UNIFORM CONVERGENCE OF SOME TRIGONOMETRICAL SERIES

Hiroshi Hirokawa

(Received August 12,1954)

1. Introduction. On the uniform convergence of some trigonometrical series, G. Sunouchi [6] proved the following theorem.

Theorem A. Let $0<\alpha<1$. If

$$
\begin{equation*}
\sum_{n}^{\infty}\left|\Delta a_{\nu}\right|=O\left(n^{-\alpha}\right) \tag{1.1}
\end{equation*}
$$

where $\Delta a_{\nu}=a_{\nu}-a_{\nu+1}$, and

$$
\begin{equation*}
\sum_{1}^{n} \nu a_{\nu}=o\left(n^{\alpha}\right) \tag{1.2}
\end{equation*}
$$

then the series

$$
\begin{equation*}
\sum_{1}^{\infty} a_{\nu} \sin \nu x \tag{1.3}
\end{equation*}
$$

converges uniformly in $0 \leqq x \leqq \pi$.
Concerning this theorem, we shall prove the following
Theorem 1. Let $0<\alpha<1$. If (1.1) holds and

$$
\begin{equation*}
t_{n}^{\beta}=o\left(n^{\beta \alpha}\right),(\beta>0) \tag{1.4}
\end{equation*}
$$

where t_{n}^{β} is (C, β)-sum of the sequence $\left\{\nu a_{\nu}\right\}$, then the sine series (1.3) converges uniformly in $0 \leqq x \leqq \pi$.

Recently M. Satô [5] considered the cosine analogue of Theorem A. Concerning the cosine series we shall prove the following

Theorem 2. Under the assumptions of Theorem 1, the series

$$
\begin{equation*}
\sum_{i}^{\infty} a \cos \Delta x \tag{1.5}
\end{equation*}
$$

converges uniformly in $0 \leqq x \leqq \pi$.
In this Theorem, if we put $\beta=1$, we get Theorem of Satô [5]. Now, the following theorems are known.

Theorem B. (I. Ôyama [4]) Let $0<\alpha<1$, and Σa_{ν} be convergent.
Then, if (1.1) holds and

$$
r_{n} \equiv \sum_{n}^{\infty} a_{\nu}=o\left(n^{\alpha-1}\right)
$$

the series (1.3) and (1.5) converge uniformly in $0 \leqq x \leqq \pi$.
Theorem C. (S. Izumi and N. Matsuyama [3], I. Ôyama[4])
Let $0<\alpha<1$ and Σa_{ν} be convergent. Then, if (1.1) holds and

$$
\sum_{1}^{n} r_{\nu}=o\left(n^{2 \alpha-1}\right),
$$

where $r_{n}=\sum_{n}^{\infty} a_{\nu}$, then the series (1.3) and (1.5) converge uniformly in $0 \leqq x \leqq \pi$.
Concerning these Theorems, we have
Theorem 3. Let $0<\alpha<1$ and Σa_{ν} be convergent. Then, if (1.1) holds and

$$
\begin{equation*}
\tau_{n}^{\beta-1}=o\left(n^{\beta \alpha-1}\right) \tag{1.6}
\end{equation*}
$$

where τ_{n}^{β} is (C, β)-sum of the sequence $\left\{r_{\nu}\right\}$ and β is a positive number, then the series (1.3) and (1.5) converge uniformly in $0 \leqq x \leqq \pi$.

In this Theorem, if we put $\beta=1$, then we get Theorem B, and if we put $\beta=2$, then we get Theorem C. This Theorem was suggested by Prof. G. Sunouchi.

Furthermore we have following
Theorem 4. Let $0<\alpha<1$. If (1.1) holds and

$$
\begin{equation*}
s_{n}^{\beta}=o\left(n^{\beta \alpha-1}\right), \tag{1.7}
\end{equation*}
$$

where s_{n}^{β} is (C, β)-sum of the sequence $\left\{a_{v}\right\}$ and β is a positive number, then the series (1.3) and (1.5) converge uniformly in $0 \leqq x \leqq \pi$.

In this paper, the main theorems are Theorems 1 and 2. These Theorems are proved in $\S 2$ and $\S 3$, respectively, Theorems 3 and 4 are corollaries of Theorems 1 and 2. The proof of these are in $\S 4$.
I. Ôyama [4] proved that, under the assumption (1.1), (1.4) and (1.6) are equivalent for $\beta=1$. Also, we can easily see that (1.7) implies (1.6) for $\beta=1$. But these facts are not valid for general $\beta>0$. Finally, in $\S 5$, we apply these Theorems to summability methods of Riemann and Zygmund.
2. Proof of Theorem 1. We can easily see that the series (1.3) converges uniformly in $0<\varepsilon \leqq x \leqq \pi$ by (1.1) and Abel's lemma, *) where ε is a positive number. Therefore, for the proof it is sufficient to show the uniform convergence of (1.3) dt $x=0$.

Let us put

$$
\begin{align*}
\sum_{1}^{\infty} a_{\nu} \sin \nu x & =\sum_{\nu=1}^{M} a_{\nu} \sin \nu x+\sum_{\nu=H+1}^{\infty} a_{\nu} \sin \nu x \tag{2.1}\\
& =U(x)+V(x),
\end{align*}
$$

say, where M will be determined later. Using Abel's transformation and (1.1), we get

$$
\begin{aligned}
V(x) & =\sum_{\nu=M+1}^{\infty} a_{\nu} \sin \nu x \\
& =\sum_{\nu=\mu+1}^{\infty} \Delta a_{\nu} \cdot \bar{D}_{\nu}(x)+\bar{D}_{H}(x) a_{M+1},
\end{aligned}
$$

where $\bar{D}_{v}(x)$ is conjugate Dirichlet kernel.
*) We remark that (1.1) and (1.4) implies $a_{\nu}=o(1)$.

We can easily see that $\bar{D}_{\nu}(x)=O\left(x^{-1}\right)$ uniformly. Further, since $a_{\nu}=o(1)$, we have

$$
\begin{equation*}
a_{n}=\sum_{\nu=n}^{\infty} \Delta a_{\nu}=O\left(\sum_{\nu=n}^{\infty}\left|\Delta a_{\nu}\right|\right)=O\left(n^{-\alpha}\right) \tag{2.2}
\end{equation*}
$$

by (1.1). Thus. from (1.1) and (2.2), we get

$$
\begin{align*}
V(x) & =O\left(\sum_{\nu=M+1}^{\infty}\left|\Delta a_{\nu}\right| x^{-1}\right)+O\left(M^{-\alpha} x^{-1}\right) \tag{2.3}\\
& =O\left(M^{-\alpha} x^{-1}\right) .
\end{align*}
$$

Putting $[\beta]=\gamma$, by repeated use of Abel's transformation γ-times, we have

$$
\begin{align*}
U(x)= & \sum_{\nu=1}^{M-\gamma} t_{\nu}^{\gamma} \Delta_{v}^{\gamma}(x)+t_{M-\gamma+1}^{\gamma} \Delta_{M-\gamma+1}^{\gamma-1}(x)+\ldots \\
& \ldots .+t_{M-1}^{2} \Delta_{M-1}^{1}(x)+t_{M H}^{1} \Delta_{M}^{0}(x) \tag{2.4}\\
= & W(x)+\sum_{\nu=1}^{\gamma} U_{\nu}(x),
\end{align*}
$$

say, where

$$
\Delta_{n}^{0}(x)=\sin n x / n, \quad \Delta_{n}^{k}(x)=\Delta_{n}^{k-1}(x)-\Delta_{n+1}^{k-1}(x)
$$

and

$$
U_{\nu}^{\prime}(x)=t_{M-\nu+1}^{\nu} \Delta_{M-\nu+1}^{\nu-1}(x) .
$$

Since
(2.5a) $\Delta_{n}^{2 k}(x)=(-1)^{k+1} 2^{2 k k} \int_{0}^{x}\left(\sin \frac{t}{2}\right)^{2 k} \cos (n+k) t d t$,

$$
\begin{equation*}
\Delta_{n}^{2 k+1}(x)=(-1)^{k+1} 2^{2 k+1} \int_{0}^{x}\left(\sin \frac{t}{2}\right)^{2 k+1} \sin \left(n+k+\frac{1}{2}\right) t d t \tag{2.5b}
\end{equation*}
$$

for $k=0,1,2, \ldots$, we have
(2.6)

$$
\Delta_{n}^{k}(x)=O\left(n^{-1} x^{k}\right)
$$

by the second mean value theorem. From (1.4) and $t_{n}^{0}=n a_{n}=O\left(n^{1-\alpha}\right)$ (by (2.2)), using Dixson-Ferrar's convexity theorem [1], we have

$$
\begin{gather*}
t_{n}^{\nu}=O\left\{\left(n^{1-\alpha}\right)^{1-\frac{\nu}{\beta}}\left(n^{\beta \alpha}\right)^{\frac{\nu}{\beta}}\right\}=O\left(n^{((1-\alpha)(\beta-\nu)+\alpha \beta \nu) / \beta}\right), \tag{2.7}\\
(\nu=1,2,3, \ldots, \gamma) .
\end{gather*}
$$

Hence, by (2.6), (2.7)

$$
\begin{align*}
U_{\nu}(x) & =O\left(\boldsymbol{M}^{\left((1-\alpha)\left(\beta-\nu \nu+\alpha \beta_{\nu}\right) / \beta x_{\nu-1}\right.} / M\right) \tag{2.8}\\
& =O\left(x^{\nu-1} M^{\left(\alpha \beta \nu+\alpha_{\nu}-\alpha \beta-\nu\right) / \beta}\right) .
\end{align*}
$$

By the well-known formula

$$
\begin{equation*}
t_{\nu}^{\gamma}=\sum_{n=0}^{\nu}(-1)^{\nu-i n}\binom{\beta-\gamma}{\nu-n} t_{n}, \quad\left(t_{0}=0\right), \tag{2.9}
\end{equation*}
$$

where $\binom{m}{n}=\frac{m(m-1) \ldots(m-n+1)}{n!}$ and $\binom{0}{0}=1$, we have

$$
\begin{aligned}
W(x) & =\sum_{\nu=1}^{M-\gamma} t_{\nu}^{\gamma} \Delta_{\nu}^{\gamma}(x) \\
& =\sum_{\nu=1}^{M-\gamma}\left\{\sum_{n=0}^{\nu}(-1)^{\nu-n}\binom{\beta-\gamma}{\nu-n} t_{n}^{\beta}\right\} \Delta_{\nu}^{\gamma}(x) \\
& =\sum_{n=0}^{M-\gamma} t_{n}^{\beta} \sum_{\nu=n}^{M-\gamma}(-1)^{\nu-n}\binom{\beta-\gamma}{\nu-n} \Delta_{\nu}^{\gamma}(x) .
\end{aligned}
$$

Here, we consider the two cases, the first is, γ is even and the second, is odd. For the first, from (2.5a), we have

$$
\begin{align*}
W(x) & =\sum_{n=0}^{M-\gamma} t_{n}^{3} \sum_{\nu=n}^{M-\gamma}(-1)^{\nu-n}\binom{\beta-\gamma}{\nu-n} \int_{0}^{x}(-1)^{\frac{\gamma}{2}+1} 2^{\gamma}\left(\sin \frac{\gamma}{2}\right)^{\gamma} \cos \left(\nu+\frac{t}{2}\right) t d t \\
10) & =\sum_{n=0}^{M-\gamma} t_{n}^{3}(-1)^{\frac{\gamma}{2}+1} 2 \gamma \int_{0}^{x} \sum_{\nu=n}^{M-\gamma}(-1)^{\nu-n}\binom{\beta-\gamma}{\nu-n} \cos \left(\nu+\frac{\gamma}{2}\right) t\left(\sin \frac{t}{2}\right)^{\gamma} d t \tag{2.10}\\
& =\sum_{n=0}^{M-\gamma}(-1)^{\frac{\gamma}{2}+1} 2^{\gamma} t_{n}^{8} \int_{0}^{x} \sum_{\nu=0}^{M-\gamma-n}(-1)^{\nu}\binom{\beta-\gamma}{\nu} \cos \left(\nu+n+\frac{\gamma}{2}\right) t\left(\sin \frac{t}{2}\right)^{\gamma} d t .
\end{align*}
$$

Since

$$
\begin{aligned}
\sum_{\nu=0}^{\infty} & (-1)^{\nu}\binom{\beta-\gamma}{\nu} \cos \left(\nu+n+\frac{\gamma}{2}\right) t \\
& =R\left\{\sum_{\nu=0}^{\infty}(-1)^{\nu}\binom{\beta-\gamma}{\nu} \exp (i \nu x) \exp i\left(n+\frac{\gamma}{2}\right) t\right\} \\
& =2^{\beta-\gamma}\left(\sin \frac{t}{2}\right)^{\beta-\gamma} \cos \left\{\left(\frac{\beta}{2}+n\right) t+\frac{\beta-\gamma}{2} \pi\right\},
\end{aligned}
$$

we write $W(x)$ in the form

$$
\begin{align*}
W(x) & =\sum_{n=0}^{\infty}(-1)^{\frac{\gamma}{2}} 2^{\gamma} t_{n}^{\beta}\left[\int_{0}^{x}\left(\sin \frac{t}{2}\right)^{\beta} \cos \left\{\left(\frac{\beta}{2}+n\right) t+\frac{\beta-\gamma}{2} \pi\right\} d t\right. \tag{2.11}\\
& \left.-\int_{0}^{x} \sum_{\nu=M-\gamma-n+1}^{\infty}(-1)^{\nu}\binom{\beta-\gamma}{\nu} \cos \left(\nu+n+\frac{\gamma}{2}\right) t\left(\sin \frac{t}{2}\right)^{\gamma} d t\right] \\
& =W_{1}(x)-W_{2}(x),
\end{align*}
$$

say. By the second mean value theorem

$$
\int_{0}^{x}\left(\sin \frac{t}{2}\right)^{\beta} \cos \left\{\left(\frac{\beta}{2}+n\right) t-\frac{\beta-\gamma}{2} \pi\right\} d t=O\left(x^{\beta} n^{-1}\right)
$$

and then

$$
\begin{align*}
W_{1}(x) & =o\left(\sum_{n=1}^{M-\gamma} n^{\beta \alpha} x^{\beta} / n\right) \tag{2.12}\\
& =o\left(M^{\beta \alpha} x^{\beta}\right) .
\end{align*}
$$

Now we have

$$
\begin{align*}
W_{2}(x) & =o\left(\sum_{n=0}^{M-\gamma} n^{\beta \alpha} \sum_{\nu=\beta H-\gamma+n+1}^{\infty} \nu^{-(\beta-\gamma+1)} x^{\gamma} /(\nu+n)\right) \\
& \left.=o\left(\frac{(M-\gamma)^{\beta \alpha}}{M-\gamma+1} \sum_{n=0}^{M-\gamma}(M-\gamma-n+1)^{-\beta+\gamma} x^{\gamma}\right)\right) \tag{2.13}\\
& =o\left(x^{\gamma} M^{\beta \alpha-1} \sum_{n=1}^{M-\gamma+1} n^{-\beta+\gamma}\right) \\
& =o\left(x^{\gamma} M^{\beta \alpha-\beta+\gamma}\right) .
\end{align*}
$$

Thus, from (2.3), (2.8), (2.12) and (2.13)

$$
\begin{align*}
\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu x & =O\left(1 / x M^{\alpha}\right)+o\left(x^{\beta} M^{\beta \alpha}\right) \tag{2.14}\\
& +o\left(x^{\gamma} M^{\beta \alpha-\beta+\gamma}\right)+\sum_{\nu=1}^{\gamma} o\left(x^{\nu-1} M^{\left(\alpha \beta_{\nu}+\alpha \nu-\alpha \beta-\nu\right) / \beta}\right),
\end{align*}
$$

We note that (2.14) holds also when the summation is extended on $1 \leqq \nu \leqq N, N$ being a function of x such that $N \rightarrow \infty$ as $x \rightarrow 0$.

We can now prove the uniform convergence of (1.3) at $x=0$. For this purpose, it is sufficient to prove the convergence of

$$
\sum_{\nu=1}^{N} a_{\nu} \sin \nu x_{N}
$$

as $N \rightarrow \infty$ for any sequence $\left\{x_{N}\right\}$ tending to zero. Now we have, by (2.14) and its remark,

$$
\begin{aligned}
\sum_{\nu=1}^{N} a_{\nu} \sin \nu x_{N}=O\left(1 / x_{N} M^{\alpha}\right) & +o\left(x_{N}^{3} M^{\beta \alpha}\right)+o\left(x_{N}^{\gamma} M^{\beta \alpha-\beta+\gamma}\right) \\
& +\sum_{\nu=1}^{\gamma} o\left(x_{N}^{\nu-1} M^{(\alpha \beta \nu+\alpha \nu-\alpha \beta \nu-\nu) / \beta}\right) .
\end{aligned}
$$

When we put $M=\left[\left(\varepsilon x_{N}\right)^{-\frac{1}{\alpha}}\right]$, where ε is an arbitrary positive number, we have

$$
\begin{aligned}
& O\left(1 / x_{N} M^{\alpha}\right)=O(\varepsilon) \leqq \varepsilon, \quad o\left(x_{N}^{\beta} M^{\beta \alpha}\right)=o(1), \\
& o\left(x_{N}^{\gamma} M^{\beta \alpha-\beta+\gamma}\right)=o\left(x^{\gamma-\beta+\frac{\beta}{\alpha}-\frac{\gamma}{\alpha}}\right)=o\left(x_{N}^{(\beta-\gamma)\left(\frac{1}{\alpha}-1\right)}\right)=o(1),
\end{aligned}
$$

and

$$
o\left(x_{N}^{\nu-1} M^{(\alpha \beta \nu+\alpha \nu-\alpha \beta-\nu) / \beta}=o\left(x_{N}^{\nu-1+(\alpha \beta \nu+\alpha \nu-\alpha \beta-\nu) / \alpha \beta}\right)=o\left(x_{N}^{\nu(1-\alpha)}=o(1)\right.\right.
$$

for $\nu=1,2, \ldots, \gamma$.
Therefore, we get

$$
\sum_{\nu=1}^{N} a_{\nu} \sin \nu x_{N}=o(1) .
$$

For the second case, that is, γ is odd, we can prove similarly so that we omitt its proof. Thus, the Theorem is proved,*)
3. Proof of Theorem 2. Firstly we prove the following lemma.

This lemma was proved by M. Satô[5] for $\beta=1$.
Lemma. Under the assumptions of Theorem 1 , the series Σa_{ν} is convergent.
Proof. We shall consider the case that $0<\beta<1$. Let s_{n} be the n-th partial sum of Σa_{ν}. Then, by the well-known formula (2.9), we have

$$
\begin{align*}
s_{p}-s_{q} & =\sum_{\nu=q+1}^{p} a_{\nu} \\
& =\sum_{\nu=q+1}^{\nu} \nu a_{\nu} \frac{1}{\nu} \\
& =\sum_{\nu=q+1}^{\nu} \frac{1}{\nu} \sum_{n=0}^{\nu}(-1)^{\nu-n}\left({ }_{\nu-n}\right) t_{n}^{3} \tag{3.1}\\
& =\left(\sum_{\nu=1}^{\nu}-\sum_{\nu=1}^{q}\right) \frac{1}{\nu} \sum_{n=0}^{\nu}(-1)^{\nu-n}\binom{\beta}{\nu-n} t_{n}^{\beta} \\
& =P-Q,
\end{align*}
$$

say. Then

$$
\begin{aligned}
P & =\sum_{\nu=0}^{n} \frac{1}{\nu} \sum_{n=0}^{\nu}(-1)^{\nu-n}\binom{\beta}{\nu-n} t_{n}^{3} . \\
& =\sum_{n=0}^{\nu} t_{n}^{3} \sum_{\nu=n}^{\nu}(-1)^{\nu-n}\binom{\beta}{\nu-n} \frac{1}{\nu} \\
& =\sum_{n=0}^{p} t_{n}^{3} \sum_{\nu=0}^{p-n}(-1)^{\nu}\binom{\beta}{\nu} \frac{1}{\nu+n} .
\end{aligned}
$$

Since

$$
\begin{align*}
\sum_{\nu=0}^{\infty}(-1)^{\nu}\binom{\beta}{\nu} \frac{1}{\nu+n} & =\int_{0}^{1} x^{n-1}(1-x)^{s} d x \\
& =\Gamma(n) \Gamma(\beta+1) / \Gamma(n+\beta+1) \tag{3.2}\\
& =O\left(n^{-\beta-1}\right), \quad \text { (See Titchmarsh [9, p. 56]) }
\end{align*}
$$

we write P and Q in the form

$$
\begin{aligned}
P & =\sum_{n=0}^{p} t_{n}^{\beta} \Gamma(n) \Gamma(\beta+1) / \Gamma(n+\beta+1)-\sum_{n=0}^{p} t_{n}^{\beta} \sum_{\nu=p-n+1}^{\infty}(-1)^{\nu}\binom{\beta}{\nu} \frac{1}{\nu+n} \\
& =P_{1}-P_{2},
\end{aligned}
$$

say, and

$$
\begin{aligned}
\boldsymbol{Q} & =\sum_{n=0}^{q} t_{n}^{\beta} \Gamma(n) \Gamma(\beta+1) / \Gamma(n+\beta+1)-\sum_{n=0}^{q} t_{n}^{\beta} \sum_{\nu=p-n+1}^{\infty}(-1)^{v}\binom{\boldsymbol{\beta}}{\nu} \frac{1}{\nu+n} \\
& =Q_{1}-Q_{3,}
\end{aligned}
$$

[^0]say. Then, from (1.4) and (3.2)
\[

$$
\begin{aligned}
P_{1}-Q_{1} & =\sum_{n=q+1}^{p} t_{n}^{\beta} \Gamma(n) \Gamma(\beta+1) / \Gamma(n+\beta+1) \\
& =o\left(\sum_{n=q+1}^{p} n^{\beta \alpha} / n^{\beta+1}\right) \\
& =o(1) .
\end{aligned}
$$
\]

On the other hand

$$
\begin{aligned}
P_{2} & =\sum_{n=0}^{p} t_{n}^{\beta} \sum_{\nu=p-n+1}^{\infty}(-1)^{\nu}\binom{\boldsymbol{\beta}}{\nu} \frac{1}{\nu+n} \\
& =\left(\sum_{n=0}^{p / 2}+\sum_{n=p /+1}^{p}\right) t_{n}^{\beta} \sum_{\nu=p-n+1}^{\infty}(-1)^{\nu}\binom{\beta}{\nu} \frac{1}{\nu+n} \\
& =P_{3}+P_{4},
\end{aligned}
$$

say. Then

$$
\begin{aligned}
P_{3} & =O\left(\sum_{n=0}^{p / 2}\left|t_{n}^{\beta}\right| \sum_{\nu=p-n+1}^{\infty} 1 / \nu^{\beta+1}(\nu+n)\right) \\
& =O\left(\sum_{n=0}^{p / 2}\left|t_{n}^{\beta}\right| /(p+1)(p-n+1)^{\beta}\right) \\
& =O\left(\frac{1}{p^{\beta+1}} \sum_{n=0}^{p / 2}\left|t_{n}^{\beta}\right|\right) \\
& =o\left(p^{\beta \alpha+1} \mid p^{\beta+1}\right) \\
& =o\left(p^{\beta \alpha-\beta}\right) \\
& =o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{4} & =o\left(\sum_{n=p / 2+1}^{p} n n^{\beta \alpha} \sum_{p=p-n+1}^{\infty} 1 / \nu^{\beta+1}(\nu+n)\right) \\
& =o\left(p^{\beta \alpha-1} \sum_{\substack{n=p / 2+1 \\
p / 2}} 1 /(p-n+1)^{\beta}\right) \\
& =o\left(p^{\beta \alpha-1} \sum_{n=1}^{p} 1 / n^{\beta}\right) \\
& =o\left(p^{\beta \alpha-\beta}\right) \\
& =o(1) .
\end{aligned}
$$

Similar method shows that $Q_{2}=o(1)$. Thus we get

$$
\begin{aligned}
s_{p}-s_{q} & =\left(P_{1}+P_{2}\right)-\left(Q_{1}+Q_{2}\right) \\
& =\left(P_{1}-Q_{1}\right)+\left(P_{2}-Q_{2}\right) \\
& =\boldsymbol{O}(1) .
\end{aligned}
$$

Therefore Σa_{ν} converges for $0<\beta<1 . *$)
Next, we shall consider the case that $\beta \geqq 1$. Putting $[\beta]=\gamma$, by repeated

[^1]use of Abel's transformations γ-times, we have
\[

$$
\begin{aligned}
s_{p}-s_{q-1} & =\sum_{\nu=q}^{p} a_{\nu} \\
& =\sum_{\nu=q}^{\nu} \nu a_{\nu} \cdot \frac{1}{\nu} \\
& =\sum_{\nu=q}^{\nu-\gamma} t_{n}^{\gamma} \Delta_{i}^{\gamma}+\sum_{\nu=1}^{\gamma} t_{p-\nu-1}^{\nu} \Delta_{p-\nu-1}^{\nu-1}-\sum_{\nu=1}^{\gamma} t_{q-\nu-2}^{\nu} \Delta_{q-\nu-1}^{\nu-1} \\
& =R_{0}-\sum_{\nu=1}^{\gamma} R_{\nu}+\sum_{\nu=1}^{\gamma} R_{\nu}^{\prime},
\end{aligned}
$$
\]

say, where $\Delta_{n}^{0}=1 / n$, and $\Delta_{n}^{k}=\Delta_{n}^{k-1}-\Delta_{n+1}^{k-1}$.
Since $\Delta_{n}^{\nu}=O\left(1 / n^{\nu+1}\right)$, from (2.7)

$$
\begin{aligned}
R_{0} & =o\left(\sum_{\nu=q}^{p-\gamma} \nu^{(11-\alpha)(\beta-\gamma)+\alpha \beta \nu) / \beta \boldsymbol{\nu}^{-\gamma-1}}\right) \\
& =o\left(q^{(1-\alpha)(\beta-\gamma)+\alpha \beta \gamma \gamma / \beta-\alpha}\right) \\
& =o\left(q^{(1-\alpha)(\beta-\gamma-\beta \gamma) / \beta)}\right. \\
& =o(1),
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\nu} & =o\left(q^{\alpha \nu-\nu+(1-\alpha)(\beta-\nu) / \beta}\right) \\
& =o\left(q^{(\alpha-1)(\beta \nu-\beta+\nu) / \beta}\right) \\
& =o(1)
\end{aligned}
$$

for $\nu=1,2, \ldots . \quad \gamma$. Hence $\sum_{\nu=1}^{\gamma} R_{\nu}=o(1)$. Similarly $\sum_{\nu=1}^{\gamma} R_{\nu}^{\prime}=o(1)$.
Therefore, we have

$$
s_{p}-s_{q-1}=o(1)
$$

Thus, the proof of Lemma is complete.
Proof of Theorem. The method is similar as in former section.
We shall prove that the uniform convergence of (1.5) at $x=0$. Let us write

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} a_{\nu} \cos \nu x & =\left(\sum_{\nu=1}^{M}+\sum_{\nu=M+1}^{\infty}\right) a_{\nu} \cos \nu x \\
& =U(x)+V(x)
\end{aligned}
$$

say, where M will be determined later. Then we have

$$
\begin{equation*}
V(x)=O\left(1 / x M^{\alpha}\right) \tag{3.3}
\end{equation*}
$$

by the analogous method to the one which we obtain (2.3). As in §2, putting $[\beta]=\gamma$, by repeated use of Abel's transformation γ-times, we get

$$
U(x)=\sum_{\nu=1}^{M} a_{\nu} \cos \nu x
$$

$$
\begin{aligned}
& =-\sum_{\nu=1}^{M} \nu a_{\nu} \int_{0}^{x} \sin \nu x d x+\sum_{\nu=1}^{M} a_{\nu} \\
& =-\sum_{\nu=1}^{M-\gamma} t_{n}^{\gamma} \Delta_{n}^{\gamma}(x)-\sum_{\nu=1}^{\gamma} t_{n-\nu-1}^{\nu} \Delta_{n-\nu-1}^{\nu-1}(x)+\sum_{\nu=1}^{M} a_{\nu} \\
& =-W(x)-\sum_{\nu=1}^{\gamma} t_{n-\nu-1}^{\nu} \Delta_{x-\nu-2}^{\nu-1}(x)+\sum_{\nu=1}^{M} a_{\nu}
\end{aligned}
$$

say, where $\Delta_{n}^{0}(x)=\int_{0}^{x} \sin n x d x$, and $\Delta_{n}^{k}(x)=\Delta_{n}^{k-1}(x)-\Delta_{n+1}^{k-1}(x)$.
Since

$$
\begin{aligned}
\Delta_{n}^{2 k}(x) & =2^{2 k} \int_{0}^{x}\left(\sin \frac{t}{2}\right)^{2 k} \sin (n+k) t d t \\
\Delta_{n}^{2 k+1}(x) & =2^{2 k+1} \int_{0}^{x}\left(\sin \frac{t}{2}\right)^{2 k+1} \cos \left(n+k+\frac{1}{2}\right) t d t
\end{aligned}
$$

for $k=0,1,2, \ldots$, we can proceed the proof as in $\S 2$. Since Σa_{ν} convergent by Lemma, we have

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} a_{\nu} \cos \nu x-\sum_{\nu=1}^{\infty} a_{\nu}=O\left(1 / x M^{\alpha}\right) & +o\left(x^{\beta} M^{\beta \alpha}\right)+o\left(x^{\gamma} M^{\beta \alpha-\beta+\gamma}\right) \\
& +\sum_{\nu=1}^{\gamma} o\left(x^{\nu-1} M^{(\alpha \beta \nu-\alpha \nu-\alpha \beta-\nu) / \beta}\right)
\end{aligned}
$$

Hence we can prove Theorem 2 as in $\S 2$.
4. Proof of Theorems 3-4. For our purpose, it is sufficient to prove that each of the conditions (1.6) and (1.7) implies the condition (1.4). First, we shall prove the former.

By definition of $\boldsymbol{r}_{\boldsymbol{n}}$,

$$
\begin{aligned}
\sum_{\nu=1}^{n} \nu a_{\nu} & =\sum_{\nu=1}^{n} \nu\left(r_{\nu}-r_{\nu+1}\right) \\
& =\sum_{\nu=1}^{n} r_{\nu}-n r_{n+1}
\end{aligned}
$$

that is,

$$
t_{n}^{1}=\tau_{n}^{1}-n \tau_{n+1}^{0}
$$

Fuŕther, for a positive integer $\boldsymbol{\beta}$, we have, using Abel's lemma,

$$
t_{n}^{\beta}=\beta \tau_{n}^{\beta}-n \tau_{n+1}^{\beta-1}
$$

But, an easy calculation shows that this expression holds for any positive number β. Then, using (1.6),

$$
t_{n}^{\beta}=\beta \sum_{n=1}^{n} \tau_{n}^{\beta-1}-n \tau_{n+1}^{\beta-1}
$$

$$
\begin{aligned}
& =o\left(\sum_{n=1}^{n} n^{\beta \alpha-1}\right)+o\left(n^{\beta \alpha}\right) \\
& =o\left(n^{\beta a}\right) .
\end{aligned}
$$

Thus, it was prove that the condition (1.6) implies the condition (1.4). Next we consider the latter case. we have Using Abel's lemma and putting

$$
s_{n}=\sum_{1}^{n} a_{\nu}\left(=s_{n}^{1}\right),
$$

we have

$$
\sum_{1}^{n} \nu a_{v}=-\sum_{1}^{n=1} s_{\nu}+n s_{n}
$$

that is,

$$
t_{n}^{1}=-\sum_{j}^{n-1} s_{\nu}^{1}+n s_{\|}^{1} .
$$

Further we have

$$
t_{n}^{\beta}=-\beta \sum_{1}^{n-1} s_{v}^{\beta}+n s_{n}^{\beta} .
$$

Therefore, from (1.7), we have

$$
\begin{aligned}
t_{n}^{\beta} & =o\left(\sum_{1}^{n} \nu^{\beta \alpha-1}\right)+o\left(n^{\beta \alpha}\right) \\
& =o\left(n^{\beta \alpha}\right) .
\end{aligned}
$$

Thus, using Theorems 1-2, Theorems 3-4 follow.
Concluding this section, we note that (1.4) does not imply (1.7) in general. For an example, we put $\beta=1$. Then, since $n a_{n}=t_{n}^{1}-t_{n-1}^{1}$, .

$$
\begin{aligned}
s_{n}^{1}=\sum_{1}^{n} a_{\nu} & =\sum_{1}^{n}\left(t_{\nu}^{1}-t_{\nu-1}^{1}\right) / \nu \\
& =\sum_{1}^{n-1} t_{\nu}^{1} / \nu(\nu+1)+t_{n}^{1} / n
\end{aligned}
$$

Further, putting $t_{n}^{1} / n^{\alpha}=\eta_{n}$,

$$
s_{n}^{1}=\sum_{\nu=1}^{n-1} \frac{\nu^{\omega}}{\nu(\nu+1)} \eta_{\nu}+\frac{n^{\alpha}}{n} \eta_{n} .
$$

Hence

$$
\begin{aligned}
\frac{s_{n}^{1}}{n^{\alpha-1}} & =\frac{1}{n^{\alpha-1}} \sum_{\nu=1}^{n-1} \frac{\nu^{\alpha}}{\nu(\nu+1)} \eta_{\nu}+\eta_{n} \\
& =\sum_{\nu=1}^{\infty} c_{n, \nu} \eta_{\nu}
\end{aligned}
$$

say, where

$$
\begin{aligned}
c_{n, \nu} & =\nu^{\alpha} / \nu(\nu+1) n^{\alpha-1} & & (\nu \leqq n-1), \\
& =1 & & (\nu=n), \\
& =0 & & (\nu>n) .
\end{aligned}
$$

Since $\boldsymbol{\alpha}-1<0$,

$$
\lim _{n \rightarrow \infty} c_{n, v}=\infty,
$$

for an arbitrarily fixed ν. Thus $\left\|c_{n, v}\right\|$ is not Toeplitz Matrix. Therefore, (1.4) does not implies (1.7).
5. The series Σa_{ν} is said (R_{l})-summable to zero when

$$
\sum_{\nu=0}^{\infty} \frac{s_{\nu}}{\nu} \sin \nu x
$$

where $s_{\nu}=\sum_{1}^{\nu} \frac{a_{\nu}}{\nu}$ converges for $0<x<x_{0}$ and tends to zero as $x \rightarrow 0$.
The series Σa_{v} is said ($R, 1$)-summable (or Lebesgue summable) to zero when

$$
\sum_{\nu=1}^{\infty} a_{\nu}(\sin \nu x) / \nu x
$$

converges for $0<x<x_{0}$ and tends to zero as $x \rightarrow 0$. Further, the series Σa_{ν} is said ($K, 1$)-summable to zero when

$$
\sum_{\nu=1}^{\infty} a_{\nu} \int_{x}^{\pi} \frac{\sin \nu t}{\operatorname{tg} \frac{1}{2} t} d t
$$

converges for $0<x<x_{0}$ and tends to zero as $x \rightarrow 0$.
Theorem 5. Let $0<\alpha<1$. Suppose that (1.1) and one of the conditions (1.4), (1.6) and (1.7) are satisfied. Then, the series Σa_{ν} is $\left(R_{1}\right)-,(R, 1)$,, and ($K, 1$)-summable to zero, respectively.

Proof. Under the assumptions of Theorem, the series (1.3) and (1.5) are uniformly convergent in $0 \leqq x \leqq \pi$. Hence each series is a Fourier series of some continuous function. For (R_{1})-method, O. Szász [8] proved that Fourier series is summable (R_{1}) at continuity point of function.

This fact holds for ($R, 1$)-method. Thus, Σa_{ν} is summable $\left(R_{1}\right)$ and $(R, 1)$. On the other hand, S.Izumi [2] proved that (R_{1})-method and ($K, 1$)-method are equivalent for Fourier series. Thus we have our Theorem for ($K, 1$)method.

References

[1] A. L. Dixson and W. L. Ferrar: On the Cesàro sums, Jour. London Math. Soc., vol. 7(1932), pp. 87-93.
[2] S.Izumi: Notes on the Fourier Analysis, Tôhoku Math. Jour. vol. 1(1950), pp. 285-202.
[3] S. Izumi and N. Matsuyama: Some trigonometrical series I, Journal of Mathematics vol.1(1953), pp. 110-116.
[4] I. Oyama: On uniform convergence of trigonometrical series. (in the press).
[5] M. Satô: Uniform convergence of trigonometrical series. (in the press).
[6] G. Sunouchi: Tauberian theorems for Riemann summability. Tôhoku Math. Jour. vol. 5(1953), pp. 34-42.
[7] H. Hirokawa and G. Sunouchi: Two thoerems on the Riemann summability, Tōhoku Math. Jour. vol. 5(1954), pp. 261-267.
[8] O. Szász: Tauberian theorems for summability (R_{1}). Amer. Jour. Math., vol. 73 (1951), pp. 779-791.
[9] E. C. Titchmarsh: The theory of functions, Oxford, 1932.
department of Mathematics, Chiba Institute of Technology, Chiba.

[^0]: *) The method of the proof was used in Hirokawa and Sunouchi [7].

[^1]: *) Tne method of the prooí was suggested by Prof. G. Sunouchi.

