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1. Introduction Since E. Cartan introduced the notion of holonomy groups,
there were published many papers which were concerned holonomy groups of
manifolds endowed with various connexions, such as Riemannian manifolds,
manifolds with aίϊine, projectiveorconformal connexions. However, almost all
papers, are concerned with holonomy groups defined in a neighbourhood of a
point and local properties of the manifolds. Recently, there were published
some papers which were concerned holonomy groups defined globally and global
properties of the manifold in consideration. The main purposes of these
papers seem to be first to study general properties of holonomy groups and
secondly to study metrical and topological properties of Riemannian manifolds
whose holonomy groups have some prescribed group structures.

When we look over these papers there arises naturally the following
question: If we first give topological structure of a differentiable manifold,
how far the group structure of holonomy groups are restricted? I shall try
the first attack for this problem in the case of Riemannian geometry in
this paper. Our problem is then to get systematically a series of theorems
of the following kind: Suppose that Mn is a differentiable manifold which
has topological properties A,B,C, , then the holonomy group of any
"positive definite" Riemannian metric introduced on Mn has the group
structure P. Of course there are many Riemannian manifolds which have not
properties A, B, C, , but their holonomy groups have the group structure
P, because holonomy groups depend largely upon metrics. However, our
purpose is to get topological conditions for the manifolds such that they
garantee the group structure of the holonomy groups in consideration.

We note that in Riemannian case there are four kinds of holonomy
groups: 1) the holonomy group H, 2) the restricted holonomy group H°, 3)
the homogeneous holonomy group h, and 4) the restricted homogeneous
holonomy group h°. The groups H° and h° of a Riemannian manifold Mn

are identical with the holonomy groups H( = H°) and h( = h°)oί the universal

covering manifold Mn of Mn with the natural Riemannian metric induced
from Mn by the covering (Cf. § 2). Most of our theorems are concerned

with the group h° and so the group h of the covering manifold Mn of Mn.
At lines 17-18, from bottom, I have roughly said "any Riemannian metric"

but I mean by it "any complete Riemannian metric". This may be a strong
condition. However, if the manifold M'1 is compact, then any Riemannian
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metric introduced on Mn is complete as is well known.
In § 2, I shall state some preliminary remarks and in § 3 and § 4, I

shall state topological conditions for a manifold in order that the holonomy
group of any complete Riemannian metric introduced on it is irreducible
in the fields of real numbers or complex numbers. Most of the theorems
in these paragraphs are either equivalent to known theorems or slight
modifications of them, but they are stated in the realm of our idea. In § 5,
there are given a series of Lemmas which leads us to the decomposition
of the group h° into a Kronecker product of matric groups each of which
is equivalent to a real full orthogonal group or a full group of unitary
symplectic group or one of their simple and absolutely irreducible subgroups.
Then there arises naturally the following problem: To find out topological
conditions in order that h° is not the Kronecker product of two orthogonal
groups or of two unitary symplectic groups. This problem is solved in § 6
and §7. Sufficient topological conditions for the simplicity of h° follow then
immediately from former paragraphs and are stated in §8.

For the sake of simplicity we assume sufficiently high differentiability
for manifolds and Riemannian metrics introduced on the manifolds.

I wish to note that a part of the idea of this paper owes to the late
H. Iwamoto and to express my hearty thanks to M. Goto who gave me many
kind suggestions for group-theoretical part of this paper.

2. Some preliminary remarks

LEMMA 1. The restricted holonomy groups H° and h° of a Riemaimian
manifold Mn are identical with the holonomy groups H ( = HΌ) and h{ = h0)
respectively of the universal covering manifold Mn of Mn with the natural
Riemannian metric induced by the covering on it.

PROOF. First we denote the base point of holonomy groups in Mn by P
and denote the frame with respect to which the holonomy groups are
represented by Ro. We denote also the points on Mn which lie over Po by

Ph P2, - - - -and take Pi as the base point and take a frame Ri which lies over
Ro at Po by the covering as the frame of reference when we consider holonomy
groups of Mn. Then the restricted holonomy groups H° and h° of Mn are
identical with the holonomy groups H and h respectively, because all
closed curves on Mn which pass through Po and homo topic to zero are
images of closed curves on Mn which pass through Ph and in addition Mn

has the induced Riemannian metric from Mn.

LEMMA 2. If the holonomy group h (h°) of a Riemannian manifold Mn makes
invariant an exterior differential form of degree p with constant coefficients,
then the p-fortn can be extended to a harmonic p-form over Mn (the covering
manifold Mn). Especially if Mn (Mn) is compact, then BP Φ 0 (Bp =t= 0), where
BP (βp) is the p-th Betti number of M1 (Mn).
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PROOF. Let ωι be the components of the generic infinitesimal vector at
the base point Pκ) of the holonomy group h (h°) with respect to the frame Ro.
Then the >̂-form invariant under h (h°) can be written as

where ch ip 's are constants which are skew symmetric with respect to
any two indices and ω's are multiplied exteriorly. We regard θ as
a differential form at Po. First we shall prove the non bracket part of our
theorem. Take an arbitrary point P on Mn. We transplant θ from Po to P
by Levi-Civita's parallelism along a piecewise smooth curve P0P. θ thus
deήneά at P does not depend upon the choice of curves which bind Po to
P, because θ is invariant under h. Thus θ can be extended to a differential
form defined over the whole Mn. By the construction, it is clear that co-
efficients of θ define a skew symmetric tensor field whose covariant derivative
vanishes. Hence θ, thus extended, is a harmonic />-form. Especially, if Mn

is compact, then by Hodge's theory1) of harmonic integrals, Bp =t= 0.
In the next place we shall prove the bracket part. Let us introduce in

Mn the natural Riemannian metric induced from Mn by the covering. Then

by Lemma 1, h° is identical with the group h. Hence, by the non-bracket part

of our theorem Bp Φ 0.
The first and the simplest theorem which follows from our idea is the

following

THEOREM 1. If a differ entiable manifold Mn is orient able, the homogeneous
holonomy group h of any Riemannian metric introduced on Mn is contained in
the group of proper orthogonal transformations O+(n). The converse is also true.

The proof is immediate from the definitions of orientability and holonomy
groups.

3. Topologieal conditions for the irredueibility of the group h° with
respect to the field of real numbers.

THEOREM 2. Suppose that the universal covering manifold Mn of a differen-
tiable manifold Mn is not the topologieal product of two manifolds of dimensions
p and q (p + q = n), then the restricted homogeneous holonomy group h° of any
complete Riemannian metric introduced on Mn can neither fix a real p-dimensional
plane nor a real q-dimensional plane.

PROOF. By Lemma 1 the theorem follows immediately from the following
de Rham?s theorem2) to the effect that "If the holonomy group h of a simply
connected and complete Riemannian manifold fixes a ^-dimensional plane (and

1) W. V. D. HODGE, The Theory and applications of harmonic integrals. Cambridge
Univ. Press, 1941.

2) G. DE RHAM, Sur la reductibilite d'un espace de Riemann. Com. Math. Helv., 26
(1952) 328-344.
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a q dimensional plane orthogonal to it), then the manifold is a metric product
of two Riemannian manifolds of dimensions p and #".

As a corollary of this theorem we get the following

THEOREM 3. Suppose that the universal covering manifold Mn of a differen-
tiable manifold Mn is not the topological product of two differentiάble manifolds
of lower dimensions, then the restricted holonomy group h° (and hence h too) of
any complete Riemannian metric introduced on Mn is irreducible in the field
k of real numbers.

THEOREM 4. Suppose that a compact, orientable differentiable manifold Mn

has vanishing Betti number Bp( = Bq,p + q = n,p fixed 0 < p < ή), then the
holonomy group h of any Riemannian metric introduced on Mn can not fix an
oriented p-dimensional plane {and an oriented q-dimensional plane orthogonal
to it).

PROOF. Suppose that the theorem is not true. Then we can give Mn a
Riemannian metric such that h fixes an oriented ^-plane. Let us take the
orthogonal frame of reference Ro at the base point Pϋ so that the first p
vectors eh • , eP span the ^-plane, then eP+1, , en span the #-plane
orthogonal to it. We denote the generic infinitesimal vector at Po by ω1,
• , ωu and consider differential forms3)

ω W •••«*, ωp+1 >-ωn.

These differential forms are evidently invariant under h ^ 0+{p) + O+(q), where
4- means the direct sum. Hence by Lemma 2, BP = β 9 Φ θ contrary to our

assumption. Accordingly our assertion is true.
If Mn is simply connected, then our theorem is an immediate consequence

of Theorem 2.

THEOREM 5. Suppose that Mn is a compact, orientable differentiάble manifold
of even dimension. If the Euler characteristic X{Mn) is not equal to zero, then
the holonomy group h° (and h too) of any Riemannian metric introduced on Λf*
can not fix a real odd dimensional plane.

PROOF. We first notice that Willmore's theorem4) to the effect that "If
the holonomy group l^ofa compact orientable Riemannian manifold of even
dimension fixes an odd dimensional plane, then the Euler characteristic of
the manifold is equal to zero" holds good too when we replace the group h
by h° and the theorem becomes sharper. Our theorem follows immediately
from this remark.

THEOREM 6. Suppose that M'1 is a differentiate manifold of dimensionality
2 lυhich is not homeomorphic with any one of 5 Euclidean space forms. Then

3) H. IWAMOTO, On the relation between homological structure of Riemannian
spaces and exact differential forms which are invariant under holonomy groups. I.
Tδhoku Math. Journ., (2) 3 (1951) 59-70.

4) T. J. WILLMORE, Les plans paralleles dans les espaces riemanniens globaαx,
C.R.Paris 232 (1951),298-299.
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the holonomy group h of any complete Riemannian metric introduced on M2

is either O+(2) or 0(2) according as M2 is orientable or not.

REMARK 1. We do not treat holonomy groups H and H° because we
are concerned mainly with the case where h° is irreducible in the field of
real numbers and hence by virtue of our former theorem5) H° (and hence H
too) contains all translations of En.

4. Topological conditions for absolute irredueibility. We shall now turn
to absolute irredueibility (i. e. irredueibility in the field K of complex num-
bers) of the group h°.

THEOREM 7. Suppose that the universal covering manifold Ma of a differen-
tiable manifold Mn of odd dimensionality is not the topological product of
two manifolds of lower dimensionality, then the restricted holonomy group h°
of any complete Riemannian metric introduced on Mn is absolutely irreducible.

PROOF. First by Theorem 3 the group h° is irreducible in the field k.
Now suppose that h0 is reducible in the field K and denote one of its

irreducible invariant plane by E. Then E and its conjugate plane E span a
real invariant plane, this contradicts to the irredueibility of h° with respect
to k.

THEOREM 8. Suppose that the universal covering manifold Mn of a differ en-
tiable manifold Mn of even dimensionality in > 2) is compact and is not the
topological product of two differentiable manifolds of lower dimensions. If

either one of the Betti numbers Bt,, B4, , Bn-2 is equal to zero or one of the

Betti numbers (BΊ = 0) B6, , Bn-i is odd, or one of the relations Bq-λ < Bq

(p < n/2) does not hold, then the restricted holonomy group h° of any Riemannian
metric introduced on Mn is absolutely irreducible.

PROOF. By virtue of Theorem 3 we first see that the group h° is irre-
ducible in the field k. Assume that the group h° is reducible in the field K.
Now, by Abe-Iwamoto's theoryG) we know that if Γ is a matric group with
real coefficients which is irreduble in the field k and reducible in the field
K and makes invariant a positive definite quadratic form G = (gij), then Γ
makes invariant a skew symmetric tensor S such that (G~1Sy2 = — 1, so h°
leaves invariant a 2-form

θ = Sii ω' Λ ω\

Hence, by Lemma 1 and 2, θ can be extended to a differential form over the

5) S. SASAKI and M. GOTO. Some theorems on holonomy groups of Riemannian
manifdis. To be published in Trans. Amer. Math. Soc.

6) M. ABE, Irreduzibiliat und absolute Jrreduzilitat der Matrizensysterns. Proc.
Phys. Math. Soc. Japan, 24 (1942), 769-789.

H. IWAMOTO, On the structure of Riemannian space whose holonomy groups
fix a null-system. Tohoku Math. Journ., (2) 1 (1949).
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whole Mn so that it satisfies

(G^Sf = — 1

and its covariant derivative vanishes everywhere on Mn, where G is the
fundamental metric tensor of Mn with the naturally induced metric from
Mn. Hence Mn is nothing but a pseudo-Kahlerian manifold. Accordingly, by
virtue of the well-known theoerm7) to the effect that "Let Kn be any compact
pseudo-kahlerian manifold. Then the even dimensional Betti numbers do
not vanish, odd dimensional Betti numbers are even and Bp->> < Bp for
p < n/2", we meet a contradiction to our assumption. Accordingly, the group
h° must be absolutely irreducible.

REMARK 2. O+(2) is reducible in the field K and fixes the null system

Sij = L Q\ Hence, the restricted holonomy group h° of any two dimensional

Riemannian manifold is always reducible in the field K.

THEOREM 10. // Mn (n > 3) is a compact differentiable manifold whose
universal covering manifold Mn is a homology-sphere. Then the restricted
homogeneous holonomy group h° of any Riemannian metric introduced on Mn

is absolutely irreducible.

PROOF. AS Mn is a homology sphere, Mn is not the topological product
of two manifolds of lower dimensions. Hence, we see that our assertion is
true by Theorem 8 or 9 according as n is odd or even.

COROLLARY. Any differentiate manifold Mn {n > 2) whose universal covering
manifold is a homology sphere can not be metrized so that it is a pseudo-Kahler-
ian manifold.

PROOF. The real representation of Kahlerian manifold Kn is a 2^-dimen-
sional Riemannian manifold such that every irreducible part of the holonomy
group h° with respect to the field k is reducible with respect to!the field K.
Henc^ our corollary follows immediately from Theorem 10.

THEOREM 11. Suppose that the universal covering manifold M3 of a diffe-
rentiable manifold M3 of three dimension is not the topological product of two
differentiable manifolds of lower dimensions. Then the holonomy group h of
any complete Riemannian metric on M3 is O+(3) or 0(3) according as M3 is
orientable or not.

PROOF. First, by Theorem 7, the holonomy group h° is absolutely irre-
ducible. Assume now that the theorem is not true. Then h° must be 1 or 2
parametric Lie subgroup of O+(3) and hence h° is a solvable group. Accor-
dingly, h° is reducible in the field k or K, contrary to the absolute irre-
ducibility. Therefore h° coincides with 0+(3). Hence, by Theorem 1 we see

7) A. LΐCHNEROWie7:, Generalisation de la geometris kahlerienne globale. Colloque
de geom. diff. tenu a Louvain (1951). pp. 99-122.
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that our assertion is true.

5. Decomposition of the group h° into Kroneeker Products.

LEMMA 3. If the restricted homogeneous holonomy group h° is absolutely
irreducible, then h° is semi-simple.

PROOF. First, by virtue of Schur's Iemma8> to the effect that "the
commutators of an irreducible matric set L in an algebraically closed field are
the numerical multiples aE of the unit matrix E", we know that the center
of the group h° consists only of elements of the form aE. But as h° belongs
to the orthogonal group a must be + 1 or — 1, the latter occurs only when
n is even. Hence the center of the group h° is discrete.

On the other hand, by Borel-Lichnerowicz theorem9), the group h° is
compact, so we can apply the theoreml0) to the effect that "a compact con-
nected Lie group is semi-simple if and only if its center is discrete" and
we know the truth of our assertion.

LEMMA 4. Let G be a semi-simple and absolutely irreducible Lie group of
matrices with complex coefficients. Then G can be written as a Kroneeker
product of simple and absolutely irreducible matric groups.

PROOF. Suppose that G is semi-simple but not simple. Then G can be
written as

G = gιg2,

where gλ and g2 are semi-simple normal subgroups of G such that 1) for any
elements fli € SΊ, β2 ^ 92, <*ι(* z = a±a\ a ^ d 2)gι Π 9z = discrete. (If G is compact,
20 <7i Π g2 = finite).

Now, as <7i is a subgroup of G} gτ may be reducible in the field K of
complex numbers. We decompose each element of gλ into irreducible com-
ponents as follows

gτ = AΛ -f A2 + + Aq.

Then we can see that all irreducible representations Alt ,Aq are equivalent.
For, if this is not true, we may assume that

A1 ~AZ Ap, (p< q)

but they are not equivalent to AP+1, Aq. Corresponding to the decompo-
sition of the matrices g1} we can write matrices g2 in the form | Bίfc j where
Bik are {d h dk) matrices provided that d,. = dim Ah dk = dim Ak. Applying
1) we see that

_ R , ίβ = l,2, ••, P,

8) Cf. H. WEYL. Classical groups, p. 83.
9) A. BOREL-A. LTCHNEROWICZ, Groupes d'hobnomie des varietes riemanniennes,

C. R. Paris 234 (1952), 1835.
10) Cf. L. PONTRJAGIN, Topologbal groups, p. 282.
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Hence, by Schur's Lemma8) to the effect that "If two sets of matrices Cj(S),
Ca(S) are irreducible and inequivalent, then there is no matrix B such that

d(S)B = BCIS)

holds identically in S, except B = 0", we know that Baκ = 0, and in the same
way B\a = 0. This means the reducibility of g% and hence that of G contrary
to our assumption.

As Aij " -, Aq are all equivalent, we can take basis so that

gτ = Ax + Aι + * 4- Aj. (tf factors)

Again applying 1) we have

which shows, by virtue of Schur's Lemma8), that

Bab = CabE.

Hence we see that

G = At ® A«

provided that A« = I! Cαδ j| and ® means the Kronecker product.
The sets of matrices AΊ, A2 correspond to gτ and g2 respectively. If g2

or g2 or both are not simple we continue the same process and we know the
truth of our Lemma.

LEMMA 5. // the homogeneous holonomy group h° is absolutely irreducible,
then h° is equivalent to a Kronecker product of several subgroups of real
orthogonal groups and several subgroups of unitary symplectic groups, each
of which is absolutely irreducible and simple.

PROOF. By virtue of Frobenius-Schur's theorem11) to the effect that "Let.
G be a compact group and 5 -> T{s) {s 6 G) be an absolutely irreducible
linear representation with complex coefficients. Then the representation T
is equivalent to a subgroup of a real orthogonal group or a subgroup of
unitary simple tic group if and only if

J Sp T(s-) ds > 0 or < 0
G

respectively12)" we see that

(1) JspA(pηds>0, s<Ξh°

where A(sz) is the matric corresponding to s2 of h° regarded as a topological
group.

11) G. FROBENIUS-I. SCHUR. Uber die reellen Darstellungen der endlichen Gruppe.
Sitzungsber. Koniglich. Preuss. Akad. Wiss., 1906,186-208.

12) As G is compact, the set of matrices T(s) is equivalent to a set of unitary

matrices IJ(s). Accordingly
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On the other hand, as h° is compact, each simple group gt(i = 1, , q)
which appears in the decomposition of h°

Λ° = ΰlU2""ίk

is compact13). (The right hand side is not the direct product, each two of
9i,--, 9q satisfy the conditions 1) and 2') of Lemma 4). The group gt

corresponds to the set of matrices (A«(S)}.
Now the direct product

h = g τ x g 2 x * x <JQ
A

is a covering group of h° of finite sheets, so the integral over h analogous
to (1) is also finite and positive. Hence we see that

Q Λ

Π I Sp Ai(s*)ds >0. s€gt

However, as we noticed in footnote 9) every integral I SpAt(s
2)ds is real.

Hence, again by virtue of Frobenius-Schur's theorem that even number of g1}

, gq are equivalent to some subgroups of unitary symplectic groups and
others are equivalent to some subgroups of real orthogonal groups. Conse-
quently our assertion is true.

Q. E. D.

Now suppose first that one of the matric groups gΊ, , gq say gτ is
equivalent to a subgroup of an orthogonal group. If h° is not simple, then
groups g2, , gq exist and g2g3 gq is equivalent to a subgroup of an
orthogonal group too, as is easily seen by Frobenius-Schur's Lemma. Hence,
every matrix of the group h° can be written in the following way:

where V is a constant (n, n) matrix and A^s), B(s) are matrices which belong
to the matric groups gΊ,g293" —gq regarded as real orthogonal groups. We
do not know at first that whether V is real or not. But even if V is complex,
we can easily see that the linear simultaneous equations

A(s)V= VΆ1(s) ® B(s)

f Sp 71^) ds=* f Sp U(sz) ds = f Sp U(s-*) ds

% * G * G

= Γ SpU(s*)ds-i= Γ SpU(s*)ds= f SpΊXs*)ds,

a *G *G

whi2h shows that Γ Sp T(s2)ds is real. The case ί Sp T(s*)ds = 0

•/ JG

corresponds to other cases.
13) E CART AN, La theorie des groupes finis et cotninus et Γ Analysis situs.

Memorial des Sci. Math., 42 (1930), p. 42.
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admit another real non-singular solution F(i. e. det | F | * 0 ) if we take
account of the fact that the coefficients of the last equations are all real.
Hence, if we take suitable real orthogonal frame, our holonomy group becomes
of the form 0(1) ® O(m) or its absolutely irreducible subgroups. Of course
2 < l<=m, for if one of / or m is equal to 2, then 0(1) ® U(m) is reducible
in the fi-ld K.

If q > 3, then either at least one of g1} g2, , gq is a simple subgroup
of an orthogonal group or gτg2 and g3... .gq are orthogonal groups. Hence
the holonomy group h° is again of the form 0(1) ® O(m) or an absolutely
irreducible subgroup of it.

However, if q = 2, then there remains the case where both gt and g2 are
unitary symplectic groups and hence the holonomy group h° is of the form
USp(2l) ® USp(2m).

Finally, we notice that if h° £0(/) ® O(m) then h° S O+(/) ® O+(m),
because the component of the identity of 0(1) ® O(m) is O+(l) ® O+(m). In
the same way, if h°^Sp(2l) ® USp(2m), then h°^USp+ (2l)(χ)USp+(2m),
where we denote by U Sp+ (21) the subset of USp(2l) such that every element
of which is unimodular. In general det A = + 1 or — 1 for A € USp (21).

We shall now turn to topological conditions in order that the group h°
is not of the form 0(1) ® O(m) or USp(2l) ® USp(2m).

5. Topological conditions in order that h° is not of the form
<Kl) ® O(m).

We first note that if the dimension n of a differentiate manifold Mn

is a prime number, the holonomy group h° of any Riemannian metric intro-
duced on Mn can not be of the form 0(1) ® O(m), for if h° is of the form
O(l) ® O(m), then n = Im contrary to our assumption.

THEOREM 11. Suppose that the universal covering manifold Mn of a diffe-
rentiάble manifold Mn is compact. We assume that n is not a prime number.
If B2p = 0 (p J> 2 even), then the holonomy group h° of any Riemannian metric
introduced on Mn can not be the Kronecker product 0(1) ® O(m) or a subgroup
Of it provided that n~ Im >2p, 2 < / and, p<^m.

PROOF. Suppose that the theorem is not true. Then we can endow to
Mn a Riemannian metric so that the holonomy group h° with respect to
the metric is equivalent with 0(1) ® O(m) or a subgroup of it.

Let etJSJ, k = 1, , / cc, β, y = 1, , m) be vectors which constitute
an orthogonal frame with respect to the metric such that the holonomy
group h° referred to the frame R is of the form 0(1) ® O(m). Denote the
"base point of the holonomy group h° by Po and the components of the generic
infinitisimal vector at Pϋ with respect to the frame R by ω<α. ω/α's are
Im ( = n) linearly independent differential forms of the first degree at Po.

Now we shall first prove the case p = 2. We put
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where S is a symbol which means summation with respect to the first index
and the last index in the bracket which follow S and ωω*ωω* is the matrix
multiplication. In each monomial of Φ4, the CDmponents of ω are multiplied
exteriorly, so Φ4 is a differential form of the fourth degree at Po. φ d is not
identically zero for 2 <; / <; m, because the form

(a Φ β and we do not sum on a and β) in Φ4 do not cancel with each other
as is easily seen.

Now by h° ω transforms as follows :

(2) ω'=AωB\

where A € 0(1) and B^O(m). As A*A = 1, B*B = 1, we can easily see that
Φ4 is invariant under the holonomy group h°. Hence, by virtue of Lemma

2, B4 Φ 0, contrary to our assumption. Accordingly, h° can not be of the
form Oil) (x) O(m).

Next, we shall prove the general case. As the case p = 2 we put

φjP = S ( ω ω * ω ω * . . . . ωω*),
2p

then Φ1P is a differential form of 2p-th degree at Po which is invariant under
the holonomy group h°. This form is not identically zero if 2 <; /, p<.m,
for in such case all the terms in Φ2P which reduce to

do not cancel with each other, provided that a1} a.z, , ap are all different
fixed suffixes and we do not take sum in the last monomial. Accordingly, by

virtue of Lemma 2, B2P =4= 0 contrary to our assumption B2P = 0. Hence, the

group can not be of the form Oil) © Oirri) or a subgroup of it.

REMARK 3. Readers may wonder that if the theorem can be applicable
to the case £ = 4 , / = m = 3 or not. But, as we can easily verify it, φ 8

vanishes identically in this case. For p = 2 and 4, the restrictions 2^l^m
and 2 ̂  /, 4 rg m are the best possible. However, for general p there may
be / and m which do not satisfy 2 <; /, p^m, but satisfy Z^l\m<p (Jm
> 2p) and the criterion of our theorem still holds good. But, unfortunately

I can not state now the exact conditions for / and m for such cases. The
difficulty lies only in algebraic points.

REMARK 4. If p is odd, then we can easily see Φ2J? = 0. Hence, even if

B2P = 0 (p odd), we can not get any result by this method.
REMARK 5. The key point of the last theorem is the discovery of in-

variants under all transformations of the form (2). It is equivalent with the
elimination of A and B from (2). From this point of view we become aware
that if / = m, then

(3) d e t |ct)£«| = Σ £ cii2- -H G>*UG><M -ωhi

may be an invariant under the group h° of the form 0(1) ® 0(1), where
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£ f li2.. ..it 's are equal to 1, - 1 or 0, according as ilf i2, , u are all different
and even or odd permutation of 1, 2, . . . . , / or at least two of them coincide
with each other. However, contrary to our expectation det \ωiΛ\ is not
invariant under the transformations of the form (2), on account of the fact
that in each monimial of the right hand side of (3) factors ω are not multiplied
ordinarily but are multiplied exteriorly. So, we shall modify the determinant
so that the modified one is an invariant under all transformations of the
form (2). To do this we put

T == ωω*.

Hereafter we do not assume that / = m. τ transforms under (2) by

(4) T' = AT A*

As Tij's are differential forms of the second degree any two τ//s in each
monomial of

(5) An = det I Ttj | = 2 £ >v2 h τ« n τ/22 n%i

are interchangeable without changing the sign of the term, so we can apply
ordinary algebraic rule to (5) and know that det \πj\ is invariant under all
transformations which belong to 0(1) (x) O(m). However, as A1Z is a skew-
symmetric determinant, Δ3? is not identically zero only when / is even and
m^2. In such case, Φ2ι is not identically zero, the criterion which uses
A2ι is not so powerful than the criterion which uses Φ2ι.

6. Topologieal conditions in order that 7ι° is not of the form
USp (2ί) ® USp(2m).

We first note that if the dimension n of a differentiate manifold Mn is
not of the form Aim the holonomy group h° of any Riemannian metric
introduced on Mn can not be of the form USp (21) ® USp (2m), for if h° is
of fhe form USp(2l) (x) USp(2m), then n— Aim contrary to our assumption.

THEOREM 12. Suppose that the universal covering manifold Mn of a diffe-
rentiable manifold Mu is compact. We assume that n is an integer which can
be written in the form Aim (1 < / <; m). If B2P = 0(p > 2, even), then the
holonomy group h° of any Riemannian metric introduced on Mn can not be
equivalent to the Kronecker product USp(2l) (x) USp(2m) or a subgroup of it
provided that n = 4 Im > 2p and (i)l <Ξ /, p — 1 <; m or (iϊ)p —2<,l<:m.

PROOF. Suppose that the theorem is not true. Then we can endow to
Mn a Riemannian metric so that the holonomy group h° with respect to the
metric is equivalent with USp(2l) (x) USp (2m) or a subgroup of it. Let eia

{ij, k = 1, 2 /; a, β, y = 1, 2 m) be vectors of the frame R such that
the holonomy group h° with respect to the frame R is of the form USp(2l)
® USp (2 m). Denote the base point of the holonomy group h° by Po and the
components of the generic infinitesimal vector at Po with respect to the
frame R by ωiΛ. ωiΛ

 ?s are 4 Im ( = n) linearly independent differential forms
of the first degree with complex coefficients at Po. We denote by
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when i — j-\ I,
when i—j — /,
otherwise,

when a = β + m,
when a - β — m,
otherwise,

the coefficients of the skew-symmetric 2-forms which are invariant under
USp(2l) and USP(2m) respectively.

First let us prove the case p = 2. We define a differential form Ψ4 by
Ψ*=S(IωJω*IωJω*)

and show that Ψά is invariant under the group h°. By an arbitrary transfor-
mation of h°, ω is transformed as follows:

where A € USp(2l) and B € USp(2m). As

A*A = 1, A* /A = /,

£*J3= 1, B*JB^J,

we see easily that

A7^/A, BJ=-JB.

Hence we get
ψ; -̂  sow /*/* /«' /G/*)

= S(IA ω B*JB ω* A* /A ω β*/5 ω* A*)

= S(/ω7ω-/ω/ω*)= ψ4,

which shows that Ψ4 is invariant under h°.
We can verify that Ψ4 is not identically zero. ^The simplest way is to

.notice that the term
ωn G>i2 ω π &>ϊ2

does not vanish, where we have put i ~ I -{- i, a =« m + a. Hence at least
one of the two real differential froms SίΨ4 and 3Ψ4, say 9tΨ4, is not identically
zero and is invariant under h°. Hence, by virtue of Lemma 2, Z?4=J=0, contrary
to our assumption. Accordingly, h° can not be of the form USp(2l) (x) USp(2m).

Next, we shall prove the general case. We put

2p

then Ψ2P is a differntial form of 2^-th degree at Po, which is invariant under
the holonomy group h°, where Po is the base point of the holonomy group
h°. We can verify that Ψ2P is not identically zero.

For, if 1 <Ξ /, p — 1 <; m, then the term

•does not vanish, and if p — 2^ I <^ tn, the term
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does not vanish, where we assume that au ah ocp-2, ap-Ύ are all different

fixed integers and we do not take sum about a. Hence at least one of the
two differential forms 3tΨ2P and 3Ψ2p is not identically zero and is invariant
under h°. Hence, by virtue of Lemma 2, we see B2P φ 0, contrary to our
assumption. Accordingly, the group h° can not be of the form USp(2l) ® USp
(2m).

REMARK 6. As in § 5 readers may wonder that if the restrictions (i)
and (ii) are the best possible or not. We can say that for p = 2 these
restrictions become trivial and for p = 4 they are the best possible. However,
we guess that they are not the best possible for general p, in other words,
there will exist a set of values of I and m which do not satisfy (i) and (ii),
but the vanishing of the Betti number B2P still implies that the group h° can
not be of the form USp(2l) ® USp(2m).

REMARK 7. If p is odd, we can easily see that Ψ2P = 0. Hence from the

vanishing of BιP (p odd) we can not get any result by our method.

7. Topologieal conditions for simplicity of the group 7ι°.

THEOREM 13. Suppose that the universal covering manifold Mn of a diffe-
rentiable manifold Mn is compact, is not the topologieal product of two manifolds
of lower dimensions and satisfies one of the two following conditions: (ϊ)n is
an odd number, (ii) n is an even number and Mn satisfies topologieal conditions
stated in Theorem 8. / / one of the following two conditions is satisfied, then
the holonomy group h° of any Riemannian metric introduced on Mn is simple :
(a) n is a prime number, (b) n is not a prime number, but either n > 4 and

Z?4 = 0 or n > 8 arud Bs = 0.

PROOF. First, by Theorem 3,7 and 8, we see that the group h° is absolutely
irreducible. Then by Theorem 11 and 12, we see that h° can neither be of
the form 0{l) ® 0{m) nor of the form USp(2l) ® USp(2m). Hence by virtue
of § 4 we know that h° is simple.

COROLLARY. The holonomy group h° ( = h) of any Riemannian metric

introduced on a homology sphere Sn is simple if n ^ 2 and w Φ ί

When n = 4, the holonomy group h° ( = h) of any Riemannian metric
introduced on S* is absolutely irreducible as is seen by Theorem 9. However,
we can not apply Theorem 12 and 13 and hence 14. But, h° can not be O(2)
® 0(2), because O(2) ® O(2) is reducible in the field K of complex numbers.
However O+(4) itself is equivalent to USp{2) ® USp(2) and of course O+(4)
can be the group h°, h° is semi-simple and not simple in general.
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