ON A GENERALIZED PRINCIPAL IDEAL THEOREM

FUMIYUKI TERADA

(Received May 27, 1954)

1. Introduction. The author proved several years ago following theorem¹⁾, which is a generalization of the Hilbert's principal ideal theorem.

THEOREM. Let K be the absolute class field of a number field k, and Ω be an intermediate field of K/k such that Ω/k is cyclic. Then each ambigous ideal in Ω is principal when it is considered in K.

By the Artin's law of reciprocity, this theorem can be translated into a group theoretical one. Let G be a finite group whose commutator subgroup G' is abelian. Let H be an invariant subgroup with cyclic factor group G/H. Let us denote $S (=S_0)$ a representative of a generator of the cyclic group G/H, and also denote S_1, \ldots, S_m representatives of generators of the abelian group H/G', with orders mod $G'(e_1, \ldots, e_m)$, respectively. We shall assume also that S_1, \ldots, S_m generate the group H; this is accomplished by adding to them, if necessary, certain elements in G' with $e_i = 1$. Now the theorem is translated into the following

THEOREM 1. If an element $A = S_{i_1}^{\alpha_1} \cdots S_{i_n}^{\alpha_n}$ of H satisfies $SAS^{-1}A^{-1} \in H'$, then

$$V_{H \to G'}(A) = \prod_{j=1}^n V_{H \to G'}(S_{i_j})^{\alpha_j} = 1.$$

Author's proof of this theorem was rather complicated, and an alternative simplified proof was given by Prof. T. Tannaka²⁾. The aim of this note is to give another proof transforming it into a problem concerning a group of linear transformations as it was done by Magnus³⁾, and we avoided the computations concerning determinants as much as possible.

2. A group of linear transformations. Let us consider a group generated by the following m + 1 linear transformations;

$$\mathbf{S}_i: \mathbf{z}' = \mathbf{t}_i \mathbf{z} + \mathbf{a}_i \qquad (i = 0, 1, \cdots, m)$$

where *m* is the number of S_i in §1, and t_i , a_i are supposed to be algebraically independent with respect to the rational integral domain Z. We can show easily that

$$\bar{S}_{i_1}^{\alpha_1}\cdots \bar{S}_{i_n}^{\alpha_n}: z' = Tz + A = t_{i_1}^{\alpha_1}\cdots t_{i_n}^{\alpha_n}z + A,$$

¹⁾ F. TERADA, On a generalization of the principal ideal theorem, this, journal, 2nd Ser., Vol. 1(1949).

T. TANNAKA, An alternative proof of a generalized principal ideal theorem, Proc. Japan Academy, vol. 25(1949).

³⁾ W. MAGNUS, Ueber den Beweis des Hauptidealsatzes, Crelle's Journal 170(1934).

where A is a linear form of a_i with rational functions of t_i as coefficients.⁴) More precisely, expanding 1 - T as

(1) $1 - T = 1 - t_{1}^{\alpha_1} + t_1^{\alpha_1}(1 - t_{i_2}^{\alpha_2}) + \cdots = \delta_1 \Delta_{i_1} + \cdots + \delta_n \Delta_{i_n},$ where $\Delta_i = 1 - t_i^{(5)}$, we have an identity⁶

(2) $A = \delta_1 a_{i_1} + \cdots + \delta_n a_{i_n} \text{ and } \delta_i(1) = \alpha_i.$

Moreover following relations are also verified easily.

(3)
$$\overline{S}_i \overline{S}_k S_i^{-1} \overline{S}_k^{-1} \colon z' = z + (\Delta_k a_i - \Delta_i a_k)$$

(4)
$$\overline{S}: z' = Tz + A, \quad \overline{S}': z' = z + C \longrightarrow \overline{SS'S}^{-1}: z = z + TC$$

(5)
$$\overline{S}: z' = z + C, \qquad \overline{S'}: z' = z + C' \longrightarrow \overline{SS'}: z' = z + C + C'$$

We now introduce *m* relations $t_i^{e_i} = 1$ $(i = 1, \dots, m)^{\tau}$ into the coefficients of the above transformations, e_i being the order of $S_i \mod G'$. Let us denote by \mathfrak{G} the group obtained by this manner, and also denote \mathfrak{G}_0 the subgroup of \mathfrak{G} consisting of the elements of the from $\overline{S}: \mathbf{z}' = \mathbf{z} + \mathbf{C}$ (i. e. T= 1). Then $\overline{S}_i^{e_i}(i = 1, \dots, m)$ is contained in \mathfrak{G}_0 as it follows from the relation

(6)
$$S_i^{e_i}: z' = z + (1 + t_i + \cdots + t_i^{e_i-1})a_i = z + f_i a_i \quad (i = 1, \cdots, m),$$

where $f_i = 1 + t_i + \cdots + t_i^{e_i-1}$. It follows from (3)~(5) that G_0 is an abelian normal subgroup of \mathfrak{G} with abelian factor group $\mathfrak{G}/\mathfrak{G}_0$. To avoid confusion, we shall describe an element $\overline{S}: z' = z + C$ of \mathfrak{G}_0 simply by C, and the group operation will be denoted additively.

The elements $S_{l}^{e_i}$ $(i = 1, \dots, m)$ of G are contained in G', and there is m relations between these elements and commutators. These will be written as

(7)
$$S_{i}^{e_{i}} = \prod [S_{k}, S_{i}]^{P_{k}^{(i)}}$$
 $(i = 1, \dots, m),$

where the sign [x, y] means the commutator $xyx^{-1}y^{-1}$ and $P_{kl}^{(i)}$ is an element of the group ring [G/G'] and the powers mean the usual symbolic power. In the following we shall confine ourself with a fixed representation (7) among the possible representations. Replacing all s_j by t_j in $P_{kl}^{(i)}$, we have a function which will be denoted by the same symbol $P_{kl}^{(i)}$. Now, let us introduce the relation (7) into the group \mathfrak{G} and denote the group obtained by \mathfrak{G} . These relations may be denoted additively as

6) The coefficient δ_j is just the derivation $\frac{\partial T}{\partial t_{i_j}}$ which is defined in the free group generated by t_0, \ldots, t_m . Cf. R. H. Fox, Differential calculus in free groups, Ann. of Math., vol. 57(1953).

96

⁴⁾ The denominator of this coefficient is a monomial of t_0, t_1, \dots, t_m . All the rational functions of t_i which will be appear in the followings are of this type, and we shall denote h_i, g_i, P_{kl} , etc., without notice there. We shall call the t_i -degree of a function the t_i -degree of the numerator of this function in its incommensurable form.

⁵⁾ This symbol will be used till the end of this paper.

⁷⁾ Notice that we introduce no relations for t_0 , which is corresponded to $S=S_0$ in G, and is treated distinctively from the other elements t_1, \ldots, t_m in the following.

PRINCIPAL IDEAL THEOREM

(7*)
$$f_i a_i = \sum_{k>l}^{0,\ldots,m} P_{kl}^{(i)}(\Delta_l a_k - \Delta_k a_l) \qquad (i = 1, \ldots, m)$$

The subgroup of \mathcal{G} corresponding to \mathcal{G}_0 will be denoted by $\overline{\mathcal{G}_0}$. Then the correspondence $\overline{S}_i \rightarrow S_i$ defines a homomorphism ψ of \mathcal{G} onto G (c. f. 4).

3. Proof of the theorem. An inverse image $S_{i_1}^{\alpha_1} \cdots S_{i_n}^{\alpha_n}$ in our Theorem by the homomorphism ψ is expressed as

 $z' = Tz + A, T = t_{i_1}^{\alpha_1} \cdots t_{i_n}^{\alpha_n}, A = \delta_1 a_{i_1} + \cdots + \delta_n a_{i_n}.$

Then an inverse image of $SAS^{-1}A^{-1}$ is an element of \mathfrak{G}_0 expressed, from (2), as

$$(1-T)a_0-\Delta_0A=\delta_1(\Delta_{i_1}a_0-\Delta_0a_{i_1})+\cdots+\delta_n(\Delta_{i_n}a_0-\Delta_0a_{i_n}),\,\delta_j(1)=\alpha_j,$$

and this will be rewritten as $\sum_{i=1} \gamma_i (\Delta_0 a_i - \Delta_i a_0)$. But also, an inverse image of $V_{H \to G'}(S_{ij})^{\alpha_j} = (\prod_{x} S_1^{x_1} \cdots S_m^{x_m} S_{ij}^{x_{ij}} S_1^{-x_1} \cdots S_m^{-x_m})^{\alpha_j}$ is $f_1 \cdots f_m \alpha_j a_{ij} = f_1 \cdots f_m$ $\delta_j a_{ij}$; and therefore, $f_1 \cdots f_m \sum \gamma_i a_i$ is an inverse image of $V_{H \to G'}(A)$. Now let us prove the following

PROPOSITION. If there is a relation

(8)
$$\sum_{i=1}^{m} \gamma_i (\Delta_i a_0 - \Delta_0 a_i) = \sum_{i>j}^{1,\ldots,m} f_{ij} (\Delta_i a_j - \Delta_j a_i) + C$$

in the group \mathfrak{G}_0 , then there is a rational function D of t_0, \dots, t_m such that

$$f_1\cdots f_m\sum \gamma_i a_i=DC.$$

Each element of H' has an inverse image of the form $\sum f_{ij}(\Delta_i a_j - \Delta_j a_i)$, and the relation (8) is a general form of the inverse image of the assumption $SAS^{-1}A^{-1} \in H'$ of our theorem, where C satisfies the relation $\psi(C) = 1$. From this proposition, we have $V_{H \to G'}(A) = \psi(f_1 \cdots f_m \sum \gamma_i a_i) = \psi(DC)$, and it follows from (4) that $\psi(DC)$ is a conjugate of $\psi(C) = 1$, and this shows our main theorem.

PROOF OF THE PROPOSITION⁸⁾. From (7*) we have

$$f_i a_i - \sum_{k>l}^{1, \ldots, m} P_{kl}^{(i)} \left(\Delta_l a_k - \Delta_k a_l \right) - \sum_{k=1}^{m} P_{k0}^{(i)} \Delta_0 a_k = -\sum_{k=1}^{m} P_{k0}^{(i)} \Delta_k a_0.$$

Rewriting $-\sum P_{kl}^{(i)}(\Delta_{k} a_{k} - \Delta_{k} a_{l}) - \sum P_{k0}^{(i)} \Delta_{0} a_{k} = \sum_{k=1}^{m} Q_{ik} a_{k}, - \sum P_{k0}^{(i)} \Delta_{k} = R_{i},$

we have

⁸⁾ It can be assumed that the functions γ_i , f_{ij} , $P_{kl}^{(i)}$,in this proof are polynomials of t_i , although it is not necessary for our purpose.

F. TERADA

(9)
$$f_i a_i + \sum_{k=1}^m Q_{ik} a_k = R_i a_0. \qquad (i = 1, \dots, m)$$

By the Cramer's formula concerning linear equations, we have

(10)
$$\begin{pmatrix} f_1 + Q_{11} \cdots Q_{1m} \\ \cdots \\ Q_{m1} \cdots \cdots \\ f_m + Q_{mm} \end{pmatrix} \begin{vmatrix} a_k = \begin{pmatrix} f_1 + Q_{11} \cdots \\ \cdots \\ Q_{m1} \cdots \\ R_m \cdots \\ f_m + Q_{mm} \end{vmatrix} \begin{vmatrix} a_0 \\ a_0 \end{vmatrix}$$

L t us denote these determinants by D_0 and D_k respectively. Then we have (11) $D_l a_k = D_k a_l$ $(k, l = 0, 1, \dots, m)$. For l = 0, this is the identity (10) itself: and for $k \pm 0$, $l \pm 0$, after transposing, in the equality (9), the term of a_l in the left-hand side to the right and also the term $R_l a_0$ in the right-hand side to the left (i. e, exchanging the term of a_l and $R_l a_0$ with negative sign), we have (11) by a similar method.

As the above equality $-\sum P_{kl}^{(i)} (a_k \Delta_l - a_l \Delta_k) - \sum P_{k0}^{(l)} \Delta_0 a_k = \sum Q_{lk} a_k$ is an identity, we may put Δ_k into a_k , and we have $\sum Q_{lk} \Delta_k = -\sum P_{k0}^{(l)} \Delta_0 \Delta_k$ $= R_l \Delta_0$. Also, by the definition, $\Delta_l f_l = 0$. Therefore, after multiplying the first row of the determinant D_0 by Δ_1, \dots , the last row of D_0 by Δ_m , we have the following identities by adding them to the k-th row:

$$\Delta_i D_0 = \begin{vmatrix} f_1 + Q_{11} \cdots \sum Q_{1k} \Delta_k \cdots Q_{1m} \\ \cdots \\ Q_{m1} \cdots \sum Q_{mk} \Delta_k \cdots f_m + Q_{mm} \end{vmatrix} = \Delta_0 D_i. \quad (i = 1, \cdots, m).$$

Denoting $D_0(1, t_1, \dots, t_m)$ by D', then there is a rational function D such that $D_0 = \Delta_0 D + D'$. Then the above formula shows $\Delta_0 (D_i - \Delta_i D) = \Delta_i D'$, and this shows

$$D_i = \Delta_i D \qquad (i = 1, \dots, m)$$

and $\Delta_i D' = 0$ by comparing the t_0 -degree of the both side of the identity. Moreover, the last formula $\Delta_i D' = 0$ shows that D' is divisible by each f_i $(i = 1, \dots, m)$, and D' is expressed as $D' = f_1 \dots f_m D''$ where D'' is a function of t_1, \dots, t_m and therefore it may be considered as a constant because $t_i f_1$ $\dots f_m = f_1 \dots f_m$ $(i = 1, \dots, m)$. Thus we have $D_0 = \Delta_0 D + f_1 \dots f_m D''$, and putting 1 into all t_i $(i = 0, \dots, m)$ of this identity, we have $D_0(1) = e_1 \dots e_m$ D''. It is shown easily from the definition of D_0 , $D_0(1) = e_1 \dots e_m$, and this shows D'' = 1. Therefore we have

$$D_0 = \Delta_0 D + f_1 \cdots f_m.$$

Finally, let us compute
$$f_1 \cdots f_m \sum \gamma_i a_i$$
. It is performed by (8) and (11)~(12).
 $f_1 \cdots f_m \sum \gamma_i a_i = \sum \gamma_i (D_0 - \Delta_0 D) a_i = \sum \gamma_i D a_0 - \sum D \Delta_0 \gamma_i a_i$, by (13) and (11),
 $= \sum \gamma_i \Delta_i D a_0 - \sum \gamma_i \Delta_0 D a_i = D \sum \gamma_i (\Delta_i a_0 - \Delta_0 a_i)$, by (11),
 $= D \sum f_{ij} (\Delta_i a_j - \Delta_j a_i) + DC = \sum f_{ij} (D_i a_j - D_j a_i) + DC$, by (8) and (11),
 $= DC$, by (11),

98

which is our proposition.

q. e. d.

4. Remarks. a) We shall prove that ψ is a homomorphism of the group \mathfrak{G} onto the group G. Let us consider a free group \mathfrak{F} generated by m + 1 elements $F_{\mathfrak{V}}, \ldots, F_m$, and prove that the correspondence $\varphi: F_i \rightarrow S_i$ defines an isomorphism φ of the group $\mathfrak{F}/\{F_1^{\mathfrak{v}_1}, \ldots, F_m^{\mathfrak{o}_m}, \mathfrak{F}'\}$ onto the group \mathfrak{G} . It is easy to see that our purpose follows from this immediately. Moreover, it is enough to prove that if there is a relation

(14)
$$\varphi(F) = \overline{S}_{i_1}^{\alpha_1} \cdots S_{i_n}^{\alpha_n} = 1 \text{ in } \mathfrak{G},$$

we have

(15)
$$F = F_{i_1}^{\alpha_1}, \cdots F_{i_n}^{\alpha_n} \equiv 1 \mod \mathfrak{F}_0 = \{F_1^{e_1}, \cdots, F_m^{e_m}, \mathfrak{F}'\}'.$$

Firstly, rewriting F as $F \equiv F_0^{3_0} \cdots F_m^{3_m} \pmod{\mathfrak{F}}$, we have $\varphi(F) = \overline{S_0^{\beta_0}} \cdots \overline{S_m^{\beta_m}} \equiv 1 \mod \mathfrak{G}'$, and this shows $t_0^{\beta_0} \cdots t_m^{\beta_m} \equiv 1$, and it follows $\beta_0 = 0$, $\beta_i \equiv 0 \mod e_i$ for $i \ge 1$. Therefore F is expressed as

(16)
$$F = F_1^{e_1\gamma_1} \cdots F_m^{e_m\gamma_m} \prod_{k>l}^{0, \dots, m} [F_k, F_l]^{g_{kl}} \mod \widetilde{\mathfrak{G}}_0,$$

where the powers mean the symbolic power. In this expression, we may assume that g_{kl} is polynomial of F_0, \ldots, F_m , and especially such that

1) the F_i -degree of g_{kl} is less than e_i for all $i \ge 1$,

2) the F_k -and F_l -degree of g_{kl} is less than $e_k - 1$ and $e_l - 1$ for $k, l \ge 1$,

3) the F_j -degree of g_{kl} is zero for j < l < k,

4) the F_i -degree of γ_i is zero for all $i \ge 1$.

For, 1) follows from $[F_i^{e_i}, \widetilde{\mathfrak{V}}'] \subset \widetilde{\mathfrak{F}}_0, 2$ follows from $[F_k, F_l]^{F_k^{e_k-1}} + \dots + 1$

 $=F_k^{e_k(1,-F_l)}$, which is combined with $F_k^{e_k(1,-F_l)}$ into a factor, 3) follows from $[F_k, F_l]^{1-F_j} = [F_i, F_j]^{F_k-1}[F_k, F_j]^{1-F_l}$, which are combined with $[F_i, F_j]^{q_{ij}}$ and $[F_k, F_j]^{q_{kj}}$, and finally 4) follows from $F_i^{e_k(1-F_l)} = 1$. Now we have from (14) and (16)

$$arphi(F) = \overline{S}_1^{e_1 \gamma_1} \cdots \overline{S}_m^{e_m \gamma_{mk}} \prod_{k < l}^{m} [\overline{S}_k, S_l]^{q_{kl}} = 1,$$

where γ_i and g_{kl} are polynomials of t_i obtained from γ_i and g_{kl} in (16) by replacing all F_i by t_i . Expressing this condition by means of a_i , and recalling the algebraic independence of a_i , we have

$$\gamma_i f_i + \Delta_{i+1} g_{i+1,i} + \cdots + \Delta_m g_{m_i} - \Delta_0 g_{i_0} - \cdots - \Delta_{i-1} g_{i,i-1} = 0 \ (i = 1, \ldots, m).$$

Comparing the t_i -degree, we have $\gamma_i = 0$ from the normality of γ and g. Moreover, comparing the t_0 -degree, we have $g_{i0} = 0$, and so on. Thus we have $\gamma_i(t) = 0$, $g_{kl}(t) = 0$, and this shows $\gamma_i(F) = 0$, $g_{kl}(F) = 0$; that is $F \equiv 1 \mod \mathfrak{F}_0$, as it was desired.

b) In our group \mathfrak{G} of linear transformations, let us denote $\overline{\mathfrak{H}}$ an invariant subgroup generated by $\overline{S}_1, \dots, \overline{S}_m$ and $\overline{\mathfrak{G}}_0$ (= \mathfrak{G}'). Then the factor group $\overline{\mathfrak{G}}/\mathfrak{H}$

F. TERADA

is a cyclic group with generator \overline{S}_0 , and $\overline{\mathfrak{H}}/\overline{\mathfrak{G}}'$ is an abelian group of the type (e_1, \ldots, e_m) . It will be shown easily that we have our main theorem concerning the group $\overline{\mathfrak{G}}$, which is an infinite group. But also, we have the inverse of this theorem concerning this group $\overline{\mathfrak{G}}$; that is, we have

THEOREM 2. A necessary and sufficient condition for an element $A \in \overline{\mathfrak{H}}$ to satisfy $V_{\overline{\mathfrak{H}} \to \overline{\mathfrak{H}}}(A) = 1$ is that A is an ambigous element, that is, A satisfies $SAS^{-1}A^{-1} \in \overline{\mathfrak{H}}$.

PROOF. The commutator subgroup $\overline{\mathfrak{H}}'$ is generated by the following elements with symbolic power

$$\Delta_i a_j - \Delta_j a_i, \quad \Delta_i (\Delta_j a_0 - \Delta_0 a_j) \qquad (i, j = 1, \dots, m),$$

and the group $\overline{\mathfrak{G}}_0 = \overline{\mathfrak{G}}'$ is generated by these elements and $\Delta_j a_0 - \Delta_0 a_j$ $(j = 1, \dots, m)$. As it was shown in §3, $V_{\bar{\mathfrak{G}} \to \overline{\mathfrak{G}}'}(A)$ and $SAS^{-1}A^{-1}$ are expressed as

 $f_1 \dots f_m \sum_{i=1}^m \gamma_i a_i$ and $\sum_{i=1}^m \gamma_i (\Delta_i a_0 - \Delta_0 a_i)$, respectively. Let us denote the element

 $\sum \gamma_i (\Delta_i a_0 - \Delta_0 a_i)$ in $\overline{\mathbb{G}}'$ as

$$\sum_{i=1}^{m} \gamma_i (\Delta_i a_0 - \Delta_0 a_i)$$

= $\sum_{i=1}^{m} \lambda_i (\Delta_i a_0 - \Delta_0 a_i) + \sum_{i>j}^{1, \dots, m} \mu_{ij} (\Delta_i a_j - \Delta_j a_i) + \sum_{i,j}^{1, \dots, m} \nu_{ij} \Delta_i (\Delta_j a_0 - \Delta_0 a_j),$

where λ_i has no terms of t_1, \ldots, t_m . Then, as it was proved in the preceding proposition,

$$f_{1}, \dots, f_{m} \sum \gamma_{i} a_{i} = D \sum \gamma_{i} (\Delta_{i} a_{0} - \Delta_{0} a_{i})$$
$$= \sum D\lambda_{i} (\Delta_{i} a_{0} - \Delta_{0} a_{i}) + \sum D\mu_{ij} (\Delta_{i} a_{j} - \Delta_{j} a_{i}) + \sum D\nu_{ij} \Delta_{i} (\Delta_{j} a_{0} - \Delta_{0} a_{j}).$$

As it was shown in the mentioned proposition, it holds $D(\Delta_i a_j - \Delta_j a_i) = 0$ for $i > j \ge 1$. Also, $D\Delta_i(\Delta_j a_0 - \Delta_0 a_j) = D_j \Delta_i a_0 - D_0 \Delta_i a_j + \Delta_i f_1 \cdots f_m a_j$ by (12) and (13), and $= \Delta_i D_j a_0 - \Delta_i D_j a_0$ by (11), and hence = 0. Finally $D(\Delta_i a_0 - \Delta_0 a_i)$ $= D_i a_0 - D_0 a_i + f_1 \cdots f_m a_i = f_1 \cdots f_m a_i$. Thus we have

$$f_1 \cdots f_m \sum \gamma_i a_i = f_1 \cdots f_m \sum \lambda_i a_i$$

But λ_i has no terms of t_1, \dots, t_m , and therefore, a necessary and sufficient condition for $f_1 \dots f_m \sum \gamma_i a_i = 0$ is $\lambda_i = 0$ $(i = 1, \dots, m)$, that is, $SAS^{-1}A^{-1}$ is contained in $\overline{\delta'}$.

This theorem suggests us that the condition $SAS^{-1}A^{-1} \in H'$ will be necessary in general for the validity of the main theorem, though for individual groups some special condition will guarantee a generation.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY

100