TAUBERIAN THEOREMS FOR RIEMANN SUMMABILITY

Gen-ichirô Sunouchi

(Received February 25, 1953)

1. Introduction. O. Szász [7] has studied Tauberian theorems for summability (R_{1}). In his case, the given series are convergent or Abel-summable and his Tauberian conditions are satisfactory. Recently S.Izumi-N. Matsuyama [1] have treated the case where the given series are Cesàro summable. But their conditions are somewhat stringent. In § 2 , the author gives better conditions. On the other hand, concerning summability $(R, 1)$, O. Szász [4] [5] has studied the analogous type to his own theorems for summability ($R, 1$) and L. Schmetterer [2] has studied the analogous type to Izumi-Matsuyama's theorem for summabiity $\left(R_{\mathrm{I}}\right)$. Since the latter investigation is unsatisfactory, the author gives a better theorem in § 3. These problems are closely connected to the uniform convergence of trigonometrical series. The problem of uniform convergence has been treated by O. Szász [6] and S. Izumi-N. Matsuyama [1]. A related theorem to their investigation is given in $\$ 4$.
2. Summability $\left(R_{1}\right)$. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, put $S_{n}=\sum_{\nu=1}^{n} a_{\nu}$. Then if

$$
\sum_{\nu=1}^{\infty} s_{\nu} \sin \nu t
$$

converges for every t in $0<t<\delta<2 \pi$, and

$$
\lim _{t \rightarrow+0} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \sin \nu t=s
$$

we call that the series is summable $\left(R_{1}\right)$ to sum s. Then we get the following theorem.

Theorem 1. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if

$$
\begin{equation*}
\sum_{\nu=1}^{n} s_{\nu}=o\left(n^{\alpha}\right), \quad 0<\alpha<1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty}\left|\frac{a_{\nu}}{\nu}\right|=O\left(n^{-\alpha}\right), \tag{2}
\end{equation*}
$$

then the series is summable (R_{1}) to sum zero.
Proof. If we put

$$
\sum_{\nu=n}^{\infty}\left|\frac{a_{v}}{\nu}\right|=\boldsymbol{r}_{n}
$$

then

$$
\left|a_{n}\right|=n\left(r_{n}-r_{n+1}\right)
$$

and we have

$$
\begin{aligned}
\sum_{\nu=1}^{n}\left|a_{\nu}\right| & =\sum_{\nu=1}^{n} \nu\left(r_{\nu}-r_{\nu+1}\right) \\
& =r_{1}+\sum_{\nu=2}^{n} r_{\nu}-n \boldsymbol{r}_{n+1} \\
& =O\left(\sum_{\nu=1}^{n} \nu^{-\alpha}\right)+n O\left(n^{-\alpha}\right)=O\left(n^{1-\alpha}\right),
\end{aligned}
$$

by (2). That is

$$
\begin{equation*}
s_{n}=O\left(n^{1-\alpha}\right) \tag{3}
\end{equation*}
$$

By this result we get

$$
\sum_{\nu=n}^{\infty} \frac{\left|s_{\nu}\right|}{\nu^{2}}=\sum_{\nu=n}^{\infty} O\left(\frac{\nu^{1-\alpha}}{\nu^{2}}\right)=\sum_{\nu=n}^{\infty} O\left(\nu^{-1-\alpha}\right)=O\left(n^{-\alpha}\right)
$$

and we have
(4)

$$
\begin{aligned}
\sum_{\nu=n}^{\infty}\left|\frac{s_{\nu}}{\nu}-\frac{s_{\nu+1}}{\nu+1}\right| & =\sum_{\nu=n}^{\infty}\left|\frac{s_{\nu}-s_{v+1}}{\nu}+\left(\frac{1}{\nu}-\frac{1}{\nu+1}\right) s_{\nu+1}\right| \\
& \leqq \sum_{\nu=n}^{\infty}\left|\frac{a_{++1}}{\nu}\right|+\sum_{\nu=n}^{\infty} \frac{\left|s_{\nu+1}\right|}{\nu^{2}}=O\left(n^{-\alpha}\right) .
\end{aligned}
$$

On the other hand, by Abel's transformation

$$
\begin{equation*}
\sum_{\nu=n}^{m} \frac{s_{\nu}}{\nu} \sin \nu t=\sum_{\nu=n}^{m-1}\left(\frac{s_{\nu}}{\nu}-\frac{s_{\nu+1}}{\nu+1}\right) T_{\nu}(t)+\frac{s_{m}}{m} T_{m}(t)-\frac{s_{n}}{n} T_{n-1}(t), \tag{5}
\end{equation*}
$$

where

$$
T_{n}(t)=\frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
$$

hence in the interval $0<\varepsilon \leqq t \leqq 2 \pi-\varepsilon$,

$$
\left|\sum_{\nu=n}^{m} \frac{s_{\nu}}{\nu} \sin \nu t\right| \leqq \varepsilon^{-1} \pi \sum_{\nu=n}^{\infty}\left|\frac{s_{\nu}}{\nu}-\frac{s_{\nu+1}}{\nu+1}\right|+2 \varepsilon^{-1} \pi\left(\frac{\left|s_{m}\right|}{m}+\frac{\left|s_{n}\right|}{n}\right) .
$$

Thus the series $\Sigma\left(s_{\nu} / \nu\right) \sin \nu t$ is uniformly convergent in $0<\varepsilon \leqq t \leqq 2 \pi-\varepsilon$.
We write

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} \frac{s_{v}}{\nu} \sin \nu t & =\left(\sum_{\nu=1}^{n}+\sum_{\nu=n+1}^{\infty}\right) \frac{s_{\nu}}{\nu} \sin \nu t \\
& =u_{1}(t)+u_{2}(t),
\end{aligned}
$$

say. where $n=\left[t^{-\frac{1}{a}} \varepsilon-\frac{1}{a}\right]$. Now, estimating analogously to (5).

$$
\begin{aligned}
\left|u_{2}(t)\right| & <\pi t^{-1}\left(\sum_{\nu=n+1}^{\infty}\left|\frac{s_{\nu}}{\nu}-\frac{s_{\nu+1}}{\nu+1}\right|+\left|\frac{s_{n+1}}{n+1}\right|\right) \\
& =t^{-1} O\left(n^{-\alpha}\right)=O\left(t^{-1} t \varepsilon\right)=\varepsilon \cdot O(1)
\end{aligned}
$$

As to $u_{1}(t)$, we have

$$
u_{1}(t)=\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} \sin \nu t=\sum_{\nu=1}^{n-1} S_{\nu} \Delta_{\nu}(t)+S_{n} \frac{\sin n t}{n},
$$

where

$$
S_{n}=\sum_{\nu=1}^{n} s_{\nu}, \quad \Delta_{n}(t)=\frac{\sin n t}{n}-\frac{\sin (n+1) t}{n+1} .
$$

Since

$$
\begin{aligned}
\Delta_{n}(t) & =\frac{\sin n t-\sin (n+1) t}{n}+\sin (n+1) t\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{-2}{n} \cos \frac{(2 n+1) t}{2} \sin \frac{t}{2}+\frac{\sin (n+1) t}{n(n+1)}=O\left(\frac{t}{n}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
\left|u_{3}(t)\right| & \leqq \sum_{\nu=1}^{n-1}\left|S_{\nu}\right| \cdot\left|\Delta_{v}(t)\right|+\left|S_{n}\right| / n \\
& =\sum_{\nu=1}^{n} o\left(\nu^{\alpha}\right) O\left(\frac{t}{\nu}\right)+o\left(n^{\alpha}\right)\left(\frac{1}{n}\right) \\
& =t \sum_{\nu=1}^{n-1} o\left(\nu^{-1+\alpha}\right)+o(1) \\
& =t \cdot o\left(n^{\alpha}\right)+o(1)=o\left(t t^{-1} \varepsilon^{-1}\right)+o(1)=o(1) .
\end{aligned}
$$

Hence if ε is arbitrally small, we have

$$
\lim _{t \rightarrow+0} \sum_{\nu=1}^{\infty} \frac{s_{v}}{\nu} \sin \nu t=0
$$

Thus we get the theorem.
Corollary 1. In the series $\sum_{\nu=1}^{\infty} a_{\text {. }}$, if
(1)

$$
\sum_{\nu=1}^{n} s_{v}=o\left(n^{\alpha}\right), \quad(0<\alpha<1)
$$

(2')

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{1-\alpha}\right),
$$

then the series is summable $\left(R_{1}\right)$ to sum zero.

Proof. Applying Szász's argument [3] to (1) and (2'), we get (2). For the sake of completeness, we shall repeat his argument. If we put

$$
v_{n}=\sum_{\nu=1}^{n} \nu a_{\nu}, \quad\left(v_{0}=s_{0}=a_{0}\right), \quad 1 \leqq k \leqq 1+(n+1)
$$

then we have

$$
v_{n}=\sum_{\nu=0}^{n}\left(s_{n}-s_{v}\right)
$$

and

$$
\begin{aligned}
v_{n+k}-v_{n}= & (n+1)\left(s_{n+k}-s_{n}\right)+\sum_{\nu=n+1}^{n+k}\left(s_{n+k}-s_{\nu}\right) \\
& \geqq-p \cdot n^{3-\alpha}-n^{1-\alpha} p \cdot k \geqq-p n^{1-\alpha}(n+k),
\end{aligned}
$$

by (2^{\prime}), where p is a bound of (2^{\prime}). Now put

$$
n_{\nu}=\left[n 2^{-\nu}\right] \quad(\nu=0,1,2, \ldots)
$$

so that

$$
v_{n}=\sum_{\nu=0}^{\infty}\left(v_{n_{\nu}}-v_{n_{\nu+1}}\right)
$$

then

$$
v_{n} \geqq-p n^{1-\alpha} \sum_{\nu=0}^{\infty} n_{\nu} \geqq-p n^{1-\alpha} n \sum_{\nu=j}^{\infty} 2^{-\mu}=2 p n^{2-\alpha}
$$

Under the assumption (1)

$$
\sigma_{n}=\left(\sum_{\nu=1}^{n} s_{v}\right) / n=o\left(n^{-1+\alpha}\right)
$$

and

$$
s_{n}=\frac{v_{n}}{n+1}+\sigma_{n}>-2 p n^{1-\alpha}+o\left(n^{-1+\alpha}\right)>-3 p n^{1-\alpha}
$$

for large n. On the other hand we have

$$
s_{n}=\sigma_{n+1}+\left(\sigma_{2 n+1}-\sigma_{n}\right)-\frac{1}{n+1} \sum_{\nu=1}^{n+1}\left(s_{n+\nu}-s_{n}\right)
$$

whence

$$
s_{n}<o\left(n^{-1+\alpha}\right)+o\left(n^{-1+\alpha}\right)-p n^{1-\alpha}<2 p n^{1-\alpha}
$$

for large n. By combining these two inequalities for s_{n}, we get

$$
s_{n}=O\left(n^{1-\alpha}\right)
$$

On the other hand, we have

$$
\begin{aligned}
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right| & =\sum_{n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}+s_{2 n}-s_{u-1}\right) \\
& =O\left(n^{1-\alpha}\right)+O\left(n^{1-\alpha}\right)=O\left(n^{1-\alpha}\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \sum_{\nu=n}^{\substack{v \\
2^{k+1}-1}} \nu^{-1}\left|a_{\nu}\right| \leqq n^{-1} \sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=O\left(n^{-a}\right) \\
& \sum_{\nu=2^{k}} \nu^{-1}\left|a_{\nu}\right|=O\left(2^{-k a}\right)
\end{aligned}
$$

and

$$
\sum_{\nu=1}^{2^{l}} \nu^{-1}\left|a_{v}\right|=O\left(\sum_{k=0}^{l} 2^{-k \alpha}\right)=O(1)
$$

Hence "we have

$$
\sum_{\nu=n}^{\infty} \nu^{-1}\left|a_{\nu}\right|=\sum_{k=0}^{\infty} \sum_{n \cdot 2 k}^{n \cdot 2^{k+1}-1} \nu^{-1}\left|a_{\nu}\right|=O\left(n^{-\alpha} \sum_{k=0}^{\infty} 2^{-k \alpha}\right)=O\left(n^{-\alpha}\right)
$$

which is the desired inequality (2).
3. Summability $(R, 1)$. In the series $\sum_{v=1}^{\infty} a_{\nu}$, if

$$
\sum_{\nu=1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}
$$

converges for every t in $0<t<2 \pi$, and

$$
\lim _{t \rightarrow 0} \sum_{\nu=1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}=s
$$

then we say that the series is summable $(R, 1)$ to sum s. For the summability ($R, 1$), we get the analogous theorem.

Theorem 2. In the series $\sum_{\nu=1}^{\infty} a_{v}$, if
(6)

$$
\sum_{\nu=1}^{n} s_{\nu}=o\left(n^{\alpha}\right), \quad 0<\alpha<1
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty}\left|\frac{a_{\nu}}{\nu}\right|=O\left(n^{-\alpha}\right), \tag{7}
\end{equation*}
$$

then the series is summable $(R, 1)$ to sum zero.
Proof. The proof is analogous to $\S 2$. Since

$$
\sum_{\nu=n}^{\infty}\left|\frac{a_{\nu}}{\nu}-\frac{a_{\nu+1}}{\nu+1}\right| \leqq 2 \sum_{\nu=n}^{\infty}\left|\frac{a_{\nu}}{\nu}\right|=O\left(n^{-\alpha}\right)
$$

in the interval $0<\varepsilon \leqq t \leqq 2 \pi-\varepsilon$, we have

$$
\sum_{\nu=n}^{m} \frac{a_{\nu}}{\nu} \sin \nu t=\sum_{\nu=n}^{m-1}\left|\frac{a_{\nu}}{\nu}-\frac{a_{\nu+1}}{\nu+1}\right| T_{\nu}\left(t \quad-\frac{a_{n n}}{m} T_{m}(t)-\frac{a_{n}}{n} T_{n-1}(t)\right.
$$

hence

$$
\left|\sum_{\nu=n}^{m} \frac{a_{\nu}}{\nu} \sin \nu t\right| \leqq \varepsilon^{-1} \pi \sum_{\nu=n}^{\infty}\left|\frac{a_{\nu}}{\nu}-\frac{a_{v+1}}{\nu+1}\right|+2 \varepsilon^{-1} \pi\left(\frac{\left|a_{m}\right|}{m}+\frac{\left|a_{n}\right|}{n}\right)
$$

and the series

$$
\sum_{\nu=1}^{\infty} \underset{\nu}{\boldsymbol{a}_{\nu}} \sin \nu t
$$

converges uniformly in this interval. We write

$$
\sum_{\nu=1}^{\infty} \frac{a_{\nu}^{\prime}}{\nu} \frac{\sin \nu t}{t}=\sum_{\nu=1}^{n}+\sum_{\nu=n+1}^{\infty}=u_{1}(t)+u_{2}(t)
$$

say, where $\boldsymbol{n}=\left[\boldsymbol{t}^{-\frac{1}{\alpha}} \varepsilon-\frac{1}{\alpha}\right]$. Then

$$
\begin{aligned}
\left|u_{2}(t)\right| & <\pi t^{-1}\left(\sum_{\nu=n+1}^{\infty}\left|\frac{a_{\nu}}{\nu}-\frac{a_{\nu+1}}{\nu+1}\right|+\left|\frac{a_{n}}{n+1}\right|\right) \\
& =t^{-1} O\left(n^{-\alpha} \varepsilon^{-1}\right) \leqq \varepsilon
\end{aligned}
$$

Applying Abel's transformation twice to $u_{1}(t)$, we get

$$
\begin{aligned}
u_{1}(t) & =\sum_{\nu=1}^{n-1} a_{\nu} \frac{\sin \nu t}{\nu t}=\sum_{\nu=1}^{n} S_{v} \Delta_{\nu}^{2}(t)+S_{n-1} \Delta_{n}(t) \\
& +s_{n} \frac{\sin n t}{n t}
\end{aligned}
$$

where

$$
\Delta_{n}(t)=\frac{\sin n t}{n}-\frac{\sin (n+1) t}{n+1}, \Delta_{\imath}(t)=\Delta\left(\Delta_{n}(t)\right)
$$

Since we have easily

$$
\begin{gathered}
\Delta_{n}(t)=O\binom{t}{n^{-}}, \quad \Delta_{l /}^{2}(t)=O\left(\frac{t}{n}\right) \\
\left|u_{1}(t)\right|=\sum_{\nu=1}^{n-1} o\left(\nu^{\alpha}\right) O\left(\frac{t}{\nu}\right)+o\left(n^{\alpha}\right) O\left(\frac{t}{n}\right)+o\left(n^{1-\alpha}\right) O\left(\frac{1}{n t}\right) \\
= \\
=o\left(n^{\alpha} t\right)+o\left(n^{-1+\alpha} t\right)+o\left(n^{-\alpha} t^{-1}\right)=o(1)
\end{gathered}
$$

Thus we have the desired results.
Corollary 2. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if
(6)

$$
\sum_{\nu=1}^{n} s_{\nu}=o\left(n^{\alpha}\right) \quad(o<\alpha<1)
$$

and

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{1-\alpha}\right)
$$

then the series is summable $(R, 1)$ to sum zero.
The proof is obvious from the proof of Corollary 1. The Corollary 2 is a solution of the problem proposed by Schmetterer [2].
4. Uniform convergence of the trigonometrical series. The problem of uniform convergence of the trigonometrical series is closely related to Riemann summability.

Theorem 3. If

$$
\begin{equation*}
\sum_{\nu=1}^{n} \nu a_{\nu}=o\left(n^{\alpha}\right) \quad(0<\alpha<1) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty}\left|\Delta a_{\nu}\right|=O\left(n^{-\alpha}\right) \tag{9}
\end{equation*}
$$

then the trigonometrical series

$$
\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t
$$

converges uniformly in the interval $0 \leqq t \leqq \pi$.
Proof. We write

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t & =\sum_{\nu=1}^{n} a_{\nu} \sin \nu t+\sum_{\nu=n+1}^{\infty} a_{\nu} \sin \nu t \\
& =u_{1}(t)+u_{2}(t)
\end{aligned}
$$

where n is determined in a little moment. If we put

$$
t_{n}=\sum_{\nu=1}^{n} \nu a_{v}
$$

then

$$
\begin{aligned}
u_{1}(t) & =\sum_{\nu=1}^{n} a_{\nu} \sin \nu t=\sum_{\nu=1}^{n} \nu a_{\nu} \frac{\sin \nu t}{\nu} \\
& =\sum_{\nu=1}^{n-1} t_{\nu} \Delta_{\nu}(t)+t_{n} \frac{\sin n t}{n}
\end{aligned}
$$

and

$$
\Delta_{n}(t)=O\left(\frac{t}{n}\right)
$$

where O is independent on n. From the assumption (8), we have

$$
u_{1}(t)=O\left(\sum_{\nu=1}^{n-1} o\left(\nu^{\alpha} \frac{t}{\nu}\right)\right)+o\left(n^{\alpha-1}\right)
$$

$$
=o\left(n^{\alpha} t\right)+o\left(n^{\alpha-1}\right)
$$

and

$$
\begin{aligned}
u_{2}(t) & =\sum_{\nu=n+1}^{\infty} a_{\nu} \sin \nu t \\
& =-a_{n+1} T_{n}(t)+\sum_{\nu=n+1}^{\infty} \Delta a_{\nu} \cdot T_{\nu}(t) \\
& =O\left(\frac{\left|a_{n+1}\right|}{t}+\frac{1}{t} \sum_{\nu=n+1}^{\infty}\left|\Delta a_{\nu}\right|\right) \\
& =O\left(\frac{1}{t} \sum_{\nu=n+}^{\infty}\left|\Delta a_{\nu}\right|\right) \\
& =O\left(t^{-1} n^{-\alpha}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t=o\left(n^{\alpha} t\right)+O\left(t^{-1} n^{-\alpha}\right)+o(1) \tag{10}
\end{equation*}
$$

where $o(1)$ does not depend on t. Of course we have

$$
\begin{equation*}
\sum_{\nu=1}^{N(t)} a_{\nu} \sin \nu t=o\left(n^{\alpha} t\right)+O\left(t^{-1} n^{-\alpha}\right)+o(1) \tag{11}
\end{equation*}
$$

To say the uniform convergence of

$$
\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t
$$

it is sufficient to say that

$$
\sum_{\nu=1}^{N} a_{\nu} \sin \nu t_{N}
$$

converges as t_{N} tend to $t \in[o, \pi]$. If t_{N} tend to $t \neq 0$, it is obvious from the similar argument to (5). If t_{N} tend to zero, the formula (11) is

$$
\sum_{\nu=1}^{N} a_{\nu} \sin \nu t_{N}=o\left(n^{\alpha} t_{N}\right)+O\left(n^{-1} t_{N}^{-1}\right)+o(1)
$$

and taking $n=\left[t_{N}^{-1 \alpha} \varepsilon^{-1 / \alpha}\right]$, we get the desired results.

References

[1] S. IZUMI-N. MATSUYAMA, Uniform convergence of trigonometrical series, appear to Journal of Mathematics.
〔2〕 L. Schmettrrer, Taubersche Sätze und trigonometrische Reihen, Sitzungsb. Österreichischen Akad. Wiss., Math. Klasse, 158(1950), 37-59.
[3] O. SżÁSZ, Convergence properties of Fourier series, Trans. Amer. Math. Soc., 37(1935), 483-500.
[4] O. Szász, On the convergence and summability of trigonometric series, Amer. Journ. Math., 64(1942), 575-591.
[5] O. SzASz., On Abel and Lebesgue summability, Bull. Amer. Math. Soc., 49(1943), 885-893.
[6] O. SZÁSz, On uniform convergence of trigonometrical series, Bull. Amer. Math. Soc., 50(1944), 856-867.
〔7〕 O. SzÁs7, Tauberian theorems for summability $\left(R_{1}\right)$, Amer. Journ. Math, 73(1951), 779-791.

Mathematical Institute, Tôhoku University, Sendai.

