SOME TRIGONOMETRICAL SERIES, V

Shin-ichi Izumi

(Received March 5, 1953)

1. Let $f(x)$ be any integrable function definedin $(0,1)$ and $f(x)=f(x+1)$ for all real x. Let us put

$$
F_{n}(x)=F_{n}(x, f)=\frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right)
$$

which is known as Riemann sum of $f(x)$.
Jessen has proved that if $\left(n_{k}\right)$ is a sequence of integers such that $n_{k} \mid n_{k+1}$ ($k=1,2, \ldots$), then $F_{n_{k}}(x, f)$ converges to the integral of $f(x)$ for almost all x as $k \rightarrow \infty$. But, in general, $F_{n}(x, f)$ does not converge almost everywhere for integrable function $f(x)$. Further, Marcinkiewicz and Zygmund [1] proved that there is a function $f(x)$ belonging to the class $\left(L^{p}\right)(1 \leqq p<2)$ such that its Riemann sum does not converge. His example is essentially

$$
f(x) \sim \sum_{k=1}^{\infty} \frac{\log k}{\sqrt{k}} \cos 2 \pi k x
$$

Recently, T. Tsuchikura [2] proved that the Riemann sum of the function

$$
f(x) \sim \sum_{k=2}^{\infty} \frac{\cos 2 \pi k x}{\sqrt{\bar{k}}(\log k)^{1+\epsilon}} \quad(\varepsilon>0)
$$

converges almost everywhere, and proposed the problem "Does the Riemann sum of the function

$$
f(x) \sim \sum_{k=2}^{\infty} \frac{\cos 2 \pi k x}{\sqrt{k} \log k}
$$

converge almost everywhere?"
This is positive. We can prove, more generally, that the Riemann sum of the function

$$
f(x) \sim \sum_{k=2}^{\infty} \frac{\cos 2 \pi k x}{\sqrt{k}(\log k)^{\alpha}}
$$

diverges almost everywhere for $\alpha \leqq 1 / 2$, and converges almost everywhere for $\alpha>1 / 2$.
2. We prove

Theorem 1. Let $f(x)$ be an integrable function with period 1 and its Fourier series be

$$
\begin{equation*}
f(x) \sim \sum_{n=2}^{\infty} \frac{\cos 2 \pi n x}{\sqrt{n}(\log n)^{\alpha}} . \tag{1}
\end{equation*}
$$

Then the Riemann sum of $f(x)$

$$
\begin{equation*}
F_{n}(x)=F_{n}(x, f)=\frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right) \tag{2}
\end{equation*}
$$

diverges almost everywhere for $\alpha \leqq 1 / 2$ and converges almost everywhere for $\alpha>1 / 2$, as $n \rightarrow \infty$.

For the proof of this theorem, we need a lemma, due to Khintchine:

Lemma 1. If $f(x)$ is a positive increasing function defined in $(0, \infty)$ such that $\int^{\infty} f(x) d x=\infty$, then there is an infinite number of solutions p / q such that

$$
\begin{equation*}
|x-p / q|<f(q) / q \tag{3}
\end{equation*}
$$

for almost all x, but if $\int^{\infty} f(x) d x$ converges, then the number of solutions of (3) is finite for almost all x.

Let us now prove the theorem. We can easily see that

$$
F_{n}(x)=\sum_{k=1}^{\infty} \frac{\cos 2 \pi k n x}{\sqrt{k n}(\log (k n))^{\alpha}}
$$

for $x \neq 0(\bmod 1)$. The last series, by Abel's lemma, is

$$
\begin{aligned}
\sum_{k=1}^{\infty} & \frac{\cos 2 \pi k n x}{\sqrt{ } k n}(\log (k n))^{\alpha} \\
& =-\frac{1}{2} \sum_{k=1}^{\infty} \sqrt{n} \frac{1}{k^{3 / 2}(\log (k n))^{\alpha}} \sum_{\lambda=1}^{n} \cos 2 \pi \lambda n x(1+o(1)) \\
& =\frac{3}{4} \sum_{k=1}^{\infty} \sqrt{ } \frac{1}{n} k^{5 / 2}(\log (k n))^{\alpha} \\
& =\frac{\sin ^{2}(k+1) 2 n x}{2 \sin ^{2} \pi n x} S(1+o(1)),
\end{aligned}
$$

say. In order to estimating S, we distinguish three cases.
a) $\alpha<1 / 2$. By the lemma, for almost all x, there is an infinite number of integers n such that

$$
\begin{equation*}
|(n x)|<1 / n \log n \tag{5}
\end{equation*}
$$

(y) denoting the difference of y and the nearest integer. For such n

$$
\begin{equation*}
\frac{\sin ^{2}(k+1) 2 \pi n x}{2 \sin ^{2} \pi n x}>k^{2} / 2 \quad \text { for } k \leqq A n \log n \tag{6}
\end{equation*}
$$

A being a constant, and then

$$
S \geqq \sum_{1 \leqq c} \frac{1}{\sqrt{k n}\left(\log (k n)^{\alpha}\right.} \geqq A \frac{\sqrt{n} \log \bar{n}}{\sqrt{n}(\log n)^{\alpha}}=A(\log n)^{1 / 2-\alpha}
$$

Hence, for almost all x,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\infty} F_{n}(x)=\infty \tag{7}
\end{equation*}
$$

b) $\alpha=1 / 2$. By the lemma, we can replace $\log n$ in (5) by $\log n \log \log n$, and then we obtain, for almost all x,

$$
S \geqq A \sqrt{ } \log \log n
$$

for infinitely many n. Thus we get (7) in this case.
c) $\alpha>1 / 2$. For almost all but fixed x, there is an integer n_{0} such that

$$
|(n x)|>1 / n(\log n)^{\beta} \quad\left(n \geqq n_{0}\right)
$$

where $2 \alpha>\beta>1$, by the second part of the lemma. Now

$$
S=\sum_{k<n(\log n)^{\beta}}-\sum_{k \geqq n(\log n)^{\beta}} \equiv S_{1}+S_{2},
$$

say. Then, for $n \geqq n_{0}$, we have

$$
\begin{aligned}
S_{1} & \leqq A \sum_{n<n(\log n)^{\beta}} \frac{1}{\sqrt{n k}\left(\log (k n)^{\alpha}\right.}=O\left(\frac{\sqrt{n}(\log n)^{9 / 2}}{\sqrt{n}(\log n)^{\alpha}}\right) \\
& =O\left(\frac{1}{(\log n)^{\alpha-\beta / 2}}\right)=o(1) .
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2} & <\frac{1}{2 \sin ^{2} \pi n x} \sum_{k \geqq n(\log n)^{\beta}} \overline{\sqrt{n} n} \frac{1}{k^{5 / 2}(\log (k n))^{\alpha}} \\
& <\frac{1}{2 \sin ^{2} \pi / n(\log n)^{\beta}} \frac{1}{\sqrt{n(\log n)^{\alpha}}} \sum_{k \geq n(\log n)^{\beta}} \frac{1}{j^{5 / 2}} \\
& <A \frac{n^{2}(\log n)^{2, \beta}}{\sqrt{n}(\log n)^{\alpha}} \frac{1}{\left(n(\log n)^{\beta}\right)^{3 / 2}}=O\left(\frac{1}{(\log n)^{\alpha-\beta / 2}}\right)=o(1)
\end{aligned}
$$

Thus we get $S_{2}=o(1)$, and then

$$
\lim _{n \rightarrow \infty} F_{n}(x)=0
$$

almost everywhere.
3. Concerning the convergence of the Riemann sum of (1) in the stronger sense than the ordinary one, we get

Theorem 2. Let $f(x)$ be defined by (1), then the series

$$
\sum_{n=1}^{\infty} F_{n}^{2}(x, f)
$$

converges almost everywhere for $\alpha>1$ and diverges almost everywhere for $\alpha \leqq 1$.

Proof. We have

$$
\begin{aligned}
\int_{u}^{1} F^{2}(x, f) d x & =\sum_{k=1}^{\infty} \frac{1}{k n(\log (k n))^{2 \alpha},} \\
\sum_{n=2}^{\infty} \int_{r}^{1} F_{n}^{2}(x, f) d x & =\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{k n(\log (k n))^{2 \alpha}} \\
& =\sum_{m=1}^{\infty} \frac{d(m)}{m(\log m)^{2 \alpha},}
\end{aligned}
$$

where $d(m)$ donotes the number of divisors of m. Putting $\tau(m)=\sum_{i=1}^{m} d(i)_{r}$ the series

$$
\sum \frac{d(m)}{m(\log m)^{2 \alpha}} \quad \text { and } \quad \sum \frac{\tau(m)}{m^{2}(\log m)^{2 \alpha}}
$$

converge or diverge simultaneously. It is known that

$$
\tau(m)=m \log m+o(m) .
$$

Hence the last series converges or diverges according as $\alpha>1$ or $\alpha \leqq 1$. Thus the theorem is proved.
4. We can generalize Theorem 1 in the following form:

Theorem 3. Let ${ }^{*}$

$$
\begin{equation*}
f(x) \sim \sum_{k=1}^{\infty} a_{k} \cos 2 \pi k x, \tag{8}
\end{equation*}
$$

where $\left(a_{k^{2}}\right)$ is a convex null sequence. If

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{\left\lfloor n^{2} \log n\right\rfloor} a_{k} \neq O(1) \quad(n \rightarrow \infty) \tag{9}
\end{equation*}
$$

or more` generally

$$
\frac{1}{n} \sum_{k=1}^{\left[n^{2} \log n \log \log n\right]} a_{k} \neq O(1) \quad(n \rightarrow \infty)
$$

then the Riemann sum of (8) diverges almost everywhere. On the other hand, if, for some $\beta>1$,

$$
\frac{1}{n} \sum_{k=1}^{\left[n^{2}(\log n)^{\beta_{]}}\right.} a_{k} \rightarrow 0 \quad(n \rightarrow \infty)
$$

or more generally

$$
\frac{1}{n} \sum_{k=1}^{\left[n^{2} \log n(\log \log n)^{\beta_{]}}\right.} a_{k} \rightarrow 0 \quad(n \rightarrow \infty)
$$

then the Riemann sum of (8) converges to zero almost everywhere.
Prcof runs similarly as Theorem 1. As in the case a) in the proof of:

Theorem 1, the Riemann sum diverges as

$$
\sum_{k=1}^{[n \log n]} k(k+1) \Delta^{2} a_{k n} \neq O(1) \quad(n \rightarrow \infty) .
$$

The left side is

$$
\begin{aligned}
& \qquad \sum_{k=1}^{[n \log n]} k(k+1) \Delta^{2} a_{k n}=2 \sum_{k=1}^{[n \log n]} a_{k n}-n \log n a_{\left[n^{2} \log n\right]} \\
& +(n \log n)^{2} a_{\left[n^{2} \log n\right]} \\
& \text { and then (9) implies (10), since (} a_{k} \text {) tends to zero monotonously. }
\end{aligned}
$$

References

[1] J. Marcinkiewicz and A.Zygmund, Fund. Math., 28 (1930).
[2〕 T.Tsuchikura, Tôhoku Math. Journ., (2) vol. 3 (1951).
mathematical Institute, Tokyo Toritsu Uiniversity, Tokyo

