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1. Introduction. On the uniform convergence of some trigonometrical
series, G. Sunouchi [6] proved the following theorem.

THEOREM A. Let 0 < a < 1. If
oo

(i.i) 2 IΔ«*I
n

where Δav =.av — av+u and
n

(1.2) 2 "«» = «
1

(1. 3) 2 Λ" S i n v *
1

converges uniformly in 0 ̂  x <[ τr
Concerning this theorem, we shall prove the following

THEOREM 1. Let 0 < a < 1. // (1.1) holds and

(1.4) *δ =*«*•), (£>(>),
where t% is (C, β)-sum of the sequence {vaμ}, then the sine series (1.3) converges
uniformly in 0 <= x < TΓ.

Recently M. Sato [5] considered the cosine analogue of Theorem A.
Concerning the cosine series we shall prove the following

THEOREM 2. Under the assumptions of Theorem 1, the series
oo

(1. 5) 2 a»cos vX

1

converges uniformly in Q

In this Theorem, if we put β = 1, we get Theorem of Sato [5].
Now, the following theorems are known.

THEOREM B. (I. όyama [4]) Let 0 < a < 1, and Ί,av be convergent.
Then, if (1.1) holds and

the series (1.3) #/&/ (1.5) converge uniformly in 0

THEOREM C. (S. Izumi and N. Matsuyama [3], I. όyama[4J)
Let 0 < a < 1 awd £«„ fo? convergent. Then, if (1.1) holds and
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n

]
oβ

where rn = 2 β"> * ^ w ^ s w (1. 3) and {1.5) converge uniformly inΰ
n

Concerning these Theorems, we have

THEOREM 3. Let 0 < a < 1 <zwd 2A> be convergent. Then, if (1.1) άoώfc

(1. 6) τtι = φt**-1),
where if is (C,β)-sum of the sequence {rv} and β is a positive number, then
the series (1.3) and (1.5) converge uniformly in 0 <; # <; TΓ.

In this Theorem, if we put β = 1, then we get Theorem B, and if we
put β = 2, then we get Theorem C. This Theorem was suggested by Prof.
G. Sunouchi.

Furthermore we have following

THEOREM 4. Zέtf 0 < a < 1. // (1.1) holds and
(1.7) s2= φ ^ " " 0 ,
where s^ is (C, β)-sum of the sequence {av} and β is a positive number, then
the series (1. 3) and (1. 5) converge uniformly in 0 <Ξ x <J π.

In this paper, the main theorems are Theorems 1 and 2. These Theorems
are proved in § 2 and § 3, respectively, Theorems 3 and 4 are corollaries of
Theorems 1 and 2. The proof of these are in §4.

1. όyama [4] proved that, under the assumption (1.1), (1.4) and (1.6)
are equivalent for β = 1. Also, we can easily see that (1.7) implies (1. 6)
for β = 1. But these facts are not valid for general β > 0. Finally, in § 5,
we apply these Theorems to summabiUty methods of Riemann and Zygmund.

2. Proof of Theorem 1. We can easily see that the series (1. 3) converges
uniformly in 0 < £ ̂  x g π by (1.1) and Abel's lemma, *> where £ is a positive
number. Therefore, for the proof it is sufficient to show the uniform
convergence of (1. 3) at x = 0.

Let us put
CO M OO

,Q i) 2 Λ ( / s * n vχ~ Σ a * s * n v χ + Σ a»smvχ

^ ' ' 1 i/ = l »> = J f + l

= £/(*) + FΓ*),
say, where M will be determined later. Using Abel's transformation and
(1.1), we get

V(x) = 2

where ~D£x) is conjugate Dirichlet kernel.

*) We remark that (1.1) and (1.4) implies av=o(l).
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We can easily see that D,{x) = 0(x~ι) uniformly. Further, since av = o(l),
we have

(2. 2) an = 2 Δα, = O ί 2 IΔ^I ) = °(w~*

by (1.1). Thus, from (1.1) and (2. 2), we get

Putting Γ/3J = 7, by repeated use of Abel's transformation γ-times, we
have

JΓ- y

(2- 4) " . . . . + t\_λ Δ\_lx) + tι

M Δ&x)
y

= W{X) + 2 UV{X\
v = l

say, where
Δ°(#) = sin ΛX/Λ, Δ*(*) = Δ^x(^) - Δ*;iU)

and
U£x) = t"M_v+1Δ

v

M-2v+1{x).

Since

(2.5a) Δf (ΛΓ) = ( - l)*+i22* Γ ( s i n y ) 2 f c c o s ( w + k)t dt>
o

x

(2.5b) Δf+1(Λ;) = ( - lf+W*^ \ (sin | Vfc+1 sin fw + k + y ^ / c?ί
0

for k = 0,1,2, , we have
(2.6) ΔK*) = O(Λ-**)
by the second mean value theorem. From (1.4) and t°n = nan = 0{nι"a)
(by (2.2)), using Dixson-Ferrar's convexity theorem [1], we have

(2.7) tl = OJ^1-*)1- 7 (w8α) FJ = O ( # - )tf-")

(i/= 1,2,3, . . . . , 7).

Hence, by (2.6), (2.7)

By the well-known formula

(2.9) V=^Σ(-v
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, (m\ m(m— 1)... Am — n + 1) Λ /0\ Λ *
where ( n j = — p and ( Q ) = 1, we have

Jf-γ

M-y M-y

Here, we consider the two cases, the first is, γ is even and the second, is
odd. For the first, from (2. 5a), we have

PF(#) = 5 ! £ e 2 ( ~ iy-n(^ ~~ ̂  ) / ( ~~ 1)^"+1 2γ( sin— )v cos( v + -77-)/ ^
S \tT \v-nJJ \ 2J \ 2)

M-y γ nx M-y /R__rj

(2.10) = 2 ^ "• 1 ) τ + l 2 f y / 2 ("• i)1"71! - 1
Λ - 0 Q

= 2V( - D 1 + l 2 v« Γ * 2 " ( - Hβ 7 7 ) c o s ( " + n + ί X ^ l
Since

= Λ {2( - Vr {β 7 7 ) «P(« » *) exp ι(» + y ) 4
^ ι/=0 ^ ' *

= 2 ( - 1 ) i 2 ϊ ^ [ / ( s i nf) ? c o s{(f + M

-f 2 < - 1

J v = 3f-7-n+l

s i n | ) ^ - v cos

we write W(̂ ) in the form

(2.11)

say. By the second mean value theorem

/ (sin|)β cos{(f + n)t -
0

and then
/M~y

(2.12) PF,(A:) = o (
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Now we have

Wlx) = o(2 nβa 2 v-(β-y+1)xy/(v +n))

(2.13) = K M ^ T T Ί 2 (M- 7 - * + D " ^

Thus, from (2.3), (2.8), (2.12) and (2.13)

2 ^ sin z> # = 0(1/xM") +
(2.14)

We note that (2.14) holds also when the summation is extended on
1 ^ v % N, N being a function of x such that N -> oo as x -> 0.

We can now prove the uniform convergence of (1. 3) at x = 0. For this
purpose, it is sufficient to prove the convergence of

N

2 #f s i

as iV->oo for any sequence {XN} tending to zero. Now we have, by (2.14)
and its remark,

^ sin v XN = 0(1/ XNM«) + o{

y

+ 2 ^ Λ " 1 M^v+<xv-a^-v)l^.

When we put M = Γ(6^)"v J, where £ is an arbitrary positive number,

we have

0(1/XNM«) = O(S) g £,

and

f or v = 1, 2, . . . ., γ.
Therefore, we get
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For the second case, that is, y is odd, we can prove similarly so that we
omitt its proof. Thus, the Theorem is proved. *>

3. Proof of Theorem 2. Firstly we prove the following lemma.
This lemma was proved by M. Satό[5] for β = 1.

LEMMA. Under the assumptions of Theorem 1, the series 2 ch is convergent.
PROOF. We shall consider the case that 0 < β < 1. Let sn be the n-th.

partial sum of 2 av. Then, by the well-known formula (2. 9), we have
P

5 — Q — ^V nP ^q ~~" j£^^ v
v-q+l

= Ύ va-

(3.1) T , /

say. Then

V

= Σ*
V

= 2 ί

P

v = n
p-n

•22

)
v —nl

Since

2 ( — l) v (β) ^ = I ^ " ^ l — χT dx
" = o o

(3.2) = Ί\n)J\β + D/IX» + /3 + 1)
= 0{n-ε-ι\ (See Titchmarsh [9, p. 56])

we write P and © in the form

P P ~ //O\ 1

P = 2 'n ΓC^)^/3 + 1)/Γ(W + β + 1) — 2 *n 2 ( — iy( )

say, and

ι^ ^ C ~ 1 ^ . 1 ( Kj\ '"'" J

*) The method of the proof was used in Hirokawa and Sunouchi [7].
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say. Then, from (1.4) and '(3.2)

A-βi= 2 t?Γ(n)Γ(β+l)/Πn

= o( 2

On the other hand

n=o v-p-n+l
p/2 p

say. Then

= θ(2H2l 2
n=o v=p-n+l

and
P \

2 wβΛ 2 i/^+v +»))

fl-* 2

Similar method shows that ζ?2 = o(l). Thus we get

sp -s, = (P, + P3) - (Qι + Qύ

= (Pi - 0 i ) + (P» - Qt)

Therefore 2«r converges for 0 < β < 1. *)
Next, we shall consider the case that β>l. Putting [β] = y, by repeated

*) Tne method of the proof was suggested by Prof. G. Sunouchi.
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use of Abel's transformations γ-times, we have

2 vAi + 2 κ-»-A;-i-i - 2 K-v-
v=q

say, where Δ^ = 1/n, and Δ* = Δ^"1

Since Δ^ = O(l/nv+1), from (2.7)

and

for v = 1,2, . . . . , 7. Hence 2 f t = o(l). Similarly 2 K = ^ί1)-

Therefore, we have

Thus, the proof of Lemma is complete.

PROOF OF THEOREM. The method is similar as in foϊmer section.
We shall prove that the uniform convergence of (1.5) at x = 0. Let us

= ( 2 + 2 j^cosvx

write

say, where M will be determined later. Then we have

(3.3) V(x) = 0(l/xM*)

by the analogous method to the one which we obtain (2.3). As in § 2, putting
[β] = γ, by repeated use of Abel's transformation 7-times, we get

M

== 2 av cos ̂  ̂
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M px M

— — ^ ^ ^ 7 /j I Q1TΊ Ίl V f~tΎ I ^SkP SΊ

Jf-V γ M

- - 2 <XΔJC*)- 2 ^-1Δ-_1w+ 2 *
v = l ι/ = l v = l

v*\ v = \

say, where ΔKΛ:) = I sin nx dx, and

o
Since

^(ΛT) = 2*fc Γ ^ s i n y sin (n

J (sin M* + 1 cos (« + k + -|
0

for ft = 0,1,2, , we can proceed the proof as in § 2. Since 2 a, convergent
by Lemma, we have

cos vx -

Hence we can prove Theorem 2 as in §2.

4. Proof of Theorems 3—4. For our purpose, it is sufficient to prove
that each of the conditions (1.6) and (1.7) implies the condition (1.4). First,
we shall prove the former.

By definition of rn,
n n

v av = J>, v {r,, — rv+ι)

that is,

n * n Λ+1

Further, for a positive integer β, we have, using Abel's lemma,

But, an easy calculation shows that this expression holds for any positive
number β. Then, using (1.6),

n

tβ = 3 V τβ~Ί — n T*8-1

W = l
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Thus, it was prove that the condition (1.6) implies the condition (1.4). Next
we consider the latter case, we have Using Abel's lemma and putting

1

we have n r^}
*Σvav= — 2 s» + nSn>

1 1

that is,

Further we have
n-l

'2=-/8.2
1

Therefore, from (1.7), we have

Thus, using Theorems 1-2, Theorems 3-4 follow.
Concluding this section, we note that (1.4) does not imply (1.7) in

general. For an example, we put β = 1. Then, since nan = t\ — /£_j, •

1

Further, putting tljn« = vn)

Hence

n«-ι ~ n*-

say, where

en,, = ^Λ/K^ + DΛ " 1 (v^n- 1),
= 1 (v = Λ),

= 0 (i; > w).
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Since a - 1 < 0,

lim cn,v = oo,

for an arbitrarily fixed v. Thus |i *;,,,„ (| is not Toeplitz Matrix. Therefore,
(1.4) does not implies (1.7).

5. The series Xav is said (/?i)-summable to zero when

oo

Σ sv .
— smvx,

V

where sv = 2 — converges for 0 < x < x0 and tends to zero as #-> 0.

The series Xav is said (R, l)-summable (or Lebesgue summable) to zero
when

2 av(sin vx)/v x

converges for 0 < x < x0 and tends to zero as x -> 0. Further, the series
Σav is said (K, l)-summable to zero when

converges for 0 < x < x0 and tends to zero as x -> 0.

THEOREM 5. Let 0 < oc < 1. Suppose that (1.1) and one of the conditions
(1.4), (1. 6) and (1.7) are satisfied. Then, the series 2 #„ is (ΉK (^, I K
β/ίc/ (jfiζ l)-summable to zero, respectively.

PROOF. Under the assumptions of Theorem, the series (1.3) and (1.5) are
uniformly convergent in 0 ^ x <; π. Hence each series is a Fourier series of
some continuous function. For (it^-method, O. Szasz [8] proved that Fourier
series is summable (R{) at continuity point of function.

This fact holds for (R, l)-method. Thus, Xav is summable (Rτ) and (R, 1).
On the other hand, S. Izumi [2] proved that (/^-method and (K, l)-method
are equivalent for Fourier series. Thus we have our Theorem for (K, 1)-
method.
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