CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA

HISAHARU UMEGAKI

(Received August 30, 1954)

1. Introduction. The concept of the conditional expectation in probability theory is very important, especially fundamental for the martingale theory. In a book [1]¹⁾ of J. Doob, various properties of the conditional expectation in a probability space are described for the random variables having the expectations. While in a recent paper [2], Shuh-teh C. Moy has discussed the characteristic properties of the conditional expectation as a linear transformation of the space of all extended real-valued measurable functions on a probability space into itself.

The present paper deals with the conditional expectation as a mapping of a space of measurable operators belonging to a L^1 -integrable class associated with a certain W^* -algebra into itself. This generalization seems to be a first attempt of a non-commutative probability theory. The non-commutative integration theory²⁾ of I. E. Segal (cf. [3]) has its due application in the subject.

We shall show in §2, the existence of the conditional expectation for the space of measurable operators of the L^1 -integrable class associated with a certain W^* -algebra, and in §3, the uniqueness in a certain sense of such a mapping which is a generalization of a characterization theorem of S. C. Moy.

2. Existence of conditional expectation. Let A be a W*-algebra, acting on a Hilbert space H, with a complete (faithful) normal trace μ with $\mu(1) = 1$.

Let A_1 be an arbitrary (but fixed) W*-subalgebra of A. In this section we shall introduce a conditional expectation in A relative to A_1 .

First we shall prove in $L^{1}(A)$ the existence theorem of conditional expectation where $L^{1}(A)$ consists of all integrable operators on H with respect to the L^{1} -norm $||x||_{1} = \mu(|x|)$ (cf. [3] Def. 3. 2, Cor. 10. 1 and Cor. 11. 3) which are associated with the W^{*} -algebra A. Similarly we denote the space $L^{1}(A_{1})$ associated with the W^{*} -subalgebra A_{1} , then $L^{1}(A_{1})$ can be considered as a closed subspace of $L^{1}(A)$.

THEOREM 1.³⁾ There exists a mapping $x \to x^e$ from $L^1(A)$ onto $L^1(A_1)$ satisfying the following conditions: for any $x, y \in L^1(A)$ and any complex numbers α, β

(i)
$$(\alpha x + \beta y)^s = \alpha x^s + \beta y^s$$
,

1) Numbers in brackets refer to the reference at the end of the paper.

2) J. Dixmier has also described the similar theory under a different way (cf. [4]). In the present paper, we shall use the definitions and terminologies of I. E. Segal (cf. [3]). We shall denote the product, sum land difference of measurable "operators x, y merely by xy, x+y and x-y, e.g., ey implies $x \cdot y$ in the notations in [3]. When x=y nearly everywhere, we shall denote merely x=y (n.e.) or x=y.

nearly everywhere, we shall denote merely x=y (n.e.) or x=y. 3) After we had proved the Tam 1, we have been pointed out by M. Nakamura that the existence of mapping $x \rightarrow x^2$ from A to A_1 was proved by Dixmier using his operator method (cf. Thm.8 of [4]). In this paper, we shall prove Thm. 1 by Radon-Nikodym Thm. of Segal (cf. [3]) and extend it onto $L^1(A)$. H. UMEGAKI

(ii)
$$x^{*e} = x^{e*}$$
,

(iii)
$$x \ge 0$$
 implies $x^e \ge 0$,

(iv)
$$x \ge 0$$
 and $x^e = 0$ imply $x = 0$,

for any z in $L^1(A_1)$. (v) $z^e = z$

Moreover the mapping $x \to x^e$ transforms A onto A_1 satisfying $||x^e|| \leq ||x||$. $x^{*e}x^{e} \leq (x^{*}x)^{e}$ and

(vi)
$$(x^e y)^e = (xy^e)^e = x^e y^e$$
 for $x \in L^1(A)$, $y \in A$ or $x \in A$, $y \in L^1(A)$,
(vii) $x_y \uparrow x$ implies $x_y^e \uparrow x^e$ for $x_y, x \in A$,

(vii) $x \rightarrow x^{e}$ is strongly and weakly continuous on the unit sphere of A, $v \in I^{1}(A)$ and $v \in A'_{1} \cap A$, (...:) (....)e (....)e for

(viii)
$$(xy)^e = (yx)^e$$
 for $x \in L^1(A)$ and $y \in A$

$$\mu(|x^e|) \leq \mu(|x|)$$

PROOF. For any $x \in A^+$, putting $\mu_x(z) = \mu(xz)$ for $z \in A_1$, μ_x is a positive linear functional on A_1 satisfying that $|\mu_x(z)| \leq |x| \cdot \mu(|z|)$ for all $z \in A_1$. By a lemma of Segal (cf. Lem. 14.1 of [3]), there exists a unique positive operator x' in A_1 such that $\mu_x(z) = \mu(x'z)$ for all $z \in A_1$ where the operator x' is uniquely determined by x. Putting $x^e = x'$, $(\alpha x + \beta y)^e = \alpha x^e + \beta y^e$ for any $x, y \in A^+$ and numbers $\alpha, \beta \ge 0$. Since any $x(\in A) = x_1 - x_2 + ix_3 - ix_4$ (for some $x_k \in A^+$) and this expression is unique, putting $x^e = x_1^e - x_2^e + i x_3^e - i x_4^e$, $x \rightarrow x^e$ is defined for all $x \in A$ and it satisfies that

(1)
$$\mu(xz) = \mu(x^e z)$$
 for any $x \in A$ and $z \in A_1$.

It is easily seen that $z_1 = z_2$ $(z_1, z_2 \in A_1)$ if and only if $\mu(z_1 z) = \mu(z_2 z)$ for all $z \in A_1$. This fact implies that the introduced mapping $x \to x^e$ is well defined on A, transforms A onto A_1 and satisfies the conditions i), ii) and v) for all x, $y \in A$ and $z \in A_1$. iii) is clear by the construction of x^e in A. iv) for $x \in A_1$. **A** follows from (1), iii) and the completeness of μ . Moreover for any $x, y \in \mathcal{Y}$ A and $z \in A_1$

$$\mu((x^ey)^ez) = \mu(x^eyz) = \mu(yzx^e) = \mu(x^ey^ez) = \mu((xy^e)^ez),$$

hence vi) holds for $x, y \in A$. The normal continuity of $x \to x^{e}$ (i.e., vii)) or more generally vii) follow from that iv), $x^{*e}x^{e} \leq (x^{*}x)^{e}$ (as below) and the following fact: The trace μ is represented by a canonical trace, i.e., $\mu(x) =$ $(x\zeta, \zeta)$ for some $\zeta \in H$, and for any $\xi \in H$ there exists a vector ξ' in $[A\zeta]$. such that $(x\xi, \xi) = (x\xi', \xi')$ for all $x \in A$ (by the Radon-Nikodym theorem of Segal, cf. Thm. 14 of [3]), and for any $y \in A$ there is $z \in A$, such that $\mu(x^{e})$ $yy^*) = \mu(xzz^*)$. While for any $z \in A_1$, $x \in A$ and $y \in A'_1 \cap A$

$$\mu((xy)^{e}z) = \mu(xyz) = \mu(xzy) = \mu(yxz) = \mu((yx)^{e}z)$$

hence viii) holds for such x, y in A. ix): For $x \in A$ there exists a partially isometric operator $w \in A_1$ such that $|x^e| = wx^e$, hence $\mu(|x^e|) = \mu(wx^e) \leq wx^e$ $\|w| \cdot \mu(|x|) \leq \mu(|x|)$ and we have ix) for $x \in A$. $\|x^{\circ}\| \leq \|x\|$ is clear by the construction of $x \rightarrow x^e$. Since for any $x \in A$

 $0 \leq ((x - x^e)^*(x - x^e))^e = (x^*x - x^{*e}x + x^{*e}x^e - x^*x^e)^e = (x^*x)^e - x^{*e}x^e,$ we have $x^{*e}x^{e} \leq (x^{*}x)^{e}$.

178

Since all $x \in A$ or A_1 are elementary operators respectively (cf. [3]), Aand A_1 are dense in $L^1(A)$ and $L^1(A_1)$ respectively. By ix) for $x \in A$, $x \to x^e$ can be extended onto $L^1(A)$ and i), ix) hold for $x, y \in L^1(A)$. For any $x \in$ $L^1(A)$ (or $L^1(A_1)$ resp.), taking $\{x_n\} \subset A$ (or A_1 resp.) such that

(2)
$$\mu(|x_n-x|) \to 0 \qquad (n \to \infty),$$

since $\mu(|y^*|) = \mu(|y|)$ for any $y \in L^1(A)$, we have ii) for $x \in L^1(A)$. (2) also implies that

(3)
$$\mu(x^e z) = \lim (\mu x_n^e z) = \lim \mu(x_n z) = \mu(xz) \quad \text{for all } z \in A_1.$$

Since v) holds for A_1 , by (2) it also holds for $L^1(A_1)$. If $x \ge 0$ ($x \in L^1(A)$), there exists a $\{x_n\} \subset A^+$ satisfying (2) (by Cor. 12.1 of [3]). Whence $x^e = \lim x_n^e$ (in L^1 -mean) and $x^e \ge 0$ by Lem. 13.3 of [3]; and if $x \ge 0$ and $x^e = 0$, then

$$\mu(x) = \mu(xI) = \mu(x^e) = 0$$

and x = 0 (n. e.), and we have iii) and iv) for $L^{1}(A)$. For any $x \in L^{1}(A)$ and $y \in A$ taking $\{x_{n}\} \subset A$ as (2),

$$(x^{e}y)^{e} = \lim (x^{e}_{n}y)^{e} = \lim x^{e}_{n}y^{e} = x^{e}y^{e}$$

and similarly = $(xy^{i})^{e}$. We have also viii) by the similar way taking the sequence $\{x_{n}\}$ in A. The later part of vi) follows from the former and ii). Q. E. D.

REMARK 1. Applying the proof of Thm. 1, it holds that

$$(xy)^e = (yx)^e$$

for $x \in A$ and $y \in L^{1}(A'_{1} \cap A)$ which is the integrable operator associated with the W*-subalgebra $A'_{1} \cap A$.

We shall call the mapping $x \to x^{\circ}$ from $L^{1}(A)$ to $L^{1}(A_{1})$ the conditional expectation relative to A_{1} .

3. A characterization of conditional expectation. In this section, we shall prove a characterization theorem of the conditional expectation which is a generalization of a theorem of Shuh-teh Chen Moy (cf. Thm. 2.2 of [2]).

THEOREM 2. Let $x \rightarrow x^{\epsilon}$ be a mapping from A into itself satisfying i), ii), vi), ix) for $x, y \in A$, and

$$\mathbf{v}$$
)' $I^{\epsilon} = I$

viii)

Then the range A^{ϵ} of the mapping $x \to x^{\epsilon}$ is a W*-subalgebra of A and $x \to x^{\epsilon}$ coincides with the conditional expectation relative to A^{ϵ} , that is,

$$x^e = x^e$$
 for all $x \in A$.

PROOF. Let A_0 be the collection of all $z \in A$ such that

$$(zx)^e = zx^e$$
 and $(xz)^e = x^e z$ for all $x \in A$.

Then A_0 is a self-adjoint subalgebra of A containing I. Indeed, for any z_1 , z_2 , $z \in A_0$ and $x \in A$,

 $((z_1 + z_2)x)^{\epsilon} = (z_1x)^{\epsilon} + (z_2x)^{\epsilon} = z_1x^{\epsilon} + z_2x^{\epsilon} = (z_1 + z_2)x^{\epsilon},$

179

$$\begin{aligned} (z^*x)^{\epsilon} &= (x^*z)^{*\epsilon} = (x^*z)^{\epsilon_*} = (x^{*\epsilon}z)^* = (x^{\epsilon_*z})^* = z^*x^{\epsilon}, \\ (z_1z_2x)^{\epsilon} &= z_1(z_2x)^{\epsilon} = z_1z_2x^{\epsilon}, \\ (\alpha \ zx)^{\epsilon} &= \alpha \ zx^{\epsilon}. \end{aligned}$$

and similarly $(x(z_1 + z_2))^e = x^e(z_1 + z_2), \dots$ etc. hold. Clearly $I \in A_0$. Let A_1 be the weak closure of A_0 , and $x \to x^e$ be the conditional expectation relative to A_1 . Putting $\mu(x) = \mu(x^e)$, since

$$|\mu_1(x)| \leq \mu(|x^{\epsilon}|) \leq \mu(|x|),$$

 μ_1 is a bounded linear functoinal on $L^1(A)$. Hence there exists an operator r in A such that

$$\mu_1(x) = \mu(x^{\epsilon}) = \mu(xr) \qquad \text{for all } x \in A$$

(cf. Cor. 18.1 of [3] or Thm.5 of [4]). Therefore for any $z \in A_0$,

(4)
$$\mu(zx^{\epsilon}) = \mu((zx)^{\epsilon}) = \mu(zxr) = \mu(z(xr)^{e}).$$

Since A_0 is strongly dense in A_1 and the both sides of the equation (4) are strongly continuous for $z \in A_0$,

$$\mu(zx^{\epsilon}) = \mu(z(xr)^{\epsilon}) \qquad \text{for all } z \in A_1.$$

Hence $x^{e} = (xr)^{e}$. Since

 $\mu(xr) = \mu(x^{*}) = \mu(x^{**}) = \overline{\mu(x^{**})} = \overline{\mu(x^{*}r)} = \mu((x^{*}r)^{*}) = \mu(r^{*}x) = \mu(xr^{*})$ for all $x \in A$, $r^{*} = r$. By $|\mu(xr)| \leq \mu(|x|) ||r||$ and $|r^{2}| \leq 1$, hence $r^{2} \leq I$. While

$$r^e = (Ir)^e = I^e = I$$

and by iii), iv)

 $0 \leq ((I-r)(I-r))^{e} = (I-2r^{e}+r^{2})^{e} = I-2r^{e}+(r^{2})^{e} = (r^{2})^{e}-I \leq 0.$ Therefore $((I-r)(I-r))^{e} = 0$ and r = I. This implies immediately $x^{e} = x^{e}$ and $A^{e} = A_{0} = A_{1}$. Q. E. D.

Now we consider a normal continuous mapping $x \to x^c$ on A without the assumptions v/ and ix) (cf. Thm. 1.1 of [2]).

THEOREM 3. Let $x \to x^{\epsilon}$ be a mapping from A into itself satisfying i), iii), iv) and vii) for x, y and x_{γ} in A, then there exists a unique positive operator $r \in L^{1}(A)$ such that

(5)
$$I^{\epsilon} = r^{e} \text{ and } x^{\epsilon} = (xr)^{e} = (rx)^{e}$$
 for all $x \in A$,

where $x \rightarrow x^e$ is a conditional expectation relative to a W*-subalgebra determined by the mapping $x \rightarrow x^e$.

PROOF. Putting $\mu_1(x) = \mu(x^{\epsilon})$ for all $x \in A$, μ_1 is a positive linear function and strongly continuous on the unit sphere S_0 of A. For, since $x \to x^{\epsilon}$ is weakly continuous on S_0 (cf. Dixmier's Cor. 1 of [4]), μ_1 is also weakly continuous on S_0 , and hence strongly continuous on S_0 because μ_1 is a numerical function. By the Radon-Nikodym theorem of Segal (cf. Thm. 14 of [3]), there exists a positive operator $r \in L^1(A)$ such that

$$\mu_1(x) = \mu(xr)$$
 for all $x \in A$.

We now prove i) and iii) imply ii). Since any x in A can be expressed by

 $x = x_1 - x_2 + ix_3 - ix_4$ for $x_k \in A$, we have $x^* = x_1 - x_2 - ix_3 + ix_4$. i) and iii) imply that $x_k^e \ge 0$ $(k = 1, \ldots, 4)$ and $x^{*e} = x_1^e - x_2^e - ix_3^e + ix_4^e$, and the right side equals to x^{e*} hence we have $x^{*e} = x^{e*}$.

Taking A_0 as in the proof of Thm. 2, the weak closedness of A follows from the normal continuity of x^e and a theorem of Dixmier (cf. Nakamura-Turumaru [5]), that is, $A_0 = A_1$. Let $x \to x^e$ be the conditional expectation relative to A_1 . Then by (3) in the proof of Thm. 1, for all $z \in A_1$,

$$\mu(zx^{\epsilon}) = \mu((zx)^{\epsilon}) = \mu(zxr) = \mu(z(xr)^{e})$$

which implies that
$$x^{\epsilon} = (xr)^{\epsilon}$$
 and $I^{\epsilon} = r^{\epsilon}$. Moreover for any $x \in A$,

$$(xr)^e = x^e = x^{*e*} = (x^*r)^{e*} = (x^*r)^{*e} = (r^*x)^e = (rx)^e.$$
 Q. E. D.

REMARK 2. If the mapping $x \to x^{\epsilon}$ in Thm. 3 is L^{1} -continuous instead of the normal continuity, then we can find a positive operator r in A satisfying (5). More generally, for a mapping $x \to x^{\epsilon}$ from A into itself satisfying i), ii), **v**i) for all $x, y \in A$ and the L^{1} -continuity, (5) also holds for s. a. $r \in A$ where the conditional expectation $x \to x^{\epsilon}$ is taken relative to the W^{*} -subalgebra A_{1} (cf. the proof of Thm. 2), and this fact results that the normal, strong and weak continuities (on the unit sphere of A) of the mapping $x \to x^{\epsilon}$ and $A^{\epsilon} = A_{1}$.

References

[1] J. L. DOOB, Stochastic processes, New York, 1954.

[2] SHUH-TEH C. MOY, Characterizations of conditional expectation as a transformation on function spaces, Pacific Journ. of Math., vol. 4(1954), 47-65.

[3] I. E. SEGAL, A non-commutative extension of abstract integration, Ann. of Math., vol. 57(1953), 401–457.

[4] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. de la Soc. Math. de France, (1953), 6-39.

[5] M. NAKAMURA and T. TURUMARU, Expectations in an operator algebra, Tôhoku Math. Journ., vol. 6(1954). 174–176

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.