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1. Let f(x) be any integrable function definediin (0,1) and f(x) = f(x + 1)
for all real x. Let us put

Fu(%) = Fu(%,f) = %‘ kZ;f(H % )

which is known as Riemann sum of f(x).

Jessen has proved that if (n.) is a sequence of integers such that 2] 7;+:
(k=1,2,....), then F, (%, f) converges to the integral of f(x) for almost all
xas k- co. But, in general, F,(x,f) does not converge almost everywhere
for integrable function f(x). Further, Marcinkiewicz and Zygmund [17] proved
that there is a function f(x) belonging to the class (L?) (1< p < 2) such that
its Riemann sum does not converge. His example is essentially

o logk
f(x)~ =— cos 2rkx.
2 vk

Recently, T.Tsuchikura [2] proved that the Riemann sum of the function

cos 2zkx

flx)~ E ~E (log k)+e (&E>0)

converges almost everywhere, and proposed the problem “Does the Riemann
sum of the function

cos 2rkx

F(2)~ kzﬂ N klogk

converge almost everywhere ?”
This is positive. We can prove, more generally, that the Riemann sum
of the function
<. Cos2rkx
f(x)~ E ;/F(log k)w
diverges almost everywhere for ¢ <1/2, and converges almost everywhere
for a >1/2.

2. We prove

THEOREM 1. Let f(x) be an integrable function with period 1 and its
Fourier series be

‘<~ COS27mnx

M fx)~ ZE n(logn)®"
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Then the Riemann sum of f(x)

1< k
@ R = Funf) = 5 2 (24 &)
k=1
diver ges almost everywhere for & <1/2 and converges almost everywhere for
a >1/2, as n->oo.

For the proof of this theorem, we need a lemma, due to Khintchine:

LeEMMA 1. If f(x)is a positive increasing function defined in (0, ) such that

f flx)dx = oo, then there is an infinite number of solutions p/q such that

3 |x—p/al <flg)]a

for almost all x, but if f f(x)dx converges, then 'the number of solutions of

(3) is finite for almost all x.
Let us now prove the theorem. We can easily see that

cos 2rknx

Fuo) = 3 /e (log (km)*

k=1

for x =0 (mod 1). The last series, by Abel’s lemma, is

cos 2zknx
gl /Fn (log (Fm))*
-2 2 «/ﬁikg"(log (kn))“ 2 cos 2zanx (1 + o(1))
(4) A=1

9 S 1 sin*(k+12nx
4 E /1 B'¥(log (kn))® asiznx 0T o(1))
3

w

= 4 SA+od),

say. In order to estimating S, we distinguish three cases.
a) @ < 1/2. By the lemma, for almost all %, there is an infinite number
of integers » such that
5) |(nx)| < 1/nlogn,
(y) denoting the difference of y and the nearest integer. For such =

sin?(k + 1)27znx

(6) 2 sin® z nx > k|2 for k< Anlogn,
A being a constant, and then
L /mlogn

S=
1=k <nlogn

i (Qoglemys A n Gogny — A logm"=e
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Hence, for almost all x,
7) lim sup F,(x) = oco.
n-e0

b) @ = 1/2. By the lemma, we can replace log# in (5) by log » loglog 7,
and then we obtain, for almost all x,

S = AJ/loglogn
for infinitely many ». Thus we get (7) in this case.
c) a >1/2. For almost all but fixed x, there is an integer 7, such that

[(nx)| > 1/n(log n)? (n = ny)
where 2a > 8 > 1, by the second part of the lemma. Now
S = 2 - 2 = S] + SZ;
k<n (lo:;gn)ﬁ3 k=Zn(log n)
say. Then, for n = #n, we have
1 /7 (log n)3/ )
Si<A Y =0 (_
‘= ,K,,(lzog of A/ nk(log (kn))* /7 (log n)*
) 1 ~
- 0((log n)”"ﬂ/“> = o(D).
and

1 1
< 2sint mnx’ @mzog i /1 BT(log (m)*

Sy

1 -1l > 1
< 2sin? 7z /n(log n)® A/ n(log n)* ko2

k=n(log m)?
n?(log n)*# 1 B 1 _
vn(logn)® (n(logn)y* 0( (log n)*~P72 ) =o(
Thus we get S; = 0(1), and then
lim Fu(x)=0
N->eo

almost everywhere.

3. Concerning the convergence of the Riemann sum of (1) in the stronger
sense than the ordinary one, we get

THEOREM 2. Let f(x) be defined by (1), then the series

> Fi%,1)

n=1

converges almost everywhere for & >1 and diverges almost everywhere for
a <l1.

Proor. We have
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1 \ ~ o 1
[ Fnds= 3 o o,

k=1

o 1 , B bl 1
2] Fnf)da= 3 3 i

n=2 ¢ Nel k=1

=)

= 2 d(m)
= m(log m)**,

where d(m) donotes the number of divisors of m. Putting +(m) = Ed(i),

=1

the series

E_WL and S _Tm)

m(log m)y:* m*(log m)®
converge or diverge simultaneously. It is known that
v(m) = mlogm + o (m).
Hence the last series converges or diverges according as & >1 or & <1.
Thus the theorem is proved.
4. We can generalize Theorem 1 in the following form:

Tueorem 3. Let i

(8) (%)~ a, cos 2xkx,
k=1
where (a;) is a convex null sequence. If
(n? logn]
) w2 @+ 0 (1> o),

k=1

or more’ generally
[n21ogn loglognl

1 > a, %= 0(1) (% > o),

n
k=1
then the Riemann sum of (8) diverges almost everywhere.EOn the other hand,
if, for some B >1,

n2(log n)B1

- 2 @0 (n > o).

k=1

or more generally
n?log n(log log Py

- = >0 (n > ),
k=1
then the Riemann sum of (8) converges to 2ero almost everywhere.

Prcof runs similarly as Theorem 1. As in the case a) in the proof of.
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Theorem 1, the Riemann sum diverges as
[nlog n]
(10) > kk+ DA? @ = O (1) (m > o).

k=1

The left side is

[nlog n] [n log n]
2 Ek+ 1) A%2a;, = 2 2 @ — 1 108 B @ p2 10gn
k=1 k=1

+ (n1og n)'amriog m
and then (9) implies (10), since (a;) tends to zero monotonously.
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