ON THE REPRESENTATIONS OF OPERATOR ALGEBRAS, II

Zirô Takeda

(Received September 11, 1954)

1. Introduction. When we intend to represent a B^* -algebra as an operator algebra on a Hilbert space H, we must construct the Hilbert space H at first. In the previous paper [9], we investigated the general method for the construction of H and especially pursued the space on which a given B^* algebra is represented as a W^* -algebra. In this paper we clarify the relations between W^* -algebras which are generated from C^* -representations of a given B^* -algebra A on various underlying spaces (a C^* -representation means a faithful representation as a uniformly closed operator algebra on a certain Hilbert space). A distinguished state of A with respect to a C^* -representation $\{A^{\#}, H\}^{1}$ is a state ρ which permits an expression

(1)
$$\rho(x) = \sum_{i=1}^{\infty} \langle x^{\sharp} \varphi_i, \varphi_i \rangle$$

where $x^{\text{#}}$ is the representative operator for $x \in A$ and φ_i (i = 1, 2, ...) are elements in the underlying space H which satisfy the condition

(2)
$$\sum_{i=1}^{n} |\varphi_i|^2 = 1.$$

Let $S(A^{\#_1}, H_1)$ and $S(A^{\#_2}, H_2)$ be the sets of all distinguished states with respect to the C*-representations of A on H_1 and on H_2 respectively and M_1, M_2 be the W*-algebras generated from these C*-representations. Then the main assertion in this paper is following: If $S(A^{\#_1}, H_1) \supset S(A^{\#_2}, H_2)$, there exists a normal homomorphism of M_1 onto M_2 and if $S(A^{\#_1}, H_1) = S(A^{\#_2}, H_2)$, H_2 , M_1 is algebraically *-isomorphic to M_2 . As an application, an alternative proof of Y. Misonou's theorem [4] is given in the last section of this paper, which shows the space-free character of direct product of W*-algebras.

2. Weak closures of operator algebras. For every state ρ of a B^{*-} algebra A, we can construct a representation A_{ρ}^{\pm} of A on a Hilbert space H_{ρ} by the well known method. By a_{ρ}^{\pm} we denote the representative operator on H_{ρ} for $a \in A$. Let ρ , σ be two states of A and $\{A_{\rho}^{\pm}, H_{\rho}\}$, $\{A_{\sigma}^{\pm}, H_{\sigma}\}$ be representations of A on Hilbert spaces H_{ρ} and H_{σ} constructed by ρ and σ respectively. If there exists an invariant subspace in H_{ρ} on which the restriction of A_{ρ}^{\pm} is unitarily equivalent to the representation $\{A_{\sigma}^{\pm}, H_{\sigma}\}$, we define an order for ρ and σ by $\rho > \sigma$. Then the set of all distinguished states $S(A^{\pm}, H)$ with respect to a C^* -representation $\{A^{\pm}, H\}$ of A has the following properties [9, Theorem 1]:

(i) $S(A^{\#}, H)$ is weakly dense in the state space Ω of A,

¹⁾ The author called it a strongest continuous state with respect to a C^* -representation in the previous [9].

- (ii) $S(A^{\#}, H)$ is closed by the norm topology of Ω .
- (iii) $S(A^{\#}, H)$ is convex,
- (iv) if $\rho \in S(A^{\#}, H)$ and $\rho > \sigma$, then $\sigma \in S(A^{\#}, H)$.

Conversely, if a subset S in the state space Ω satisfies the condition (i)-(iv), we can construct a C*-representation of A for which the set of all distinguished states of A coincides with S. Let R be a collection of states of A and $\{A_{\rho}^{*}, H_{\rho}\}$ be the representation of A by $\rho \in R$. The *representation* $\{A_{R}^{*}, H_{R}\}$ of A by R is the representation on the direct sum H_{R} of H_{ρ} ($\rho \in$ R) which coincides with $\{A_{\rho}^{*}, H_{\rho}\}$ on each component space H_{f} . That is, for $a_{R}^{*} \in A_{R}^{*}$ and $\varphi_{R} = (\dots, \varphi_{\rho}, \dots, \varphi_{\rho}, \dots) \in H_{R}, (\dots, \rho, \dots, \rho', \dots, \in R)$

(3)
$$a_{\scriptscriptstyle R}^{\sharp}\varphi_{\scriptscriptstyle R} = (\ldots, a_{\scriptscriptstyle \rho}^{\sharp}\varphi_{\scriptscriptstyle \rho}, \ldots, a_{\scriptscriptstyle \rho'}^{\sharp}\varphi_{\scriptscriptstyle \rho'}, \ldots) \in H_{\scriptscriptstyle R}.$$

Especially, when R is all states of A, we describe the above representation by $\{A_{\alpha}^{*}, H_{\alpha}\}$.

THEOREM 1.²⁾ Let $\{A^{\#_1}, H_1\}$, $\{A^{\#_2}, H_2\}$ be two C*-representations of a B*algebra A on Hilbert spaces H_1 and H_2 respectively and M_1 , M_2 be the weak closures of these operator representations, furthermore, $S(A^{\#_1}, H_1)$, $S(A^{\#_2}, H_2)$ be the sets of all distinguished states with respect to these C*-representations. Then there is an algebraical*-isomorphism η from M_1 onto M_2 such that $\eta(a^{\#_1})$ $= a^{\#_2}$ if and only if $S(A^{\#_1}, H_1) = S(A^{\#_2}, H_2)$.

PROOF. Let S_1, S_2 be the sets of all normale states of M_1 and M_2 respectively. Then, since $A^{\#_1}$ is weakly dense in M_1 every state in $S(A^{\#_1}, H_1)$ can be uniquely extended to a state in S_1 , hence $S(A^{\#_1}, H_1)$ can be identified with S_1 . Similarly $S(A^{\#_2}, H_2)$ is identified with S_2 . Since the normality of a state is purely algebraic property, if M_1 is algebraically *-isomorphic to M_2 satisfying $\eta(a^{\#_1}) = a_{\#_2}, S_1 = S_2$. Hence, in this case, $S(A^{\#_1}, H_1) = S(A^{\#_2}, H_2)$.

Next, we construct the representation $\{M_{1S_1}^{\#}, H_{S_1}\}$ of M_1 by the set of states S_1 . As S_1 is weakly dense in the state space of M_1 , this representation is a C^* -representation of M_1 . Moreover, as each state σ in S_1 is normal, the representation $\{M_{1\sigma}^{\#}, H_{\sigma}\}$ of M_1 by the state σ is weakly closed. Hence $M_{1S_1}^{\#}$ on H_{S_1} is weakly closed. For if a directed set $m_{\alpha S_1}^{\#}$ ($\alpha \in I$) in $M_{1S_1}^{\#}$ converges weakly to m_0 and $m_{\alpha S_1}^{\#} \leq m_0$, a subfamily $m_{\alpha'}(\alpha' \in I')$ in m_{α} ($\alpha \in I$) converges weakly to m in M_1 as: M_1 is weakly closed. Put $m_{S_1}^{\#}$ be the image of m in $M_{1S_1}^{\#}$ then clearly $m_{S_1}^{\#} = m_0$. We notice the representation $\{M_{2S_2}^{\#}, H_{S_2}\}$ of M_2 by S_2 , which is weakly closed and contains the representation $\{M_{2S_2}^{\#}, H_{S_2}\}$ of M_2 by S_2 , which is weakly closed and contains the representation of A is unitarily equivalent, hence the weak closure of these representations of A must be unitarily equivalent each other. That is, $M_{1S_1}^{\#}$ is unitarily equivalent to $M_{2S_2}^{\#}$. This assures the algebraic (normal) isomorphism between M_1 and M_2 .

²⁾ This theorem can be considered as an extension of the WECKEN-PLESSNER-ROKHLIN Theorem for non-commutative operator algebras. C. f. M. NAKAMURA and Z. TAKEDA. Normal states of commutative operator algebras, this journal Vol. 5 (1953) p. 116 Theorem 5 and Proposition 7.

Z. TAKEDA

LEMMA 1. Let M be the weak closure of a C*-representation A* of a B*algebra A on a Hilbert space H and σ_{φ} be a state of A defined by an element φ of H with norm unity. Then the restriction of M on $[M\varphi]$, the invariant subspace spanned by $m\varphi (m \in M)$, is unitarily equivalent to the weak closure of the representation $\{A_{\pi_{\varphi}}^{*}, H_{\sigma_{\varphi}}\}$ of A by the state σ_{φ} .

PROOF. As $A^{\#}$ is dense in M by the strong topology, for any $m \in M$ and $\varepsilon > 0$, there exists $a^{\#} \in A^{\#}$ such as $|(m - a^{\#})\varphi| < \varepsilon$, hence $[A^{\#}\varphi] = [M\varphi]$.

 A^{\sharp} is weakly dense in M on the space $[M\varphi]$. As the restriction of A^{\sharp} on $[A^{\sharp}\varphi]$ and the representation of A by the state σ_{φ} are unitarily equivalent, the weak closures of these algebras are unitarily equivalent each other. Hence the lemma is proved.

THEOREM 2. Let $\{A^{\#_1}, H_1\}$, $\{A^{\#_2}, H_2\}$, M_1, M_2 , $S(A^{\#_1}, H_1)$ and $S(A^{\#_2}, H_2)$ be same as in Theorem 1. Then if $S(A^{\#_1}, H_1) \supset S(A^{\#_2}, H_2)$, there exists a normal homomorphism h from M_1 onto M_2 such as $h(a^{\#_1}) = a^{\#_2}$ for all $a \in A$.

PPOOF. Put S_1, S_2 be the sets of all normal states of M_1 and M_2 respectively. Then by Theorem 1, it is sufficient to prove only for the representations $(M_{1S_1}^{\#}, H_{S_1})$ of M_1 and $(M_{2S_2}^{\#}, H_{S_2})$ of M_2 constructed by S_1 and S_2 respectively. As $S(A^{\#_1}, H_1) \supset S(A^{\#_2}, H_2)$, by Lemma 1 and the constructions of H_1 and H_2 , there exists an invariant subspace in H_{S_1} on which the restriction of the representation $(A_{S_1}^{\#}, H_{S_1})$ of A is unitarily equivalent to the representation $(A_{S_2}^{\#}, H_{S_2})$. Since $M_{1S_1}^{\#}$, $M_{2S_2}^{\#}$ are weak closures of $A_{S_1}^{\#}$ and $A_{S_2}^{\#}$ on H_{S_1} and H_{S_2} despectively, $M_{2S_2}^{\#}$ on H_{S_2} is unitarily equivalent to the restriction of $M_{1S_1}^{\#}$ on the invariant subspace in H_{S_1} . Thus we get the desired conclusion.

COROLLARY. Let W be the weak closure of the representation A_{Ω}^{*} of a B*algebra A on the Hilbert space H_{Ω} and M be the weak closure of a C*-representation A* of A on a Hilbert space K. Then there exists a normal homomorphic mapping of W onto M.

Thus W is a W^* -algebra having a character to be named the universal weak closure of A. We notice here that the above stated W has been used in the proof of Sherman's theorem in [8]. W, considered as a Banach space, is isomorphic to the double conjugate space of A.

As well known [1], [6], the ring of all bounded operators on a Hilbert space is isometrically isomorphic as a Banach space to the double conjugate space of the C^* -algebras composed of all completely continuous operators on that space. Then, does there exist for every W^* -algebra a C^* -algebra whose double conjugate space should be isomorphic to the W^* -algebra considered as a Banach space? The answer is negative even for factors as shown in the following:

PROPOSITION 1. If a factor considered as a Banach space is isometrically isomorphic to the double conjugate space of a C^* -algebra, the factor is of type I.

PROOF. Let Π be the set of all pure states of a C^* -algebra C and M be the weak closure of the representation $(C_{\Pi}^{\texttt{H}}, H_{\Pi})$ of C by Π . Then by the definition of the representation $(C_{\Pi}^{\texttt{H}}, H_{\Pi})$, the representation $(C_{\pi}^{\texttt{H}}, H_{\pi})$ by a state π in Π can be considered as a restriction of $C_{\Pi}^{\texttt{H}}$ on an invariant subspace H_{π} in H_{Π} and the restriction of M on H_{π} is the weak closure of $C_{\pi}^{\texttt{H}}$. As π is a pure state, $C_{\pi}^{\texttt{H}}$ is irreducible on H_{π} , hence the restriction of M on H_{π} and e_{π}^{0} the smallest projection in the centre of M such as $e_{\pi} \leq e_{\pi}^{0}$. Then $e_{\pi} \in M'$ and, as well known [5], Me_{π} is algebraically *-isomorphic to Me_{π}^{0} . Thus Me_{π}^{0} is of type I. As the supremum of $e_{\pi}^{0}(\pi \in \Pi)$ is 1, M is of type I.

If a factor A as a Banach space is isometrically isomorphic to the double conjugate space of a C^* -algebra C, A is isomorphic or anti-isomorphic to the weak closure W of A_{Ω}^* on H_{Ω} [3; Theorem 14]. But as the type of factor is invariant for anti-isomorphism, we can assume A is isomorphic to W. Then by Theorem 2 there exists a normal homomorphism of A onto M. But there is no normal homomorphism except an isomorphism for a factor since every factor has no non-trivial weakly closed two-sided ideal. Therefore, if exists such a C^* -algebra, A must be of type I. q. e. d.

3. Direct product of operator algebras. T. Turumaru has defined the direct product $A_1 \times A_2$ of two C*-algebras A_1, A_2 and has shown the uniqueness of the product [10]. This means that the algebraical structure of the product does not depend on the choice of the underlying spaces on which the component algebras act as operators. For two W*-algebras A_1 and A_2 on Hilbert spaces H_1 and H_2 respectively, the C*-direct product of A_1 and A_{2} in the sense of Turumaru can be seen as a C^{*}-algebra on the Hilbert space $H_1 \times H_2$. Hence its weak closure on $H_1 \times H_2$ is naturally considered as a direct product of two W^* -algebras A_1 and A_2 . In the followings we denote this product by $A_1 \otimes A_2$. Recently Y. Misonou has proved that the algebrical structure of $A_1 \otimes A_2$ does not depend on the underlying spaces H_1 and H_2 similarly as the C*-algebra case [4]. That is, if A_1, A_2 are represented as W^* -algebras on another Hilbert spaces K_1, K_2 respectively, the direct product $A_1 \otimes A_2$ on $H_1 \times H_2$ is algebraically *-isomorphic to the product on $K_1 \times K_2$. As an application of Theorem 1, we give here an alternative proof of this theorem. T. Turumaru has given an another proof of Misonou's theorem depending on the cross-space theory [10].

Let ρ and σ be states of C*-algebras A and B respectively then $\rho \times \sigma$ is a state on $A \times B$ such as

$$(
ho imes \sigma) \left(\sum_{k=1}^n a_k imes b_k
ight) = \sum_{k=1}^n
ho(a_k) \sigma(b_k)$$

for elements of the form $\sum_{k=1}^{k} a_k \times b_k$ in $A \times B$ [10].

LEMMA 2. If A, B are C*-algebras with 1 and acting on Hilbert spaces H, K respectively, ρ, σ are distinguished states of A on H and of B on K

Z. TAKEDA

respectively, then $\rho \times \sigma$ is a distinguished state of $A \times B$ acting on $H \times K$.

PROOF. By the definition of the distinguished state, there exist two sequences $\{\varphi_i\}$ and $\{\psi_j\}$ of elements in H and K respectively satisfying

$$\rho(a) = \sum_{i=1}^{\infty} \langle a\varphi_i, \varphi_i \rangle \quad \text{for} \quad a \in A \text{ and } \sum_{i=1}^{\infty} |\varphi_i|^2 = 1,$$

$$\sigma(b) = \sum_{j=1}^{\infty} \langle b\psi_j, \psi_j \rangle \quad \text{for} \quad b \in B \text{ and } \sum_{j=1}^{\infty} |\psi_i|^2 = 1.$$

Then

$$egin{aligned} &(oldsymbol{
ho} imes\sigma)igg(\sum_{k=1}^n a_k imes b_kigg) = \sum_{k=1}
ho(a_k)\sigma(b_k)\ &=\sum_{k=1}^n\sum_{i=1}^\infty\sum_{j=1}^\infty a_k \varphi_i, arphi_i > < b_k \psi_j, \psi_j >\ &=\sum_{i=1}^\infty\sum_{j=1}^\infty\sum_{k=1}^n < a_k arphi_i imes b_k \psi_j, \ arphi_i imes\psi_j >\ &=\sum_{i=1}^\infty\sum_{j=1}^\infty < \Big(\sum_{k=1}^n a_k imes b_k\Big)arphi_i imes\psi_i. arphi_i imes\psi_i > \end{aligned}$$

As $\rho \times \sigma$ is a state of $A \times B$

$$(
ho imes\sigma)(1 imes 1)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\left|arphi_i imes\psi_i
ight|^2=1.$$

 $A \odot B$, the set of all elements of the form $\sum_{k=1}^{k} a_k \times b_k$, is uniformly dense in $A \times B$. Hence for every c in $A \times B$,

$$(
ho imes\sigma)(c)\,=\,\sum_{i\,=\,1}^\infty\sum_{j=1}^\infty\,< c(arphi_i imes\psi_j), \;\;arphi_i imes\psi_j>.$$

That is, $\rho \times \sigma$ is a distinguished state of $A \times B$ acting on the Hilbert space $H \times K$.

LEMMA 3. Let ρ and σ be states of $[C^*$ -algebras A and B and $\{A_{\rho}^{*}, H_{\rho}\}$, $\{B_{\sigma}^{*}, H_{\sigma}\}$ be the representations of A and B by states ρ and σ respectively. Then the representation of $A \times B$ by the state $\rho \times \sigma$ is unitarily equivalent to the C^* -direct product $A_{\rho}^{*} \times B_{\sigma}^{*}$ on $H_{\rho} \times H_{\sigma}$.

When we construct a representation of A by a state σ , there exists a linear mapping from A into the representative space H_{σ} . By a_{σ}^{θ} denote the image of $a \in A$ by this mapping.

PROOF. For elements $\sum_{i=1}^{m} a_{\rho}^{\theta} \times b_{i\sigma}^{\theta}$, $\sum_{j=1}^{n} a_{j\rho}^{\theta} \times b_{j\sigma}^{\theta}$ in $H_{\rho} \times H_{\sigma}$, $< \sum_{i=1}^{m} a_{i\rho}^{\theta} \times b_{i\sigma}^{\theta}$, $\sum_{j=1}^{n} a_{j\rho}^{\theta} \times b_{j\sigma}^{\theta} > = \sum_{i=1}^{m} \sum_{j=1}^{n} < a_{i\rho}^{\theta} \times b_{i\sigma}^{\theta}$, $a_{j\rho}^{\theta} \times b_{j\sigma}^{\theta} >$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} < a_{i\rho}^{\theta}, \ a_{j\rho}^{\theta} > < b_{i\sigma}^{\theta}, \ b_{j\sigma}^{\theta} > = \sum_{i=1}^{m} \sum_{j=1}^{n} \rho(a_{j}^{*}a_{i})\sigma(b_{j}^{*}b_{i}).$$

On the other hand,

$$(\rho \times \sigma) \left(\left(\sum_{j=1}^{n} a_j \times b_j \right)^* \left(\sum_{i=1}^{m} a_i \times b_i \right) \right)$$

= $(\rho \times \sigma) \left(\left(\sum_{j=1}^{n} a_j^* \times b_j^* \right) \left(\sum_{i=1}^{m} a_i \times b_i \right) \right)$
= $(\rho \times \sigma) \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_j^* a_i \times b_j^* b_i \right)$
= $\sum_{i=1}^{m} \sum_{j=1}^{n} \rho(a_j^* a_i) \sigma(b_j^* b_i).$

Hence the correspondence $\left(\sum_{i=1}^{m} a_i \times b_i\right)_{\rho \times \sigma}^{\theta} \in H_{\rho \times \sigma}$ to $\sum_{i=1}^{n} a_{\cdot \rho}^{\theta} \times b_{i\rho}^{\theta} \in H_{\rho} \times H_{\sigma}$ can be extended to an isometric transformation u between $H_{\rho \times \sigma}$ and $H_{\rho} \times H_{\sigma}$.

Furtheremore, since

$$< (x_{\rho}^{\text{\tiny \ensuremath{\mathbb{H}}}} \times y_{\sigma}^{\text{\tiny \ensuremath{\mathbb{H}}}}) \sum_{i=1}^{m} a_{i\rho}^{\theta} \times b_{i\sigma}^{\theta}, \quad \sum_{j=1}^{n} a_{j\rho}^{\theta} \times b_{j\sigma}^{\theta} >$$

$$= < \sum_{i=1}^{m} (xa_{i})_{\rho}^{\theta} \times (yb_{i})_{\sigma}^{\theta}, \quad \sum_{j=1}^{n} a_{j\rho}^{\theta} \times b_{j\sigma}^{\theta} >$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \rho(a_{j}^{*} xa_{i}) \sigma(b_{j}^{*} yb_{i})$$

$$= (\rho \times \sigma) \left(\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{j}^{*} xa_{i}) \times (b_{j}^{*} yb_{i}) \right)$$

$$= (\rho \times \sigma) \left(\left(\sum_{j=1}^{n} a_{j} \times b_{j} \right)^{*} \left(\sum_{i=1}^{m} xa_{i} \times yb_{i} \right) \right)$$

$$= < (x \times y)_{\rho \times \sigma}^{\text{\tiny \ensuremath{\mathbb{H}}}} \left(\sum_{i=1}^{m} a_{i} \times b_{i} \right)_{\rho \times \sigma}^{\theta}, \quad \left(\sum_{j=1}^{m} a_{j} \times b_{j} \right)_{\rho \times \sigma}^{\theta} > ,$$

$$(x \times y)_{\rho \times \sigma}^{\text{\tiny \ensuremath{\mathbb{H}}}} u^{-1}(x_{\rho}^{\text{\tiny \ensuremath{\mathbb{H}}}} \times y_{\sigma}^{\text{\tiny \ensuremath{\mathbb{H}}}})u.$$

As the elements of the forms $\sum_{i=1}^{m} (x_i \times y_i)_{\rho \times \sigma}^{\#}$, $\sum_{i=1}^{n} x_{i\rho}^{\#} \times y_{i\sigma}^{\#}$ are uniformly dense subalgebra in $(A \times B)_{\rho \times \sigma}^{\#}$, $A_{\rho}^{\#} \times B_{\sigma}^{\#}$ respectively, the proof is easily concluded.

LEMMA 4. If a Hilbert space H is a direct sum of subspaces H_{α} ($\alpha \in I$) and a Hilbert space K is a direct sum of subspaces K_{β} ($\beta \in J$), then the direct product space $H \times K$ is the direct sum of subspaces $H_{\alpha} \times K_{\beta}$ ($\alpha \in I$, $\beta \in J$).

LEMMA 5. Let $R = \{\rho_i, (i \in I)\}$ and $S = \{\sigma_j, (j \in J)\}$ be collections of states of a C^{*}-algebra A on a Hilbert space H and of a C^{*}-algebra B on a Hilbert space K respectively such that the C^{*}-algebra A acting on H is unitarily

217

Z. TAKEDA

equivalent to the representation (A_{R}^{*}, H_{R}) by R [9; Theorem 2] and the C^{*} algebra B acting on K is unitarily equivalent to the representation (B_{S}^{*}, H_{S}) by S. Denote by $R \odot S$ the set of states of $A \times B$ which can be expressed as $\rho \times \sigma(\rho \in R, \sigma \in S)$, then the C*-algebra $A \times B$ on the Hilbert space $H \times K$ is unitarily equivalent to the representation $\{(A \times B)_{R \odot S}^{*}, H_{R \odot S}\}$ of $A \times B$ by $R \odot S$.

PROOF. As the product space of invariant subspaces in H and in K is invariant in $H \times K$ for the product $A \times B$, the lemma is evident from Lemma 3 and Lemma 4.

THEOREM 3. (Misonou [4; Theorem 1]). If A_1 is a W*-algebra on Hilbert spaces H_1 and K_1 and if A_2 is a W*-algebra on Hilbert spaces H_2 and K_2 . Then the direct product $A_1 \otimes A_2$ of A_1 and A_2 on $H_1 \times H_2$ is algebraically *-isomorphic to the product of A_1 and A_2 on $K_1 \times K_2$.

PROOF. Let $S(A, H_1)$, $S(B, K_1)$ and $S(A \times B, H_1 \times K_1)$ be the set of all distinguished states of A acting on H, of B on K_1 and that of the C^* -direct product $A \times B$ on $H_1 \times K_1$. By Lemma 2 if $\rho \in S(A, H_1)$ and $\sigma \in S(B, K_1)$, then $\rho \times \sigma \in S(A \times B, H_1 \times K_1)$. Hence $S(A \times B, H_1 \times K_1)$ contains $S(A, H_1)$ $\bigcirc S(B, K_1)$. Thus

 $S(A \times B, H_1 \times K_1) \supset [S(A, H_1) \odot S(B, K_1)]$

where the bracket means the smallest subset in the state space of $A \times B$ which contains $S(A, H_1) \odot S(B, K_1)$ and satisfies the conditions (ii)-(iv) in the introduction.

On the other hand, since a state $\sigma_{arphi imes \psi}$ on A imes B such as

 $\sigma_{\varphi \times \psi}(x) = \langle x (\varphi \times \psi), \varphi \times \psi \rangle$ for $x \in A$ and $|\varphi \times \psi| = 1$ (where $\varphi \in H_1, \psi \in K_1 | \varphi | = | \psi | = 1$), is contained in $[S(A, H_1) \odot S(B, K_1)]$ and by Lemma 5 there exists a collection T of states of the from $\sigma_{\varphi \times \psi}$ in the state space of $A \times B$ such as

$$[T] = S(A \times B, H_1 \times K_1), [9; \text{ Theorem 2]},$$

we get

$$S(A \times B, H_1 \times K_1) \subset [S(A, H_1) \odot S(B, K_1)].$$

Hence

$$S(A \times B, H_1 \times K_1) = [S(A, H_1) \odot S(B, K_1)]$$

Since S(A, H) is nothing but the set of all normal states for the W*-algebra A and the normality of a state of a W*-algebra is purely algebraical [2], $S(A, H_1) \odot S(B, K_1)$ is independent to H_1 and K_1 . Therefore,

$$S(A \times B, H_1 \times K_1) = S(A \times B, H_2 \times K_2)$$

Then by Theorem 1, $A \otimes B$ on $H_1 \times K_1$ is algebraically *-isomorphic to $A \otimes B$ on $H_2 \times K_2$. q. e. d.

218

References

- [1] J. DIXMIER, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornées d'un espace de Hilbert, Ann. of Math. 51 (1950), pp. 387-408.
- [2] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81(1953), pp. 9-39.
- [3] R. V KADISON, Isometries of operator algebras, Ann. of Math. 54 (1951), pp. 325-338.

- [4] Y. MISONOU, On the direct-product of W*-algebras, This journal. 6, pp. 189–204
 [5] F. J. MURRAY AND J. VON NEUMANN, On Rings of Operators, Ann. of Math. 37 (1936) pp. 116-229.
- [6] R. SCHATTEN, A theory of cross-spaces, Princeton, 1950.
- [7] I.E. SEGAL, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53(1947), pp. 73-88.
- [8] Z. TAKEDA, Conjugate spaces of operator algebras, Proc. Japan Acad., 30 (1954) pp. 90-95.
- [9] Z. TAKEDA, On the Representations of Operator Algebras, Proc. Japan Acad. 30 (1954) pp. 299-304.
- [10] T. TURUMARU, On the direct-product of operator algebras I, II, III, This journal. 4, pp. 242-251, 5, pp. 1-7 and 6, pp. 208-211

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI