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In Pontrjagin's theory of duality for compact abelian groups, the following

theorem is known :1:>

Let G be a compact abelian group, G* the dual group. Then the topo-

logical dimension of G, in the sense of Lebesgue, is equal to the rank of

discrete abelian group G*.

It was Prof. T. Tannaka who has called my attention to the lack of corres-

ponding theorem in non-commutative case.

I intend to give, in this note, a theorem of this kind in the following form:

THEOREM A. Let G be an arbitrary compact group, GA the aggregate of

continuous finite dimensional representstions of G, C[ GA ] the algebra over the

complex numbers C generated by the coefficients of representations in GA, i.e.,

the "representative ring" of G in the sense of C. Chevalley^. Then the topo-

logical dimension of G, in the sense of Lebesgue, is equal to the transcendental

degree of C[GA] over C.

Another form of corresponding theorem, which may be ture, is the follo-

wing :

THEOREM B. Let G be the space consisting of conjugate classes of a

compact group G, G* the cha?Λacters of representations in GA, C[G*] the algebra

over C generated by G*. Then the topological dimension of G is equal to the

transcendental degree of C[G*] over C.

In spite of its natural formulation, I cannot prove this theorem at present

and merely justified it for connected compact Lie groups.

1. Notations. We shall use the following notations for an arbitrary

compact group G:

the topological dimension of G in the sense of Lebesgue.

<C[GA]: C> the transcendental degree of "representative ring"

C[GA] over the complex numder field C.

τ"(G): the topological dimension of the space G consists of conjugate

classes of G. In case the group G is a connected compact Lie

1) L. PONTRJAGIN, Topological groups (1939), p.148 Example 49.

2) C. CHEVALLEY, Theory of Lie groups I (1946;. p. 188.
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group, r(G) is the rank of G in the sense of H. Hopf i.e., dimen-

sion of a maximal abelian subgroup in G by the well known "princi-

pal axis theorem".

= <C[G*] : C> : the transcendental degree of "characterring'' C[G*]

over C.

2. Auxiliary theorems.

THEOREM 13> nQCT) = 0 if and only if *<GΛ) = 0.

PROOF. Assume nQG~)^Q, then any DEiGA maps G onto a O-dimensional

Lie group, i.e., a finite group. By a suitable coordinate transformation every

coefficient dtjζx) of D becomes algebraic, therefore #(G Λ ) = 0. On the other

hand, if n ( G A ) = 0, then every coefficient dij O ) of D EΞ GA is algebraic in

particular its character Σtda O ) is algebraic. Hence, by a theorem of WeiF,

D (<7) is a finite group. Since G has sufficiently many representations, this means

that n (G) = 0. q. e. d.

THEOREM 2Ό. G is connected if and only if every element in C [GA] is

constant or transcendental*

PROOF. Assume G be not connected and put Go for the connected component

containing the identity 1. Then G/Go is a O-dimensional group and C[QG/G0)
A]

CΞC[GΛ]. By preceding theorem there exists a non-constant algebraic element in

C[QG/GoY] and a priori in C[GA].

Convesrely, if C[GA] contains a non-constant algebraic element /GO; t h e n

/GO is a finite valued continuous function on G. Therefore G cannot be

connected, q. e. d.

3. Proof of Theorem A. The proof is accomplished by a series of elementary

lemmas.

LEMMA 1. n(G)<

PROOF. Assume first G be a compact Lie group, then G has a faithful

representation D O ) £Ξ GM\ Since G has a neighborhood of the identity homeo-

morphic to the euclidean n-space Rn Qn- n CG9), it follows that among the

coefficients dij(x^) of CO) there exist n topologically, hence algebraically inde-

pendent elements. Therefore n(GA~) >: nQG).

Next G be arbitrary, there exists, for any finite number ri* < nQG~), a sufficiently

small invariant subgroup U such that G/U is a Lie group and n CG/VO >: #* 5 \

3) These theorems 1, 2 are founded independently by Y. KAWADA. His results are published
in Japanese periodical uShijo-Sugaku-Danwakai". WEIL'S theorem quoted in the proof is in
C.R. Paris 198, 1739-42; 199, 180-2C1934).

4; e.g., CHEVALLEY, l.c.2) p.211.
5) e.g., PoNTRJAGIN, l.c1^ p.211 F). Separability assumption is not essential in this proof.
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Obviously nQGA) > Λf C G / Π ) Λ ) > Λ C G / U ) > W * . This means < G Λ ) > wCG). q. e. d

LEMMA 2. If G is connected C[GA]has no zero-divisors.

PROOF. Let /i,/a £ C[ GΛ ] be /iOO/ 2O) = 0 everywhere on G. We must show

that at least one of /i,/a is zero everywhere. Since the problem concerns two

elements /i, /2 £ C[GA] it is sufficient to assume that G is a Lie group. Now

/i, /2 are analytic functions on G, hence, by a property of analytic functions, at

least one of /i,/2 is zero in a sufficiently small neighborhood of the identity.

Since G is connected this holds everywhere. q. e. d.

LEMMA 3. For the proof of τz(G)>:/z(GA) it is sufficient to assume that Gis

connected.

PROOF. Let Go be the connected component containing 1. At first it holds

obviously nQG^^nQGo^). We show that ?<GoΛ) >: #(G Λ ). For this we put

#CGυΛ3 = n and assume n is finite. Take n + 1 arbitrary elements fi,...,fn+ι €Ξ C[ GA ]

and a sufficiently small invariant subgroup U such that H = G/Vi is a Lie group

and fi,..;fn+ι are functions on H. If Ho is the component in H, Ho — Golt/U

s Go/Go Π U and C[HoA] C C[GuΛ] hence Λ ( # Ό Λ ) < ».
Λ

^ ^ = 2 J S*^° i s a coset decomposition of ϋΓ by Ho, the set of elements

in C[/7Λ] which vanish on SiHo constitutes an ideal $* in C[HA] such that

C[HoA]/^ί^C[HoA] has no zero-divisors by Lemma 2 and its transcendental

degree nQHoA)<n. Hence there exist h = [H:HΌ] polynomials Pi such that

PtCfί , ,/«+O e ^ 0" = 1, 2,..-, A).
A A

Since Π φ* = 0, 77" P* (/i ,- ,/n +O = 0. This means that / i , -,/n+i are alge-

braically dependent i.e., nQGA) < n. q. e. d.
LEMMA 4. // G is connected n(jG) > ^CGΛ).

PROOF. Let ^ ̂  ^CGA) be a finite number, we want to show that nQG^) > w.

We take Z)o £Ξ GΛ such that, among the coefficients duQx) of Do, theree xist

n algebraically independent elements in C[GA]. Put U = {xlDoQx') = 1}. Then

H~ G/VL is a Lie group with Ẑo as a faithful representation. Hence by Kampen's

theorem65 coefficients of Z>00, 5 0 0 generate the algebra C[GA]. Let MQHy>

be the associated algebraic group of //", then by definition the point

dkϊζxj) in complex 2^-space C2 r, where /• = deg D, is a generic point of

over a suitable field k. Therefore MQH^) is the set of specializations of the point

QdijQx^), dkiίxj) over k and

complex dimension of MQΐf) = < C [ # A ] : C> >: n.

6) e.g., CHEVALLEY, l.c.2), p.193-4.

7) For the definition and properties of associated algebraic group used in the following see

CHEVALΪ3Y, 1.C-*5 pp. 194-202,
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On the other hand, if h ~ # ( # ) is the dimension of H, then Λί(/Γ) is homeomorphic

to H X Rh, therefore 2k>i2n, i.e., h>n.

More precisely, any A EΞ Hi — M(/Γ) Π U(r) (unitary restriction) is asso-

ciated with a^H by

A(f)=f(ά) fEΞC[HA]

(duality theorem). C[HA]^C[GA] and A is a representation of C[HA]. We

shall show that A can be extended continuously on C[GA]; continuity means

that A -> 1 implies convergency of extension A*

Since Hi has a neighborhood of the identity homeomorphic to Rh, this continuous

one to one image in GAA = G has dimension h. Hence n(G^) ̂  /z >: n.

Consider couples (Fi,Λi) consisting of a sub-algebra Fi generated by a set of

representations {Dι,Dι,Z>2,D2,~.} in GΛ and continuous extensions Aι on Fi of

every A EΞ Hi*

CFi,i4O ^ CΛAD

means Fi^F2 and each AL coincides on Λ with unique A2. Then all couples

(Fi,i4i) satisfy condition of Zorn's lemma and there exists a maximal couple

CF^AJ. We must show F^ = C[GΛ]. Otherwise there would exists D ^ GA

such that at least one coefficient of D or Z) does not belong to F... Take one

of such coefficient dijQx^) ~ f and define

1) A'Sf) = / ( l ) if / is transcendental over FTO.

2) If / is algebraic over F^, take an irreducible equation satisfied by /

(since C[GA] is without zero-divisors by Lemma 2):

f>ilgm -i-f^gm-i ~\ hgQ = 0 Qgi^F^.

By assumption A->1 implies A^ QgO ->giQV), thara exists a root of equation

X-Ao. Qgn) + X Λ - ι A. te--ι) + •• + ^ te<0 = 0

such that il->l implies α->/( l ) . We define then

Thus wa can ex^eαi ^ t o th3 algabra CuF^,D,D\ as an algab a-rapresantation

with continuity prasarved.

Now consider a direct product

® = GL (rCDl)) X GL (KDQ) X >•• x GL (r(D)) X GL

on F

where GL(rCD,)) = GLQKDO,C) meais CDmolex gaαeral linear group of degrea

rCD/) - fog Di. In tαls proiu^i algebra- ra reie itEi' io π of C: Foo;D. D\ C3Π3titute

a generalized algeb aic group W in the seαse that its elements are dBίiαed by aα

infiαίty of algib ai^ eiαV io.i^ ME. JR. imoϋe^ M* = -MΛ ΈΞ M a i i the subsa t
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satisfying conjugate condition is precisely 9Jΐ f] [U(KDi)) X •••]. In particular
above Af

x determines

M= ASDO X AooCDO X - X A'£D) XA^Φ)

which is an element in W such that on F^ its components are unitary. Now

decompose M into a unitary matrix M1 and a positive definite hermitian matrix

M2: M = Mi M2 continuously. It is easy to verify that M £ W again. Define

Aw on D by

Mi = ^ C D i ) X ^ooCA) x - X AXEO X .4X5),

then ^4cois an algebra-representation of C[ F^Dfl ] preserving conjugate condition.

This would imply QCίF*, D, D], A J S ^ C F ^ A J contrary to the hypothesis, q.e.d.

REMARK. After completion of above proof of Theorem A, I found another

proof of Theorem A for separable compact groups by using a result of A. Weil83

which states that, if G is a compact separable group, U an invariant subgroup

such that G/H is a Lie group, then n^G) ^ nQG/W). Since <G/1Ό >: nQG) for

sufficiently small subgroup U, niG) = limu^1^CG:/U). On the other hand nQGA^)

= limu^1^CCG!/U)Λ) is obvious. First part of the proof of Lemma 4 gives a proof

of /*(G/1D = ^CCG/U)Λ), therefore nQG) = ^CGΛ).

4. Proof of Theorem B for connected compact Lie groups.

Every group considered in this section are assumed to be connected

compact Lie group.

LEMMA 5. If G is a finite sheeted covering group of G, then rQG) = KG),

KG*) = KG*).

PROOF. KG) = rQG^) is obvious by Hopf's definition of rank. rCG*)^KG*)

is a consequence of G* 3 G*. Now let Z>(» be an irreducible representation in

GΛ and x(*) be the character of £>O). Put G = G/ΛΓ with iV as a finite cent-

ral subgroup of G. By Schur's lemma,

£>G0 = JOO 1 fee iV),

where ΛCO is a root of unity such that λ(_z)n == 1 if ^ denotes the order of AΛ

Hence the representation

£>(#) X — X

maps iV into I, i.e., this is a representation of G = G/ΛΛ This means ^

therefore, every character x E G* is algebraic over G*. Hence (G*) :

q e.d.

LEMMA 6. // G ί's a direct product of Gi and a central subgroup G2 of G,

8) Bull. Amer. Math. Soc. 55(1949), pp. 272-3.
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PROOF. Let 7Ί be a maximal torus of Gi, T 2 = G2, then T1XT2 is a torus

in G; hence KG0+r(G2)<>CG). On the other hand if T is a maximal torus

in G, then, since G2 is central, G2 <Ξ 71. As T/G2 is a torus in Gi = G/G2,

dimension of T/Gi<rCGi). Thus dimension of T=rQG)<rtGl~) + rQG2).

Next, every irreducible representation of G is a Kronecker product of

irreducible representations of Gi and G2. Therefore every irreducible character

x of G is a product x = *i*2 of characters of Gi and G2, i.e., KG*)<r(Gi*)-h

KG a *). Conversely, if *i, •••, x*/χ and Ψi, -,Ψv2 are algebraically independent

characters of Gi* and G2* respectively, then XiψjQi=l, •••, vi,j = l, •• ,# 2 ) are

algebraically independent. For if

FQXiΦl, —, **101, — , Zvi0V2) = 0

is a polynomial in rLr2 arguments, it can be written in the form :

where F«i...^2 C*i> ••-,xVl) are polynomials in *i, •••, x^. If we fix Λ G G I then

^ i % 2 ( χ i W , , ^ i W ) is a complex number = 0 by hypothesis on Ψ's. This

implies by hypothesis on x's. F/ii-% 2= 0. Hence the equation J ^ = 0 , and

KG*D >: <Gi*) + K G a * ) . q.e.d.

As is well known, every connected compact Lie group G has a finite sheeted

covering group G such that

G= Gi X G2

where Gi is a simply connected semi-simple compact Lie group and G2 a torus9).

Hence by Lemmas 5,6, it is sufficient to prove r(G) = KG*) for simply con-

nected semi-simple compact Lie groups. In the following let G be such a group.

LEMMA 7. KG) >: KG*).

PROOF. There exists one to one correspondence between representations of

G and those of its Lie algebra β. Every irreducible representation of Q is deter-

mined by a highest weight Λ, which can be written uniquely by Cartan basis

Λu—,Λr, r= KG), as

A = ntiΛi + " + nzrAr (nn integers >: 0).

Conversely to every such weight A, there exists unique irreducibel representation

of 9 having A as highest weight110. Let Du -,Dr and xu ,Xv be the irredu-

cibl representations of Q and characters of G respectively corresponding to the

weights At,--,Ar.

We show that C[G*\ = C[xi, •••,«*•]. Take an irreducible character z E G *

such that its weight is

9) e.g. PONTRJAGIN, lc.1) p. 282 THEOREM 87.
10; For the theory of representation? of semi-simple Lie algsbra S32 CARTAN: Bull. Soc.

Math, de Franca 41(1913), pp, 53-95, WEYL: Math. Zeitsch., 24;1925)pp. 323 395 .
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A — miAi + " 4- ΊΠrAr (mi integers ^ 0)

and that if Λ ' < Λ then the character xr with highest weight A' is contained in

C[xi'",Xr], Irreducible representation of G which has A as its highest weight

is contained in the Kronecker product

Dx X ••• X A x ••• x Dr x ••• x Dr

as the irreducible representation with highest weight (Cartan composite). Hence

X + X1 + X11 + ••• = Ximi X2

m* ••• Xrmr

where x', x", — are characters with highest weight A1', Λ"9—,<Λ. By hypothesis

on x, xf, x", "- £ C[xi, " ,xr], hence x E C [ x i , - , z r ] and C[G*] CZ C[xi, ,Xr]

by an inductive argument. q.e.d.

LEMMA 8. KG) < KG*).

PROOF. We show that the characters xίy - ,Xr corresponding to a Cartan

basis yίi, •• , A of highest weights are algebraically independent. Let FQxi, •••,

χ r) = 0 be a polynomial. If ϊj is a maximal abelian subalgebra of the Lie

algebra Q of G, then

where Λ; = exp hQhEϊ ϊ)). Inserting into the polynomial F = ^βwi... wr Xi711 -Xr w ,

we see that highest term exists in the sum

Now if »iϋ>4H h^rϋJr is highest,then an o...no= 0. By repeated application of

this argument we arrive at F = 0, i.e., KG*) >: r = KG). q.e.d.
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