SOME TRIGONOMETRICAL SERIES, IV?

SHIN-ICHI IzuM1
(Received January 21,1953)

1. This paper concerns the problem proposed by O.Szisz?»: is the
series 3Sa,cos nt continuous at £ = 0 or uniformly convergent at ¢ = 0 if
> a, converges and na, > 0? Answering this problem we prove the following
theorems.

THEOREM 1. There is a sequence (a,) such that na, >0, Sa, converges
and the series

1) 3, axcos nt
does not converge in the neighborhood of t = 0.

THEOREM 2. There is a sequence (an) such that na, >0, (1) convergesfor
all t, but (1) is not continuous at t = 0.

THEOREM 3. There is @ sequence (ay,) such that na,->0, Sa, converges
but (1) is not uniformly convergent at t = 0.

Theorem 2 is proved by Hardy and Littlewood® for sine series. For
cosine series, proof is similar.
Another problem of O.Szisz is negatively answered as follows :

THEOREM 4. There is a seqnence (a,) such that
("+1)3n+1“”5nZ—P (n=172’ "'")

where s, =ay + a,+ ---- + a, and p is a positive constant and that (1) is not
uniformly convergent at t = 0.

2. Proof of Theorem 1. The series
1y _COS 2nt
2= g Tog @ny
does not converge at ¢ = z/2, and then there is an integer =; such that

. gy, COS2ul | 1
2"20:‘1( D 2nlog (2n) >

at ¢t = z/2. Similarly, the series

. cosd4nt
21 g log (4m)

1> Some trigonometrical series I,II, III will appear in the Journal of Mathematics,
vol. I, No. 2-3, 1953.

2) O.Szasz, Bull. Amer. Math. Soc. , 50(1944).

3) Hardy-Littlewood, Proc. London Math. Soc. , 18(1918).
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does not converge at ¢ = 7 /4, and then_ there is an integer », such that

Z (— 1) __cos4nt S1
ny <4n <ng 4nlog (4n) .
Let 7n; and #, be integers such that
2nt
(— 1) 2052l | o 9
ng <§<na 2nlog (2n)
4nt
— 1 7 L 1.
ng E("; ( ) 4n IOg (4”) : >

Further the series

S(—1r cos 8nt

8nlog (8n)
does not converge at ¢ = z/8, and then there is an integer #; such that
cos 8nt
— 1y —— 1
"4<Szn<m( ) 8nlog (8n) Z
Let ng, 7, 5 be integers such thgt
. COS2nt
n5<§<ﬂe(~1) m >1’
n_ COS4nt
mg@ (=g log dn) | ~ L
N cos 8nt
1) e 1.
m%qla( D 8n log (8n) >

Thus proceeding we can determine (). Putting

ki = 3 (—1pESSZile
Ny <2kn <ny+1
consider the series (n; = 0)
s(1,0;¢) + s(2,1; )
+5(1,2;8) + 5(2,3; 1) + s(3,4; ¢)
+ 51,5 ¢t) + s(2,6:t) + s(3,7;t) + s(4, 8 t)

Writing out each term as a sum of cosines, we get a cosine series where
there are no overlapping terms. If we denote this by 3 a,cosnt, then na,
>0 and 3a, converges, since we can take #; >2*. Thus the theorem is
proved.

3. Proof of Theorem 2. Let

N; = UXpexpexpj
and
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@y = — —— COS (m<n<n.

Evidently na, >0, and 3 a, converges. For, if we put

Spp = 2 an, (s < k< ny.y

ng<nsk
then
Suyxe = O(j/n;slog ng) = o(1)
by Abel's lemma and by 3 sin(nz/j) = O(1/sin(x/j)). Since 3,j/n;log x;
converges, 3, a, converges.
Similarly, the series
2) S a, cos nt
converges for all ¢ += 0. For putting

Spy(t) = 2 ay cos nt,

ny<n=k
we have, for n/j< t/2
Suyi(t) = 2 > P lolgn {cos n(t ) + cos n(t + 1][)}

r,<n57c
= O(1/tn; log n;).
Thus we get the convergence of (2), whose sum we denote by f(f).
On the other hand,

1 nx 1 nmr nx
fxlp= 22 cos® — + 2 > - cos “F cos 5—
/\J".”/\"j"‘l nlogn ol e o< nlogn 7 k
= fl + f27
say. Now
fi> 1 2 _ 1 > l(loglogn — log log n;) > e'(e — 1)/2
2 nlogn 2 I+ 4 ’
s <n<Nj+1
for large j, and since
1 nr nr _ jk 1 )
nlogn OS5 €05 7% “0<|j—k| ", log

N <R<Npy 1
= O(jk/n; log m,)
for k= j, we have

= o(j S ki, lognk> = 0(j).

k#j
Thus fizr/j)= f1+ f2> o as 7> o, and hence the theorem is proved.
Theorem 3 and 4 may be proved by the above example.

4. Finally we can show that a theorem due to O.Szész is best possible.
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Szasz theorem reads as follows:

THEOREM. If, for a § (1 > 8§ > 0),
2n

>(la) —a,) = 0%

v=n

and

Sy = 2 a, = 0(1/log n),
v=1
then 3a, is (R) summable.

We can prove that 8§ cannot be replaced by 1 in the theorem. In fact
we have

THEOREM 5. There is a sequence (a,) such that

2n
2 lavl = o(n),
v=n

Sy = Ea, = o(1/ log n)

v=0

and Sa, is not (R;,) summable.

Proor. Let

1 7 4

= lognloglogn o™ j (ny < 1< Ay,

where »; is the sequence defined in the proof of Theorem 2. Then, as in the
proof of Theorem 2, the limit

©o
. S, .
lim E 2 sin nt
=0 3 1
does not exist. Verification of other conditions is easy.
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