finite class, there exists the one-to-one correspondence between the maximal
two-sided ideals m in M and the maximal ideals m* in its center Z; if we
introduce a trace5) X of M by

•(3.1) X(-A)= X(A*),

where % is a character of Z, then the above one-to-one correspondence is
characterized by the correspondence of the traces of M and the characters
of Z, given by (3.1). In this sence we shall call such traces the characters
of M.

It is well-known that the set of all characters of Z is a compact (totally
disconnected) Hausdorff space Ω in the weak topology; if we introduce the
weak topology in the set of all characters X of L, then by the above re-
marked, we obtain a homeomorphism between 12 and X, so that X becomes

•compact. Let us now contract the character X in X to the *- algebra IJ 0 ,
then we can consider this as a trace σx on Lo; if we introduce also the
weak topology in the set of al3 traces σx on Lo, obtained by such process,
then the mapping %->σx is continuous, and X is compact, so that the image
Xy of X is also compact. Omitting the trace σ=0 on Lo we obtain a locally
compact space X, which plays a role of the dual object of the required

-decomposition.
Now following Godement [4] we shall introduce

DFINITION 3.1. A double unitary representation of a * -algebra A is a
-structure {©,^,Λ,S} satisfying the following conditions:

a) © is a Hubert space,
b) A->LΛ, A-^RA are two continuous representations of Ao on £>, such

that LΛ* - LA*9 and LΛRB = RBLA for A, B € A,
c) S is an involution of £ such that RA = SLΛS.
As σ € X is a trace of the *-algebra Lo we obtain a double unitary

representation of Lo: these notions of the double unitary representations
was already studied by Nakamura [71 for the C*-algebra with a unit ele-
ment, but the most part of his results holds true in the arbitrary * -algebra
with a trace. That is, uι)(σ)-{Lx;σ(Lc*Lx) = 0} is a two-sided ideal in Lo,
therefore we obtain a canonical mapping Ux-ϊx(σ) on the quotient algebra
L0/u0(cr). Put

•(3.2) < x(σ), y(σ) > =σ(L*Lx),

then this is an inner product on the quotient algebra; completing with this

inner product, we obtain a Hubert space ξ)(σ). Moreover if we put

<3.3) LΛ(σ)y(σ) = xy(σ), Rχ{σ)y(σ) = yχ(σ),
(3.4) S(άσ)) = (Sx)(σ),
then the system {£>(σ), Lx(σ), Rx(σ),S} becomes the double unitary representa-
tion of L0,by the quite analogous reasons to the one of [71. Thus we can cor-

53 By a trace σ of a *-algebra A is a linear functional of A satisfying σQA*A^^>0 and
CAB) CBAϊf AB£A
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responed to each σ € X a Hubert space ξ)(σ). Since we have introduced in.
X the weak topology, for each Lv € Lo, σ(Lx) is a continuous function
with respect to σ; the vector-function x(σ), defined on X to $Q{σ), is continu-
ous: by the construction mentioned above, the set of x(σ) is dense in $(<r),
so that the vector functions x(σ) form a. fundamental family of the continuous
vector-fund to us A in the sense of Godement [3; Chap. IΠj. In the sequel we
shall freely use the notions of the continuous sums of the Hil ert spaces
proposed by Godement. Now our present object is

THEOREM 3.1. Let ί% be the maximil Hubert algebra in a Hubert spare-
D, then there exist a locally compact space X and a Re don measure μ on X,
possessing the following properties

a) for any x,y €ί &θ9

J x
(3. 5) < X,y > = I < X{σ),y(σ) > dμ(<r),

J

b) § is isomorphic to h\.

The proof of the Theorem 3.1 is mostly dependent on the Godement's,
but we shall use the * -algebra Lo instead of his Lo, which is the * -algebra
of the all continuous f onctions with the compact supports on a group: there-
fore we shall sketch the proof. For details, see [4 Chap. I, §V].

That is, by the same reasons to Γ4 Chap. I, §V,2H, we see: let F(σ) be
a continuous functions on X vanished at the infinity, there corresponds an
operator LF €ΐ Z; the mapping F-^LF is the unitary representation of the
*-algebra generated by such functions; moreover, if F(σ) = σ(Lr,),then LF

= Dχ . Then we have

LEMMA 3.1. Let F(σ) be a continuous function on X with a compact
support, then ive can take a LΓ 6 Lo such that F{σ) - σ(Lx ) .

PROOF. Suppose F be zero outside of a compact set K, then for each
point σ0 € K there exists a x € C\> such that x(σQ)^0, therefore the con-
tinuous function σ{L&*Lΰ) is not zero in a neighborhood of σ0 and non-
negative. By the well-known theorem of the partition of the unit6)

? there
exists a Lx € Lo such that σ(Lx) =: 1 on K; so that
(3. 6) F(σ) = G(σ)σ(Lr/),

where Gio ) is a continuous function on X, zero outside of K. Therefore,
by the above remarked, we have
(3.7) LF=LGL*r.

But L\ = Dχ 6 IJO (Theorem 2. 3) and Lα is a two-sided ideal in L (Lemma.
1.3;, so that LFζ Lo, that i s , ^ is defined by a bounded element xF, and
we heve F(σ) = σ{Lx,^.

The construction of the Radon measure on X is quite analogous to*

6) N.Bourbaki, Topologie Generate, Chap. IX, p. 65.
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Godement's; that is, for the conitnuous functions with a compact support
F, take a such real G satisfying FG = F, and put
(3.8) I(F) = < xF, Xσ > ,
then we can see that I(F) does not depend on such G, and I(F) is a linear
functional of the positive type on the space of the continuous functions
with compact supports; therefore we obtain a unique Radon measure on X
such that

(3.9) I(F)= I F(σ)du(σ).
x

Moreover, we have

(3.10) I(FG) = Γ F(σ)G(σ)dμ{σ) = < XF,XG> .

As we have shown that x->x* is a projection of x to & in Theorem
2.1, and as &, is dense in ©, the rest of the proof runs along the same
line to the proof of the Theorem 10 of Z4Γ\. Therefore we omit the proof.

4. The irredueibility of the decomposition.

As the trace σ on the "-algebra Lo is introduced by
(4.1) σx(LB) = X(LX), for L% e Ln,
where X is a character of L; hence if we denote
(4. 2) u(X) = {A € L; X( A* A) - 0},
then υ(%) is a maximal two sided ideal in L, as be remarked in § 3. By the
isomorphism theorem of the algebras, we have the isomorphism between Lo

Ui(erx) and ΪΛ/U(X), because Lo is a two-sided ideal in L such that "Lof]u(X)
=4=(0). Therefore, if we introduce the double unitary representation {£)(X),
LX(X), RX(X),S} of the L by a character X, then {£>(V), LΛ{σ), RΛσ), S} is
isometricaily isomorphic to {©(%), LΛ(X),RX(X), S}; so that we see the ir-
redueibility of the double unitary representation {&(σ), L*(σ), RΎ(σ), S} of
Lo. By the way, we can also see that, if %(£c)φ0 for La € Lo- then the
character X on L is uniquely determined by the values on Lo.

The W*-algebras L and R are isomorphic, because R = SΊLS (Theorem
1.2), so that L andR, or more clearly, Lα and Rπ play the symmetric parts
essentially. Moreover, in the case of the finite class, L\ = L\ .R* = R\x

and Lj = R$ for any bounded element x € © as shown in Lemma 2.1 and
Theorem 2. 3. if we introduce a character X on R by the character X of
Z, then we see
(4.3) - X(LX) = X(Rχ) for any bounded xζ$.
Therefore, by the above remarked, the vames of the characters on the
corresponding elements of L and R coincide. As the double unitary repre-
sentation of a C* -algebra by a bounded trace is uniquely determined within
the isomorphisms [7; Theorem 1]), so that if we identify the double unitary
representations of L and R by the same character X. then we can consider
that LΛ(X) are the unitary representation of L and RA(X) are the one of R.
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By this consideration we arrive at the quite similar notions to the central
decemposition of a W*-algebra, which are studied by Godement [32, Kondo
[5,6] and Neumann [9].

Let ξ) be isomorphic to L^, and denote this isomorphism by x~x(X).
Then we shall introduce

DEFINITION 4.1. A bounded linear operator A on $ is called decomposable,
if and only if, Ax^A(X)x(X) for any x € ©, where A(X) is a bounded linear
operator on each ξ>(X); this correspondence will be denoted by A~A(X).

DEFINITION 4.2. Let M be a W* -algebra on £> and M(X) be a TP*-algebra
on £)(%;, M is called decomposable if A € M is equivalent to A^A(X),
A(X) € M(%); denote this correspondence by M^M(X). This decomposition
is called the factor decomposition if M(%) are factors except a null set.

Let us now identify £) with L*v, and correspond to A € L an operator-
function LA{X) on X, then clearly (Ax)(X) = LA(X)x(X) on X, for any *€£>o,
that is, for any x~x(X) € A; as A is dense in L̂ v, we obtain

(4.4) (Ax)(X) = LJX)x(X) a. e. for x € £>,
this shows that A € L is decomposable. Moreover, this operator-function
LA(X) is continuous, in the sense that LA(X)x(X) is continuous as a vector-
function for x(X) € A. Similar facts remain true for the operators in R.

Let A € L and B € R, A~LA(X), B^RdX), and let L(%), R(X) be the
W*-algebras generated by LA(X) and RdX), respectively, then LA(X)RB(X)

= RB(X)LA(X) for all % € X, so that we have

(4.5) MX)! 3 R(X), R(%y 3 L(X).
Conversely, if a decomposable operator A has its component TA(X),

permutable with IJ(%) a.e., then we see that A is permutable with L, that
is, A € R. Let A^/?^(%), then &i(%) = TAX) a.e.; therefore we can write
L~L(X), R~R(30 in the sense of Definition 4.2. Finally, our double unitary
representations are obtained by the characters, so it is irreducible; clearly
this implies
(4 6) L(X)' Π BfXy = aI(X).
From (4.5) and (4.6), we see that TUX) and R(%) are factors for all X e X7).

As remarked above, the double unitary representations of *-algebras
1Λ0 and Ro and the W*-algebras L and R are isometrically isomorphic;
therefore summarizing above, we obtain our final

THEOREM 4.1. Let ξ)0 be the maximal Hilbert algebra of the finite class
in a Hilbert space &, and let Lo and Ro be the *-algebras formed by the Lx

and Rx, corresponding to x € $o, respectively. Then there exist a locally compact
space X and a Radon measure μon X, and we obtain the isomorphism between
ξ> and L;v as shown in Theorem 3.1. Furthermore, with respect to this

73 F.J.Murray and J. von Neumann, On rings of operators, Ann. of Math. ,37019363,
Lemma 3 1.2, p. 138.
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isomorphism, we obtain the irreducible decompositions of the maximal Hilbert
algebra ξ)0.

By the way, we have obtained

THEOREM 4.2. Let £>0 be the maximal Hilbert algebra of the finite class
in a Hilbert space <£>, and let L and R be the W*-algebras generated by the
Lo and Ro. Then we have the factor decompositions of the W*-algebras L
and R.

It is remarkable that the above theorem is deduced without any separ-
ability condition, and contains no ambiguity of the null set.

If we assume, furthermore, that ξ> is separable, then more precise
results will be obtained, but we shall not enter these problems here.
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