DIMENSION OF COMPACT GROUPS AND THEIR

REPRESENTATIONS

Shuichi Takahashi

(Received August 10, 1953)

In Pontrjagin's theory of duality for compact abelian groups, the following theorem is known:¹⁾

Let G be a compact abelian group, G^* the dual group. Then the topological dimension of G, in the sense of Lebesgue, is equal to the rank of discrete abelian group G^* .

It was Prof. T. Tannaka who has called my attention to the lack of corresponding theorem in non-commutative case.

I intend to give, in this note, a theorem of this kind in the following form:

THEOREM A. Let G be an arbitrary compact group, G^{\wedge} the aggregate of continuous finite dimensional representations of G, $C[G^{\wedge}]$ the algebra over the complex numbers C generated by the coefficients of representations in G^{\wedge} , i.e., the "representative ring" of G in the sense of C. Chevalley²). Then the topological dimension of G, in the sense of Lebesgue, is equal to the transcendental degree of $C[G^{\wedge}]$ over C.

Another form of corresponding theorem, which may be ture, is the following:

THEOREM B. Let \overline{G} be the space consisting of conjugate classes of a compact group G, G^{*} the characters of representations in G[^], C[G^{*}] the algebra over C generated by G^{*}. Then the topological dimension of \overline{G} is equal to the transcendental degree of C[G^{*}] over C.

In spite of its natural formulation, I cannot prove this theorem at present and merely justified it for connected compact Lie groups.

1. Notations. We shall use the following notations for an arbitrary compact group G:

n(G): the topological dimension of G in the sense of Lebesgue.

 $n(G^{\wedge}) = \langle C[G^{\wedge}] : C \rangle$ the transcendental degree of "representative ring" $C[G^{\wedge}]$ over the complex number field C.

r(G): the topological dimension of the space \overline{G} consists of conjugate classes of G. In case the group G is a connected compact Lie

¹⁾ L. PONTRJAGIN, Topological groups (1939), p.148 Example 49.

²⁾ C. CHEVALLEY, Theory of Lie groups I (1946). p. 188.

group, r(G) is the rank of G in the sense of H. Hopf i.e., dimension of a maximal abelian subgroup in G by the well known "principal axis theorem".

 $r(G^*) = \langle C[G^*] : C \rangle$: the transcendental degree of "characterring" $C[G^*]$ over C.

2. Auxiliary theorems.

THEOREM 1³) n(G)=0 if and only if $n(G^{\wedge})=0$.

PROOF. Assume n(G)=0, then any $D \in G^{\wedge}$ maps G onto a 0-dimensional Lie group, i.e., a finite group. By a suitable coordinate transformation every coefficient $d_{ij}(x)$ of D becomes algebraic, therefore $n(G^{\wedge})=0$. On the other hand, if $n(G^{\wedge})=0$, then every coefficient $d_{ij}(x)$ of $D \in G^{\wedge}$ is algebraic; in particular its character $\sum_{i} d_{ii}(x)$ is algebraic. Hence, by a theorem of Weil³, D(G) is a finite group. Since G has sufficiently many representations, this means that n(G) = 0, q. e. d.

THEOREM 2³). G is connected if and only if every element in C [G^{\wedge}] is constant or transcendental.

PROOF. Assume G be not connected and put G_0 for the connected component containing the identity 1. Then G/G_0 is a 0-dimensional group and $C[(G/G_0)^{\wedge}] \subseteq C[G^{\wedge}]$. By preceding theorem there exists a non-constant algebraic element in $C[(G/G_0)^{\wedge}]$ and a priori in $C[G^{\wedge}]$.

Convestely, if $C[G^{\wedge}]$ contains a non-constant algebraic element f(x); then f(x) is a finite valued continuous function on G. Therefore G cannot be connected. q. e. d.

3. Proof of Theorem A. The proof is accomplished by a series of elementary lemmas.

LEMMA 1. $n(G) \leq n(G^{\wedge})$.

PROOF. Assume first G be a compact Lie group, then G has a faithful representation $D(x) \in G^{A4}$. Since G has a neighborhood of the identity homeomorphic to the euclidean *n*-space \mathbb{R}^n (n=n(G)), it follows that among the coefficients $d_{ij}(x)$ of C(x) there exist *n* topologically, hence algebraically independent elements. Therefore $n(G^A) \ge n(G)$.

Next G be arbitrary, there exists, for any finite number $n^* \leq n(G)$, a sufficiently small invariant subgroup \mathfrak{l} such that G/\mathfrak{l} is a Lie group and $n(G/\mathfrak{l}) \geq n^{*5}$.

³⁾ These theorems 1, 2 are founded independently by Y. KAWADA. His results are published in Japanese periodical "Shijo-Sugaku-Danwakai". WEIL's theorem quoted in the proof is in C.R. Paris 198, 1739-42; 199, 180-2(1934).

⁴⁾ e.g., CHEVALLEY, 1.c.²⁾ p.211.

⁵⁾ e.g., PONTRJAGIN, 1.c.¹⁾ p.211 F). Separability assumption is not essential in this proof.

S. TAKAHASHI

Obviously $n(G^{\wedge}) \ge n((G/\mathbb{U})^{\wedge}) \ge n(G/\mathbb{U}) \ge n^*$. This means $n(G^{\wedge}) \ge n(G)$. q. e.d

LEMMA 2. If G is connected $C[G^{\wedge}]$ has no zero-divisors.

PROOF. Let $f_1, f_2 \in C[G^{\wedge}]$ be $f_1(x) f_2(x) = 0$ everywhere on G. We must show that at least one of f_1, f_2 is zero everywhere. Since the problem concerns two elements $f_1, f_2 \in C[G^{\wedge}]$ it is sufficient to assume that G is a Lie group. Now f_1, f_2 are analytic functions on G, hence, by a property of analytic functions, at least one of f_1, f_2 is zero in a sufficiently small neighborhood of the identity. Since G is connected this holds everywhere. q. e. d.

LEMMA 3. For the proof of $n(G) \ge n(G^{\wedge})$ it is sufficient to assume that G is connected.

PROOF. Let G_0 be the connected component containing 1. At first it holds obviously $n(G) \ge n(G_0)$. We show that $n(G_0^{\wedge}) \ge n(G^{\wedge})$. For this we put $n(G_0^{\wedge}) = n$ and assume *n* is finite. Take n + 1 arbitrary elements $f_{1,...,f_{n+1}} \in C[G^{\wedge}]$ and a sufficiently small invariant subgroup \mathbb{I} such that $H = G/\mathbb{I}$ is a Lie group and $f_{1,...,f_{n+1}}$ are functions on *H*. If H_0 is the component in H, $H_0 = G_0\mathbb{I}/\mathbb{I}$ $\cong G_0/G_0 \cap \mathbb{I}$ and $C[H_0^{\wedge}] \subseteq C[G_0^{\wedge}]$ hence $n(H_0^{\wedge}) \le n$.

If $H = \sum_{i=1}^{n} s_i H_0$ is a coset decomposition of H by H_0 , the set of elements

in $C[H^{\wedge}]$ which vanish on s_iH_0 constitutes an ideal \mathfrak{P}_i in $C[H^{\wedge}]$ such that $C[H_0^{\wedge}]/\mathfrak{P}_i \cong C[H_0^{\wedge}]$ has no zero-divisors by Lemma 2 and its transcendental degree $n(H_0^{\wedge}) \leq n$. Hence there exist $h = [H:H_0]$ polynomials P_i such that $P_i(f_1, \dots, f_{n+1}) \in \mathfrak{P}_i$ $(i = 1, 2, \dots, h)$.

 $P_i(f_1, \dots, f_{n+1}) \in \mathfrak{P}_i \ (i = 1, 2, \dots, h).$ Since $\bigcap_{i=1}^{h} \mathfrak{P}_i = 0$, $\prod_{i=1}^{h} P_i (f_1, \dots, f_{n+1}) = 0$. This means that f_1, \dots, f_{n+1} are algebraically dependent i.e., $n(G^{\wedge}) \leq n$. q.e.d.

LEMMA 4. If G is connected $n(G) \ge n(G^{\wedge})$.

PROOF. Let $n \leq n(G^{\wedge})$ be a finite number, we want to show that $n(G) \geq n$. We take $D_0 \in G^{\wedge}$ such that, among the coefficients $d_{ij}(x)$ of D_0 , there exist n algebraically independent elements in $C[G^{\wedge}]$. Put $\mathfrak{ll} = \{x | D_0(x) = 1\}$. Then $H = G/\mathfrak{ll}$ is a Lie group with D_0 as a faithful representation. Hence by Kampen's theorem⁶ coefficients of D(x), $\overline{D(x)}$ generate the algebra $C[G^{\wedge}]$. Let $M(H)^{r_0}$ be the associated algebraic group of H, then by definition the point $(d_{ij}(x), \overline{d_{kl}(x)})$ in complex 2r-space C^{2r} , where $r = \deg D$, is a generic point of M(H) over a suitable field k. Therefore M(H) is the set of specializations of the point $(d_{ij}(x), \overline{d_{kl}(x)})$ over k and

complex dimension of $M(H) = \langle C[H^{\wedge}] : C \rangle \geq n$.

180

⁶⁾ e.g., CHEVALLEY, 1.c.²), p.193-4.

⁷⁾ For the definition and properties of associated algebraic group used in the following see CHEVALLEY, 1.c.²⁾ pp. 194-202,

On the other hand, if h = n(H) is the dimension of H, then M(H) is homeomorphic to $H \times R^h$, therefore $2h \ge 2n$, i.e., $h \ge n$.

More precisely, any $A \in H_1 = M(H) \cap \mathfrak{ll}(r)$ (unitary restriction) is associated with $a \in H$ by

$$A(f) = f(a) \qquad \qquad f \in C[H^{\wedge}]$$

(duality theorem). $C[H^{\wedge}] \subseteq C[G^{\wedge}]$ and A is a representation of $C[H^{\wedge}]$. We shall show that A can be extended continuously on $C[G^{\wedge}]$; continuity means that $A \to 1$ implies convergency of extension \widetilde{A} :

$$\widetilde{A}(f) \to f(1) \qquad \qquad f \in C[G^{\wedge}].$$

Since H_1 has a neighborhood of the identity homeomorphic to \mathbb{R}^h , this continuous one to one image in $G^{\wedge\wedge} = G$ has dimension h. Hence $n(G) \ge h \ge n$.

Consider couples (F_1,A_1) consisting of a sub-algebra F_1 generated by a set of representations $\{D_1,\overline{D}_1,D_2,\overline{D}_2,\cdots,\}$ in G^{\wedge} and continuous extensions A_1 on F_1 of every $A \in H_1$.

$$(F_1,A_1) \leq (F_2,A_2)$$

means $F_1 \subseteq F_2$ and each A_1 coincides on F_1 with unique A_2 . Then all couples (F_1, A_1) satisfy condition of Zorn's lemma and there exists a maximal couple (F_{∞}, A_{∞}) . We must show $F_{\infty} = C[G^{\wedge}]$. Otherwise there would exists $D \subseteq G^{\wedge}$ such that at least one coefficient of D or \overline{D} does not belong to F_{∞} . Take one of such coefficient $d_{ij}(x) = f$ and define

- 1) $A'_{\infty}(f) = f(1)$ if f is transcendental over F_{∞} .
- If f is algebraic over F_∞, take an irreducible equation satisfied by f (since C[G[∧]] is without zero-divisors by Lemma 2):

 $f^m g_m + f^{m-1} g_{m-1} + \cdots + g_0 = 0 \quad (g_i \in F_\infty).$

By assumption $A \to 1$ implies $A_{\infty}(g_i) \to g_i(1)$, there exists a root of equation

$$X^{n}A_{\infty}(g_{m}) + X^{n-1}A_{\infty}(g_{m-1}) + \dots + A_{\infty}(g_{0}) = 0$$

such that $A \rightarrow 1$ implies $\alpha \rightarrow f(1)$. We define then $A'_{\infty}(f) = \alpha$.

Thus we can extend A_{∞} to the algebra $C[F_{\infty}, D, D]$ as an algebra-representation with continuity preserved.

Now consider a direct product

$$\mathfrak{G} = \underbrace{GL(r(\overline{D_{i}})) \times GL(r(D_{i})) \times \cdots \times GL(r(D)) \times GL(r(\overline{D}))}_{\text{on } F}$$

where $GL(r(D_i)) = GL(r(D_i), C)$ means complex general linear group of degree $r(D_i) = \deg D_i$. In this product algebra-representations of $C_i F_{\infty}, D, \overline{D}$ constitute a generalized algebraic group \mathfrak{M} in the sense that its elements are defined by an infinity of algebraic equations. $M \equiv \mathfrak{M}$ implies $M^3 = M^{-1} \equiv \mathfrak{M}$ and the subset

S. TAKAHASHI

satisfying conjugate condition is precisely $\mathfrak{M} \cap [\mathfrak{U}(r(D_1)) \times \cdots]$. In particular above A'_{∞} determines

 $M = A_{\infty}(D_1) \times A_{\infty}(\overline{D}_1) \times \cdots \times A'_{\infty}(D) \times A'_{\infty}(\overline{D})$

which is an element in \mathfrak{M} such that on F_{∞} its components are unitary. Now decompose M into a unitary matrix M_1 and a positive definite hermitian matrix $M_2: M = M_1 \cdot M_2$ continuously. It is easy to verify that $M_1 \in \mathfrak{M}$ again. Define A_{∞} on D by

 $M_{1} = A_{\infty}(D_{1}) \times A_{\infty}(\overline{D}_{1}) \times \cdots \times A_{\infty}(D) \times A_{\infty}(\overline{D}),$

then A_{∞} is an algebra-representation of $C[F_{\infty}, D, \overline{D}]$ preserving conjugate condition. This would imply $(C[F_{\infty}, D, \overline{D}], A_{\infty}) \cong (F_{\infty}, A_{\infty})$ contrary to the hypothesis. q.e.d.

REMARK. After completion of above proof of Theorem A, I found another proof of Theorem A for separable compact groups by using a result of A. Weil⁸³ which states that, if G is a compact separable group, ll an invariant subgroup such that G/\mathfrak{ll} is a Lie group, then $n(G) \ge n(G/\mathfrak{ll})$. Since $n(G/\mathfrak{ll}) \ge n(G)$ for sufficiently small subgroup ll, $n(G) = \lim_{\mathfrak{ll}\to 1} n(G/\mathfrak{ll})$. On the other hand $n(G^{\wedge})$ $= \lim_{\mathfrak{ll}\to 1} n((G/\mathfrak{ll})^{\wedge})$ is obvious. First part of the proof of Lemma 4 gives a proof of $n(G/\mathfrak{ll}) = n((G/\mathfrak{ll})^{\wedge})$, therefore $n(G) = n(G^{\wedge})$.

4. Proof of Theorem B for connected compact Lie groups.

Every group considered in this section are assumed to be connected compact Lie group.

LEMMA 5. If \widetilde{G} is a finite sheeted covering group of G, then $r(\widetilde{G}) = r(G)$, $r(\widetilde{G}^*) = r(G^*)$.

PROOF. $r(\widetilde{G}) = r(G)$ is obvious by Hopf's definition of rank. $r(\widetilde{G}^*) \ge r(G^*)$ is a consequence of $\widetilde{G}^* \supseteq G^*$. Now let D(x) be an irreducible representation in \widetilde{G}^{\wedge} and x(x) be the character of D(x). Put $G = \widetilde{G}/N$ with N as a finite central subgroup of \widetilde{G} . By Schur's lemma,

$$D(z) = \lambda(z) \cdot 1$$
 $(z \in N),$

where $\lambda(z)$ is a root of unity such that $\lambda(z)^n = 1$ if *n* denotes the order of *N*. Hence the representation

$$\underbrace{\frac{D(x)\times\cdots\times D(x)}{n}}_{n}$$

maps N into I, i.e., this is a representation of $G = \widetilde{G}/N$. This means $x^n \in G^*$, therefore, every character $x \in \widetilde{G}^*$ is algebraic over G^* . Hence $(\widetilde{G}^*) \leq r(G^*)$. q e.d.

LEMMA 6. If G is a direct product of G_1 and a central subgroup G_2 of G, then $r(G) = r(G_1) + r(G_2)$, $r(G^*) = r(G_1^*) + r(G_2^*)$.

8) Bull. Amer. Math. Soc. 55(1949), pp. 272-3.

PROOF. Let T_1 be a maximal torus of G_1 , $T_2=G_2$, then $T_1 \times T_2$ is a torus in G; hence $r(G_1)+r(G_2) \leq r(G)$. On the other hand if T is a maximal torus in G, then, since G_2 is central, $G_2 \subseteq T$. As T/G_2 is a torus in $G_1 = G/G_2$, dimension of $T/G_2 \leq r(G_1)$. Thus dimension of $T = r(G) \leq r(G_1) + r(G_2)$.

Next, every irreducible representation of G is a Kronecker product of irreducible representations of G_1 and G_2 . Therefore every irreducible character x of G is a product $x = x_1x_2$ of characters of G_1 and G_2 , i.e., $r(G^*) \leq r(G_1^*) + r(G_2^*)$. Conversely, if x_1, \dots, x_{ν_1} and $\psi_1, \dots, \psi_{\nu_2}$ are algebraically independent characters of G_1^* and G_2^* respectively, then $x_i\psi_j(i=1,\dots,v_1,j=1,\dots,v_2)$ are algebraically independent. For if

$$F(\mathbf{x}_i \psi_1, \cdots, \mathbf{x}_{\nu_1} \psi_1, \cdots, \mathbf{x}_{\nu_1} \psi_{\nu_2}) = 0$$

is a polynomial in r_1r_2 arguments, it can be written in the form :

$$\sum_{n_1\cdots n_{\nu_2}} F_{n_1\dots n_{\nu_2}}(x_1,\cdots,x_{\nu_1}) \, \psi_1^{n_1}\cdots \psi_{\nu_2}^{n_{\nu_2}} = 0$$

where $F_{n_1...n_{\nu_2}}(x_1, ..., x_{\nu_1})$ are polynomials in $x_1, ..., x_{\nu_1}$. If we fix $x \in G_1$ then $F_{n_1...n_{\nu_2}}(x_1(u), ..., x_{\nu_1}(x))$ is a complex number = 0 by hypothesis on ψ 's. This implies by hypothesis on x's. $F_{n_1...n_{\nu_2}} \equiv 0$. Hence the equation $F \equiv 0$, and $r(G^*) \ge r(G_1^*) + r(G_2^*)$. q.e.d.

As is well known, every connected compact Lie group G has a finite sheeted covering group G such that

$$\widetilde{G} = G_1 \times G_2$$

where G_1 is a simply connected semi-simple compact Lie group and G_2 a torus⁹). Hence by Lemmas 5, 6, it is sufficient to prove $r(G) = r(G^*)$ for simply connected semi-simple compact Lie groups. In the following let G be such a group.

LEMMA 7. $r(G) \ge r(G^*)$.

PROOF. There exists one to one correspondence between representations of G and those of its Lie algebra g. Every irreducible representation of g is determined by a highest weight Λ , which can be written uniquely by Cartan basis $\Lambda_1, \dots, \Lambda_r, r = r(G)$, as

 $\Lambda = m_1 \Lambda_1 + \cdots + m_r \Lambda_r \quad (m_i \text{ integers } \geq 0).$

Conversely to every such weight Λ , there exists unique irreducibel representation of \mathfrak{g} having Λ as highest weight¹⁰). Let D_1, \dots, D_r and $\mathfrak{x}_1, \dots, \mathfrak{x}_{\nu}$ be the irreducibl representations of \mathfrak{g} and characters of G respectively corresponding to the weights $\Lambda_1, \dots, \Lambda_r$.

We show that $C[G^*] = C[x_1, \dots, x_r]$. Take an irreducible character $x \in G^*$ such that its weight is

⁹⁾ e.g. PONTRJAGIN, 1 c.1) p. 282 THEOREM 87.

 ¹⁰⁾ For the theory of representations of semi-simple Lie algebra see CARTAN: Bull. Soc. Math. de France 41(1913), pp. 53-96, WEYL: Math. Zeitsch., 24(1925)pp. 323-335.

S. TAKAHASHI

 $\Lambda = m_1 \Lambda_1 + \dots + m_r \Lambda_r \quad (m_i \text{ integers} \ge 0)$

and that if $\Lambda' < \Lambda$ then the character \varkappa' with highest weight Λ' is contained in $C[\varkappa_1 \cdots, \varkappa_r]$. Irreducible representation of G which has Λ as its highest weight is contained in the Kronecker product

$$\underbrace{D_1 \times \cdots \times D_1}_{m_1} \times \cdots \times \underbrace{D_r \times \cdots \times D_r}_{m_r}$$

as the irreducible representation with highest weight (Cartan composite). Hence $x + x' + x'' + \cdots = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r}$

where x', x'', \cdots are characters with highest weight $\Lambda', \Lambda'', \cdots, <\Lambda$. By hypothesis on $x, x', x'', \cdots \in C[x_1, \cdots, x_r]$, hence $x \in C[x_1, \cdots, x_r]$ and $C[G^*] \subseteq C[x_1, \cdots, x_r]$ by an inductive argument. q.e.d.

Lemma 8. $r(G) \leq r(G^*)$.

PROOF. We show that the characters x_1, \dots, x_r corresponding to a Cartan basis $\Lambda_1, \dots, \Lambda_r$ of highest weights are algebraically independent. Let $F(x_1, \dots, x_r) = 0$ be a polynomial. If \mathfrak{h} is a maximal abelian subalgebra of the Lie algebra \mathfrak{g} of G, then

 $x_i(x) = \exp \Lambda_i(h) + \exp \Lambda_i'(h) + \cdots \Lambda_i' < \Lambda_i$, etc., where $x = \exp h(h \in \mathfrak{h})$. Inserting into the polynomial $F = \sum a_{n_1 \dots n_r} x_1^{n_1} \cdots x_r^{n_r}$, we see that highest term exists in the sum

 $\Sigma a_{n_1 \dots nr} \exp (n_1 \Lambda_1(h) + \dots + n_r \Lambda_r(h)).$

Now if $n_1^0 \Lambda_1 + \dots + n_r^0 \Lambda_r$ is highest, then $a_{n_1^0 \dots n_r^0} = 0$. By repeated application of this argument we arrive at $F \equiv 0$, i.e., $r(G^*) \ge r = r(G)$. q.e.d.

MATHEMATICAL INSTITUTE, TôHOKU UNIVERSITY.