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1. Introduction. A one-parameter family of bounded .linear operators
T(E),0 < £ < o, from a complex Banach space X into itself with the property
T(E + n) = T(E)-T(n) is said to be a semi-group 'of operators. In the theory
of semi-group of operators, a fundamental problem is to characterize the
infinitesimal generator which determines the structure of a semi-group of
operators.

Such a problem has been discussed by E.Hille ([1], Theorem 12.2.1)»
and K. Yosida [2] for a semi-group of operators satisfying the following
conditions :

(c1) T(E) is strongly continuous atl zero.

(co) | T(E)| =< 1 + BE for sufficiently small £,
where B is a constant. Later their results were generalized to a semigroup
of operators satisfying only the condition (c,) by R.S.Phillips ([5], Theorem
2.1) and the present author [3]. This result has later been generalized to a
strongly measurable semi-group of operators by W. Feller [7].

In this paper we shall deal with the generation of a semi-group of
operators which is strongly ergodic to the identity at zero in the Abel sense
(in §2) and in the (C,1) sense (in §3). Our main results in Abel case are
contained in Theorems 1 and 2, and those in (C, 1) case in Theorems 3 and
4. The idea of our proof is much due to K. Yosida [2] and. W.Feller [7].

2. Semi-group of operators strongly Abel ergodic at zero. Let {7(&);
0 < £ < x} be a semi-group of operators satisfying the following conditions:
(a) For each €, 0< £< oo, T(E) is a bounded linear operalor from a
complex Banach space X into itself and
2.1 T(E + ) = T(E)T(n) = T(nT(&).
(b) T(E) is strongly measurable in (0, ),

We note that the conditions (a) and (b) imply the boundedness of | 7YE)|
in each finite interval [£,1/€], & >0, and consequently the strong continuity
of T(£). This result is due to R.S.Phillips [6] and the present author [4].
On the other hand, &-! log [|7(£)| tends to a finite limit or to — o0 as E-»w
and we can always replace {7(£); 0 < & < o} by the equivalent semi-group
{e~%¥T(E); 0 < £ < o}, and therefore we may assume the following condition
without loss of generality.

(c) || T(E) || s bounded at & = .
DErFINITION 1. T(E) is said to be strongly Abel-ergodic to the identity at

*) The preliminary report of this paper was published in Proceedings of the Japan
Academy, vol. 30,n0. 5 (1954).
1) Numbers in brackets refer to the references at the end of the paper.
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zero if it satisfies the following conditions;

1
2.2) f | T®)| dE < oo,
0 .
2.3) %\im xf e MTE)xXdE = x
0
for all x € X.

REMARK. From the conditions (a) and (b) one can infer that | T(E)| is
lower semi-continuous and a fortiori is measurable.
DEFINITION 2. The set 3 defined by

£
.1
2.4) S= {x; lg??f T(n)%dn = x}
0

is said to be the (C,1)-continuity set of {T(£); 0 < & < oo}
DerFINITION 3. The operator A which is defined by
@.5) Az = Tim [ T(0) — Il
h=>0

whenever the limit on the right hand side exists and belongs to 3, is said
to be the infinitesimal generator of {T(E); 0 < £ < o} and the set of elements
x for which Ax exists will be denoted by D(A).

We prove first the following.

LEMMA. Let {T(E); 0 < E< o} be a semi-group of operators satisfying the
conditions (a)~(c) and be strongly Abel-ergodic to the identity at zero. If we
gntroduce the new norm by

, XE 3,

(2.6) N(x) = sup
&0

¢
1
3 Of T(n)xdn

then = is a Banach space with the norm N(x).

Proor. By the definition of 3, there exist a nme positive constant C;
for each x € 3 and a finite positive constant K such that

¢ I
{% Of Tt

<G, 0<E<],
(TE) <K E=1,

so that N(x) 1s nmte for each x € 2. It is obvious that I is a linear normed
space with the norm Mx).
Now, we assume that a scyucuce X, 3) satisfies im NMx, — %) = 0,
f 1 . - By M=Poo

then for any . - v there exists & positive integer N, = N,(€) such that

and that
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K3
N — %n) = sup “ 1 j Tln)%a — %m)dn H <e
£0 E p

for m >n =N, On the other hand, from the definition of Mx), we have
x| < N(x) for each x € 3, hence there exists an element x such that

Iim (% — x| =0.
n-yoco
‘There fore we have
, ‘ £
@.7) sup{ —l—f T(nX % — x)dn“ <§¢, n = N,.
00 &
0
Since

¢ mon == | moe—son]

+ H%fg T()tadn — Za| + || %0 — x|
’ £
<e4 “%f T(n)xndy — %n| + | % — x,
we have 0
2.8) lim —{1; f 5 T(n)xdn = %.

By (2.7) and (2.8) we have x € 3, and N(x — x,) >0 as n-» 0. Thus 3 is a
Banach space with the norm N(x).

THEOREM 1. Let {T(E); 0 < E < oo} be a semi-group of operators satisfying
the conditions (a)-(c) and be strongly Abzl-ergrdic to the identity at zero. Then
(i) for each \ such that R(\) >0, where R(\) denotes the real part of A,
there exists a bounded linear operator R(\; A) from X into 3, satisfying the
Jollowing conditions
A —A)R\; A)x = x, XES,
Rn; A A — A)x = x, x € D(A);
(ii) D(A) is a dense lingar. subset-in X ;
(iil) there exists a finite positive constant M such that
IAR(N; A) = M, A1;
(iv) there exists a mon-negative function f(E, x)defined on the product space
< 0,0 > x X satisfying the properties
@) for each x € X, fE, x) is a measurable function of E,
SE, x)

(b) fif) = sup

S is integrable on any finite interval [0, 8] and bounded
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measurable on any infinite interval [E, ), & >0,

fE, R(1; A)x)

(c!) sup is bounded on [0, o),

Ze2 IE
(d') we have, for all x € X,
[R®ONA) ] = (— 1FFP(\, %), k=0,1,....,
where F(\, x) is defined by

R0 = [ e, o, A >0,
0
and R®(\; A), F®(\, A) denote the k-th derivative of R(\ ; A), F(\, x) respectively ;
(v) 3 is a Banach space with the norm N(x), D(A) is dense in 3, with the
norm N(x) and

1 k
| SR A)l'x

i=1

{2.9) N(x) = sup I t, xe€ 3.

k21,A>0

Proor. For each A\ such that R(A) >0 we define R(»; A) by

o

ROuA)x = f e~ N T(E)dE,

0

so that R(A; 4) is a bounded linear operator from X into 3. For x € 3,
we have

%[T(h)R()L; A)x — R(n; A)x]

= 2@t —1 [ enTEmir—en L f -\ T(E)xd
0 0

SQAR(\; A)x —x
as >0 and AR(\; A)x — x € 3, thus we get the condition (i). Since {TYE);
0 < E < oo} is strongly Abel-ergodic to the identity at zero and R(A; A)Z]®
= D(A), D(A) is dense in 3, and 3, is dense in X by R(A; A)[X] < 3. There-
fore we get the condition (ii). The condition (iii) is immediately obtained
from the strong Abel-ergodicity of T(£€). By the definition of R(:»; A)

| ER1; Ax | = ef e | T(n)|dn-|xl, 0K E=T,
0
while since | T(£)| is bounded on [1,c] and {AR\; A)| LM for A =1, we
have
TTERL; Ax|<KM|x|, £E=1.

We get also by the definition of R(\; A)

2) R(r; A)[z] denotes the set {R(r; A)r; z< 3}
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o

{2.10) R®(\; A)x = (— 1) f e MET(E)xdE, k=1,2,.....

0
Now, if we put
f(E 2= | TE)x,
then the condition (iv) may be obtained by the relations f(£) = | T(§).,

A R(L: Ay = | TOR1; Al s max (e [ e twian KM )1z
0

and
[ R®(; A)x| < (= 1FF®(, 2).

Finally we shall prove the condition (v). By the condition (i) or the
definition of R(\»; A), we get the second resolvent equation
RO\; A)— R(u; A)= —(A — p)RI\; A)R(u; A),
so that we have by (2.10)

co

" 1 -AEgE—1 =
(2.11) [R(n; A)ltx =. e — 1)1‘/ e MECIT(E)xdE, k=1,2, .....

By (2.11),
e f e[ f Ieywdr | dg = > f Tty f e-ig-1d | dr

o - 1 (B=1) 4, , k=Dk=2)
(2.12) 2l (f eAT(‘T)x[ b —* A2 T* +'——'———7\-';'——

l

I

-1 °° - 2
+ ...+ QTI)— ] dr = —2—[7\.] e VT (r)xdr + 7;—"-[ e~ Nr T(r)x dr +
0 0

A* - =AT k-1 o ] = _1~ : . U
+ ..., e~ 1)!5[ e\ =1T(7)x-dr % E[ARO\.,A)]x.
From (2.12) and the definition of N(x), we have

” 2 Z[KR(X A)]xH =Mx), =zx€3.

Lél )\>0

On the other hand, using the well known theorem that if A£) is a bounded
continuous function and k/A - 5 (A, £-> o) then

M2 e ee > A,

0

we have
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lim mf” 3 Z[AR(A A)lx ll > “ 1 f T(r)x dr ”

i=1

for x€ 3, so that

sup
k21,50 ||

) L [hR(x A)]'x” >sup ” f T(r)xdr

] )

for x € 3. Thus we get (2.9).

We shall now prove that D(A) is dense in 3 with the norm N(x). If
x € 3, then we can see, from the definition of 3, that there exists for any
positive number & a positive number &, = §,(&) such that

£
”é f T(r,)xdn—x” <& 0<E<S,
0
Therefore we have

sup
8zE>0

é f 5 T)INRO; A)x — 2ldp “

£
= sup, AR )] f (Toyadn — x| = [ f Teryady — |

+ ()\,RO\ A)x —x) H

<IAR(; A) rgfgggon é f é Ty — x” +,5up ﬂ ; f Ty — x"

+ | ARN; Ax — x|

SWM+1E+ [ ARMN; A)x — x|,

while
3
sup || —g— f TaARO; A)x — x]dnU
. . L
= sup 1 3+ f T)IARO; A)x — xldn |] + sup H - Sf TINR(; A)r — x]dn\[

0o

< 1 ‘ . A )

= | 1 T(n) 1 . ]

(Sof | Ttpfidn + sup)| ()l AR\ A)2 = x,
0

so that

NORO: A —x) = s&,“ -; f T)IARO; A)x — x1dy {
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sor+ve+ (14 _f | T dn + $up [ T4) | ) <[ AROV: A)x = 1.

Since li_x;n IAR(\; A)x — x[! = 0 by our assumptions, we have
lzm sup NOWR(L; A)x— x) < (M + 1)€.
Seo

Since & is arbitrary and R(\; A)x € D(A) for x€ 3, we have proved the
condition (v), and hence the proof of the theorem is complete.
We shall prove the converse of Theorem 1 which is stated as follows.

THEOREM 2. Let 3 be a. linear subset in X and. A be a.linear operator on
S, into itself satisfying the conditions (i)-(iv). Further we assume that N(x)
defined by (2.9) is finite valued, that 3, is a Banach space with the norm N(x)
and that D(A) is dense in 3, with the norm N(x).

Then there exists a semi-group of operators {TNE); 0 < & < oo} such that
T(E) satisfies the conditions (a)-(c) and is strongly Abel-ergodic to the identily
at zero, that A is ils inifinitesima:r generator and 3, is the (C,1)-continuity set
of {T(E); 0 < E < o} and finally that (2.6) is satisfied.

Proor. For any positive number A, we put

2.13) TNE) = expE( — A + MR(\; A)) = exp( — 7\6)2(&) MR\ AL

By the condition (i) we get the second resolvent equation
R\; A)—R(p; A)= — (A — wR(\; A)R(p; A),
so that
RE-D(\; A)x= (— 1)1k — D R\; A)I*x,
while by the definition of F(A, x)

C)

(= 1)s-IF®=D(, x) = f e~ MEY-1f(E, x)dE,
0
hence we have

@.18) DR A< (k f e-ME-ITE OHE R = 1,2, .....
AE, R(L; A)%)

x|
[INROA; AR A)|S My, k=1,2,....,

If we denote the upper bound on & € (0, ) of sup by M, then
so that
(2.15) | TMER1; A)=M, =1

By the conditions (i) and (iii)

IANRA; Ax — x| = || R(x; A)Ax| < %H Azx|, x€ D(A),
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hence we get by the conditions (ii) and (iii)
(2.16) I)gn IARA; A)x— x| =0
for all xe€ X.

Since R(A; A) commutes with R(\/; A) for any positive numbers A, N/
by the second resolvent equation, it follows that

£
T\&)x — Th(E)x = f *5; [T\(E — ) TN(7)xldr
0

£
= f Ti(E — )TN — A + AR\ ; A) — (— N + N2R(\ ; A)}rxdr.
0

Then we have by the condition (i) 7
TNENR(; A)x — Th(ENR(1; A)Px

£
= f Ta(E — )R ; A)TATRA; AARMN; A)Ax — MR ; A)Axld T
0

for x € D(A), so that by (2.15)
| TNENRA; A)*x — Ta(ENR(A; A)lx|
< M: E|ARM; A)Ax — NR(O ; A)Ax), x¢& D(A).
From the above inequality and (2.16), }\im T,(E)x exists for each x € [R(1;
Seo
A)A[D(A)]. The condition (ii) implies that R(1; A)D(A)] is dense in R(1; A)
[X], and, since D(A)< R(1; A)X], R(1; A)[X] is dense in X, hence R(1; A)
[D(A)] is dense in X. Accordingly, if x € X, there exists a sequence {x,}
(<R@1; A)[D(A)]) such that x> x as n > co. If we put y = R(1; A)x, then
| T\E)y — Ta(&) y| = | TAERD; A)x — TH(E)R(1; A)x|
= TWERQA; A)x — TERA; A)xn) +  TAE)R1;-A)xy — Ta(E)R1; A)xy |
+ [ TW(ERA ; A)xn — THAE)R(1: A)x||

<2My | x— x|+ | TAAE)R(; A)xtn — T\ (E)R(1; A)xl,
where the second term of the right hand sidetends to zeroasA > oo, N D>
since R(1; A)x, € [RL;A)PID(A)] and the first term tends also to zero
with 1/#, so that Alim Ty(E)x exists for all x € R(1; A)[X]. Hence we may

S

define T(£), 0< &£ < o, by
(2.17) TEx = 11;33 TNE)x
for all x€ R(1; A)X].

If we denotefgup fi€) by M, then, for any fixed numbers & and & where

20> 0

0< & < 8, we have

[ evpoe maes X [ evengde i x < w20

S5’ 8

hk
(B —1)!
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for all x € X, and if 2= A9,

57 AS/
Kk'

e~ MEgk-1 M, ~Egk—14E o || !
(k—1)10f -1 E, R(1; A)dE = - 1),f e tge-1dE . | x|

_— L P
T—-a’k
for all x € X, where g = §'/8. Accordingly, for any positive number ¢,
there exists a positive number A(&) such that
MR A)R(1; A)xll< Ms [ R(L; A)x||+ &l %]
for E= A8, A >N\ f€) and x € X.

We now put N = [AgE]" for any fixed numbers ¢’,g where 0< ¢'< ¢<
1, then we have by the above inequality with & = g, & = ¢’¢

<

‘e_h 2 @‘) SR AFIR(L; A)x[[<Mq,5]R(1 Al + &%/,

k=N+1
while

“ Asz(f)») RO AR ; A)x ” <M, x| e 52 (7\5')‘7

M, %]

< r ,,
= A1 = @
by Hille’s lemma ([1], Lemma 9.3.2), and whence

| TNORLGA S My’ R Ay + (& + gggirs) - 1]

for all x € X. Passing to the limit with A we get
(2.18) (TEx | =M, ¢ | %]
for x € R(1; A)X]. Hence T(£) is a bounded linear operator defined on the

dense set R(1; A)[X] in X, so that T(£) can be extended to a bounded linear

operator on X. We denote again such an extension by 7(£). Then we have
by (2.18)

(2.19) 1TE) | < My,

and T(£) satisfies the condition (c) by the definition of M,
It follows from (2.15) and (2.17) that

lim TNETwm)x = TE)Tx, x € [RA; ANLX],

and that [R(1; A)]?[X] is dense in X, so that {T(#); 0 < & < oo} satisfies the
condition (a).

3

From T\&)x — x= f

0

4 [T\(T)x]dr we have
dr

3) For the proof of this inequality see W. Feller ([7], (3. 22)).
4) [Agé] denotes the integral part of agt.
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£
TWBR; A — R A= [ TNORL: ARO AALIE
0
for x € D(A). Passing to the limit with A one obtains
(2.20) TER1; A)x — R1; A)x = f T¢)R1; A)Axd¢
0

for x € D(A). We have
(2.21) 1£1_r)101 TER1; A)x=R1; A)x, x€ X,

according to | T(E)R(1; A)| < M, and the condition (ii). Then T(§) is strongly
continuous in< 0, o > and a fortiori is strongly measurable. (We note
that the strong measurability of 7(£) is obvious from the construction of
T(¢), and then T(&) is also strongly continuous in < 0, co >). Thus T(§)
satisfies the condition (b).

By (2.13)

1

f | TE) | dE

0

o 1

1 A - xk )'k Ak
S 0= N B G T | e,
k= 0

0

and
co 1 o
f e-—)\ﬂﬂk—lf'(,,])dn: f e—)\vnvc—lﬂn)d,” + f e—mn'c-l f(n)dn
0 0 1
' E— 1)
< f e~ My=1 f(n)dn + M, (;_k)
0
1-Aa;‘rcd< w—Aglcd_A
e™MEF dE = eMEC dE = Ak+L?
0 0
so that

1

f | TNE) |dE = %(1 —e M)+ f fin)dn + M.
0 0

By the definition of T(¥)
| 7®) | < lim inf | T\(®),

hence we have by Fatou’s theorem
1 1 1
em [ imeasstimint [ 110 [ Adn+ M <
0 0 0

Accordingly, if we define R(\; A*), for each A such that RQ\) >0, by
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(2.23) RK\; A%)x = [ e~MT(E)x dE
0
for all x € X, and if we denote the (C,1)-continuity set of {T(£); 0 < £ < oo}
by 3* and its infinitesimal generator by A* then, for each A such that R(\)
>0, we have the following relation similarly as in the proof of Theorent
1(i):
@.24) {(7\ — AMRY(\; A)x==x, x& 3¥
‘ R*(\; AYA — A®x=1x, x& D(A*).
where D(A*) denotes the domain of A*.
From (2.20) and (2. 21)

lim % [TERQ; A)x — R(1; A)x] = R(1; A)Ax = AR(; A)x

for x € D(A), and furthermore R(1; A)Ax € 3* hence we have R(1; A)D
(A)]D(A*) and

(2.25) AxR(1; A)x = AR(1; A)x, x & D(A).
Since R*(A; A*) = R(»; A) for x € D(A) by the condition (i) and (2. 25), we get
(2.26) R*(\; A*)= R(\; A)

for each A\ such that R(\) >0. It follows hence from (2.16), (2.22) and (2. 26)
that T(&) is strongly Abel-ergodic to the identity at zero.
Further we obtain similarly as in the proof of Theorem 1(v) that Sk is

a Banach space with the norm N*(x) defined by N*(x) = sgp \ | L / T (n)xd'))

ol

D(A*) is dense in 3* with the norm N*(x) and that

N+(x) = sup 1]%%;&1\?*@; Az, x € 3
i=1 !

k=1,A

Accordingly, by (2.26),

k
(2.27) Ne() = sup |+ SN RO A x|, xe 3
i=1 '
Now
DAY=z N X

by the condition (i), (2.26) and R*(1; A*)[X] < 3,
DA*)c3*N 3
by (2.24), (2.26) and R(1; A)XX] < 3, and further N(x) = N*(x) for x € 3*
S. Since D(A) is dense in 3, with the norm N(x) and D(A*) is dense in 3*
with the norm N*(x), we get
=3,

Finally we obtain from (2.24), the condition (i) and the strong Abel-

ergodicity of 7(¥) that
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D(A*) = D(A), A = A*
Thus it follows that the given operator A is the infinitesimal generator of
{T(&),0 < & < o0}, that 3 is the (C,1)-continuity set of {T(£€): 0 < £ < o} and
that (2.6) is satisfied. This completes the proof.

3. Semi-group of operators strongly (C,1)-ergodic at zero.
DEFINITION 4. T(£) is said to be strongly (C,1)-ergodic to the identity at
zero if it satisfies (2.2) and the following condition

£
3.1) lim % Of Tin)xdn = %

for all x € X.

In this case the (C, 1)-continuity set of {7(£); 0 < £ < =} coincides with
the whole space X, so that our definition of the infinitesimal generator (see
Definition 3) becomes the ordinary one, further the norm N(x) defined by
(2.6) is equivalent to the original one.

In fact, by (3.1) and the condition (c), there exists a finite positive
constant- M such that

£
sup‘ —1—f T(r;)xdﬁ“ =M'x)
o | & y

for all x € X, while by (3.1)
£
] 1
%< sup [} £ f T(n)xan,
0
so that we have
£
3.2) %)= sup h % f Tlriady | = NG < M| 2!
0

for all x € X.
We denote by A the infinitesimal generator of {T(§); 0 < £ € =} and
by D(A) the domain of A.

THEOREM 3. Let {T(£); 0 < £ < o} be a semi-group of operators satisfying
the assumptions (a)-(c) and be strongly (C, 1)-ergodic to the identily at zero.
Then

(i¥) A is a closed linear operator and its spectrum is located in R(\) <0;

(ii’) D(A) is a dense linear subset in X;

(iii’) there exists a finite positive constant M such that

sup
k=1,A>0

.
LS 0RO Al = M #
i=1 !

for all x€ X;
(iv') the condition (iv) is satisfied.
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Proor. Since ;%—T(&)x = T(E)Ax for x € D(A), we have

&

Suppose that {#,} is a sequence in D(A) and that x, -» x, Axs > y. Formula
(3.3) holds for x= x, so that

£
(3.3) e —n= —;_‘ f T(n)Axdy, %€ D(A).
0

{4
L rrem, —m)= - [ T(n)Axudy.
£ 5,

Passing to the limit with # one obtains
1 1
L@ —x = % [ Towan,
£ £

Because of (3.1) the right hand side tends toy when & > 0. Hence Ax exists
and equals to y, so that A is a closed linear operator.
We note next that the (C,1)-ergodicity implies the Abel-ergodicity and
that 3 = X, then we get the conclusions (i)-(iv) by (3.2) and Theorem 1.
The converse of this theorem is stated as follows.

THEOREM 4. Let A be a closed linear operator on X into itself satisfying
the conditions (i’)-(iv’). Then there exists a semi-group of operators {T(€); 0 <
£ < oo} such that T(&) satisfies the conditions (a)-(c) and is strongly (C, 1)-ergodic
to the identity at zero and that A is its infinitesimal generator.

Proor. If we denote the resolvent of A by R(\; A) for each A such that
R(\) >0, we can derive the first resolvent equation by the assumption (i).
In virtue of the assumption (iii’) we get AR\ ; A)i =< M, so that one obtains
similarly as (2.16) the following relation

lim' ARA; A)x—x) =0
Ao
for all x € X. From this we obtain

I k
%)= sup | ;‘Z[xR(x; Alx| = Mix|
i=1

k=1, A>0)

for all x< X, and therefore if we take the whole space X as 3, our
assumptions imply those of Theorem 2. Thus there exists a semi-group of
operators {T(£); 0 < & < co} such that T(€) satisfies the conditions (a)-(c) and
is strongly Abel-ergqdic to the identity at zero, that the whole space X is
the (C, 1)-continuity set of { {(§); 0 < £ < }and that A is its infinitesimal
generator. Hence it follows that 7(§) is strongly (C, 1)-ergodic to the identity
at zero. This completes the proof.
From Theorems 3 and 4 we get the following corollary.

CoOROLLARY. A necessary and sufficient condition that a closed linear operatcr
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A becomes the infinitesimal generator of a semi-group of operators {T(£); 0 <
& < o} satisfying the conditions (a), (¢) and gnon T(E)x = x for all x € X, is that
>
(i”) the conditions (') and (i”) are satisfied ;
(ii”) there exists a finite positive constant M such {hat
[INR(N; A =M

for n>0and k=12, .....

Proor. Since T(£) is strongly continuous at & = 0, where 7(0)= I (=

the identity), there exists a finite positive constant M such that [ T(&)' =M
for 0 <& < . Therefore we get by (2.11)

o e A s MV [ g w2 mix
: 0
for all x€ X and k= 1,2,..... Thus the necessity of the conditions is

established by Theorem 3 and (3. 4).

If we put fi§ x)= M «x!, then the conditions (i) and (ii”) imply the
assumptions of Theorem 4, while we get | T(E)| < M for 0 < &< o from
the condition (ii”) and the construction of T(£). (see (2.13) and (2.17)). Thus
the sufficiency of the conditions is established by use of Theorem 4.

The author expresses his hearty thanks to Prof. Shigeki Yano who gave
kim many remarks and suggestions.

[After this paper was written up, the author found the abstract of
Phillips’ paper [8], in which he writes that the necessary and sufficient
conditions that a closed linear operator be the c.i.g. (the smallest closed
extension of the infinitesimal generator) of a semi-group of operators which
is strongly Abel (or Cesaro) ergodic (summable) to the identity at zero are
obtained. But the detail seems not yet to be published].
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ADDED IN ProOF. (June 5, 1954). R. S. Phillips’ paper (An inversiot
formula for Laplace transforms and semi-groups of linear operators, Ann.

of Math., vol. 59(1954)) has appeared. Under the condition f "T(E) | dE < .
0

instead of our condition (c), he has obtained a necessary and sufficient
condition in order that a closed linear operator be the complete infinitesimal
generator (the smallest closed extension of the infinitesimal generator) of a
semi-group of operators strongly Abel ergodic to the identity at zero. But
our results (Theorems 1 and 2) are the necessary and sufficient condition in
order that a linear operator (not necessary closed) be the infinitesimal
generator (in the sense of Def. 3) of a semi~group of operators strongly Abel
ergodic to the identity at zero. Our results in the Cesaro case are essentially
identical to the Phillips’.





