ON A GENERALIZED PRINCIPAL IDEAL THEOREM

Fumiyuri Terada

(Received May 27, 1954)

1. Introduction. The author proved several years ago following theorem ${ }^{1)}$, which is a generalization of the Hilbert's principal ideal theorem.

Theorem. Let K be the absolute class field of a number field k, and Ω be an intermediate field of K / k such that Ω / k is cyclic. Then each ambigous ideal in Ω is principal when it is considered in K.

By the Artin's law of reciprocity, this theorem can be translated into a group theoretical one. Let G be a finite group whose commutator subgroup G^{\prime} is abelian. Let H be an invariant subgroup with cyclic factor group G / H. Let us denote $S\left(=S_{0}\right)$ a representative of a generator of the cyclic group \boldsymbol{G} / H, and also denote S_{1}, \ldots, S_{m} representatives of generators of the abelian group H / G^{\prime}, with orders mod $G^{\prime} e_{1}, \cdots, e_{m}$, respectively. We shall assume also that S_{1}, \cdots, S_{m} generate the group H; this is accomplished by adding to them, if necessary, certain elements in G^{\prime} with $e_{i}=1$. Now the theorem is translated into the following

Theorem 1. If an element $A=S_{i_{1}}^{\alpha_{1}} \cdots S_{i_{n}}^{\alpha_{n}}$ of H satisfies $S A S^{-1} A^{-1} \in H^{\prime}$, then

$$
V_{H \rightarrow a^{\prime}}(A)=\prod_{j=1}^{n} V_{H \rightarrow G^{\prime}}\left(\mathrm{S}_{i_{j}}\right)^{\alpha_{j}}=1
$$

Author's proof of this theorem was rather complicated, and an alternative simplified proof was given by Prof. T. Tannaka ${ }^{2}$. The aim of this note is to give another proof transforming it into a problem concerning a group of linear transformations as it was done by Magnus ${ }^{33}$, and we avoided the computations concerning determinants as much as possible.
2. A group of linear transformations. Let us consider a group generated by the following $m+1$ linear transformations ;

$$
S_{i}: z^{\prime}=t_{i} z+a_{i} \quad(i=0,1, \cdots \cdot m)
$$

where m is the number of S_{i} in $\S 1$, and t_{i}, a_{i} are supposed to be algebraically independent with respect to the rational integral domain Z. We can show easily that

$$
\bar{S}_{i_{1}}^{\alpha_{1}} \cdots \cdot \bar{S}_{i_{n}}^{\alpha_{n}}: z^{\prime}=T z+A=t_{i, 1}^{\alpha_{1}} \cdots t_{i_{n}}^{\alpha_{n}} z+A
$$

[^0]where A is a linear form of a_{i} with rational functions of t_{i} as coefficients. ${ }^{4)}$ More precisely, expanding $1-T$ as
\[

$$
\begin{equation*}
1-T=1-t_{1_{1}}^{\alpha_{1}}+t_{1}^{\alpha_{1}}\left(1-t_{i_{2}}^{\alpha_{2}}\right)+\cdots=\delta_{1} \Delta_{i_{1}}+\cdots+\delta_{n} \Delta_{i_{n}}, \tag{1}
\end{equation*}
$$

\]

where $\Delta_{i}=1-t_{i}{ }^{5}$, we have an identity ${ }^{6)}$

$$
\begin{equation*}
A=\delta_{1} a_{i_{1}}+\cdots+\delta_{n} a_{i_{n}} \text { and } \delta_{i}(1)=\alpha_{i} . \tag{2}
\end{equation*}
$$

Moreover following relations are also verified easily.

$$
\begin{equation*}
\bar{S}_{i} \bar{S}_{k} \bar{S}_{i}^{-1} S_{k}^{-1}: z^{\prime}=z+\left(\Delta_{k} a_{i}-\Delta_{i} a_{k}\right) \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll}
\bar{S}: z^{\prime}=T z+A, & \bar{S}^{\prime}: z^{\prime}=z+C \longrightarrow \overline{S S}^{\prime} S^{-1}: z=z+T C \\
\bar{S}: z^{\prime}=z+C, & \overline{S^{\prime}}: z^{\prime}=z+C^{\prime} \longrightarrow \overline{S S}^{\prime}: z^{\prime}=z+C+C^{\prime} \tag{5}
\end{array}
$$

We now introduce m relations $t_{i}^{e_{i}}=1(i=1, \cdots, m)^{7}$ into the coefficients of the above transformations, e_{i} being the order of $S_{i} \bmod G^{\prime}$. Let us denote by 15 the group obtained by this manner, and also denote $\mathbb{G O}_{0}$ the
 $=1)$. Then $\bar{S}_{i}^{i}(i=1, \cdots, m)$ is contained in $\left(\mathscr{F}_{0}\right.$ as it follows from the relation

$$
\begin{equation*}
\bar{S}_{i}^{e_{i}}: z^{\prime}=z+\left(1+t_{i}+\cdots+t_{i}^{t_{i}-1}\right) x_{i}=z+f_{i} a_{i} \quad(i=1, \cdots, m), \tag{6}
\end{equation*}
$$

where $f_{i}=1+t_{i}+\cdots+t_{i}^{i_{i}^{-15}}$). It follows from (3)~(5) that G_{0} is an abelian normal subgroup of $\mathscr{F S}^{5}$ with abelian factor group $\mathscr{F}^{5} / \mathscr{G}_{v}$. To avoid confusion, we shall describe an element $\bar{S}: z^{\prime}=z+C$ of \uplus_{0} simply by C, and the group operation will be denoted additively.

The elements $S_{i}^{e_{i}}(i=1, \cdots, m)$ of G are contained in G^{\prime}, and there is m relations between these elements and commutators. These will be written as

$$
\begin{equation*}
S_{i}^{e_{i}}=\Pi\left[S_{k}, S_{l}\right]^{P_{k i}^{(i)}} \quad(i=1, \cdots, m), \tag{7}
\end{equation*}
$$

where the $\operatorname{sign}[x, y]$ means the commutator $x y x^{-1} y^{-1}$ and $P_{k l}^{(i)}$ is an element of the group ring $\left[G / G^{\prime}\right]$ and the powers mean the usual symbolir oower. In the following we shall confine ourself with a fixed representation (7) among the possible representations. Replacing all s_{j} by t_{j} in $P_{k l}^{(i)}$, we have a function which will be denoted by the same symbol $P_{k l}^{(i)}$. Now, let us introduce the relation (7) into the group (\mathfrak{F} and denote the group obtained by ($\sqrt{2}$. These relations may be denoted additively as
4) The denominator of this coefficient is a monomial of $t_{0}, t_{1}, \ldots \ldots t_{m}$. All the rational functions of t_{i} which will be appear in the followings are of this type, and we shall denote $h_{i}, g_{i}, P_{k l}$, etc., without notice there. We shall call the t_{i}-degree of a function the t_{i}-degree of the numerator of this function in its incommensurable form.
5) This symbol will be used till the end of this paper.
6) The coefficient δj is just the derivation $\frac{\partial T}{\partial t_{i j}}$ which is defined in the free group generated by $t_{0}, \ldots \ldots, t_{m}$. Cf. R. H. Fox, Differential calculus in free groups, Ann. of Math., vol. 57(1953).
7) Notice that we introduce no relations for t_{0}, which is corresponded to $S=S_{0}$ in G, and is treated distinctively from the other elements $t_{1}, \ldots \ldots, t_{m}$ in the following.

$$
\begin{equation*}
f_{i} a_{1}=\sum_{k>l}^{0, \ldots, m} P_{k l}^{(i)}\left(\Delta, a_{k}-\Delta_{k} a_{l}\right) \quad(i=1, \cdots, m) \tag{*}
\end{equation*}
$$

The subgroup of \mathscr{S}^{5} corresponding to \mathscr{S}_{5} will be denoted by \mathscr{F}_{0}. Then the correspondence $\bar{S}_{i} \rightarrow S_{i}$ defines a homomorphism ψ of \mathscr{S} onto G (c.f.4).
3. Proof of the theorem. An inverse image $S_{i_{1}}^{\alpha_{1}} \ldots \cdot \bar{S}_{i_{n}}^{\alpha_{n}}$ in our Theorem by the homomorphism ψ is expressed as

$$
z^{\prime}=T z+A, T=t_{i_{1}}^{\alpha_{1}} \cdots \cdot t_{i_{n}}^{\alpha_{n}}, A=\delta_{1} a_{i_{1}}+\cdots+\delta_{n} a_{i_{n}} .
$$

Then an inverse image of $S A S^{-1} A^{-1}$ is an element of \mathscr{S}_{j}, expressed, from (2), as

$$
(1-T) a_{0}-\Delta_{0} A=\delta_{1}\left(\Delta_{i_{1}} a_{0}-\Delta_{0} a_{i_{1}}\right)+\cdots+\delta_{n}\left(\Delta_{i_{n}} a_{0}-\Delta_{0} a_{i_{n}}\right), \delta_{j}(1)=\alpha_{j},
$$

and this will be rewritten as $\sum_{i=1}^{m} \gamma_{i}\left(\Delta_{0} a_{i}-\Delta_{i} a_{0}\right)$. But also, an inverse image of $V_{H \rightarrow r_{i}}\left(S_{i_{j}}\right)^{\alpha}=\left(\prod_{z} S_{1}^{\varepsilon_{1}} \ldots \cdot S_{m}^{x_{m}} S_{i j}^{e_{j}} S_{1}^{-x_{1}} \cdots S_{m}^{-x_{m}}\right)^{\alpha_{j}}$ is $f_{1} \ldots f_{m} \alpha_{j} a_{i g}=f_{1} \ldots f_{m}$ $\delta_{j} a_{i j}$; and therefore, $f_{1} \cdots f_{m} \sum \gamma_{i} a_{i}$ is an inverse image of $V_{H \rightarrow G^{\prime}}(A)$. Now let us prove the following

Proposition. If there is a relation

$$
\begin{equation*}
\sum_{i=1}^{m} \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)=\sum_{i>j}^{1, \ldots \ldots, m} f_{i j}\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)+C \tag{8}
\end{equation*}
$$

in the group \mathscr{S}_{0}, then there is a rational function D of t_{0}, \cdots, t_{m} such that

$$
f_{1} \cdots f_{m} \sum \gamma_{i} a_{i}=D C .
$$

Each element of H^{\prime} has an inverse image of the form $\sum f_{i .}\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)$, and the relation (8) is a general form of the inverse image of the assumption $S A S^{-1} A^{-1} \in H^{\prime}$ of our theorem, where C satisfies the relation $\psi(C)=1$. From this proposition, we have $V_{H \rightarrow G^{\prime}}(A)=\psi\left(f_{1} \cdots f_{m} \sum \gamma_{i} a_{i}\right)=\psi(D C)$, and it follows from (4) that $\psi(D C)$ is a conjugate of $\psi(C)=1$, and this shows our main theorem.

Proof of the proposition ${ }^{8}$. From (7^{*}) we have

$$
\begin{aligned}
& \qquad f_{i} a_{i}-\sum_{k>l}^{1, \ldots, m} P_{k l}^{(i)}\left(\Delta_{l} a_{k}-\Delta_{k} a_{l}\right)-\sum_{k=1}^{m} P_{k 0}^{(i)} \Delta_{0} a_{k}=-\sum_{k=1}^{m} P_{k 0}^{(i)} \Delta_{k} a_{0} \\
& \text { Rewriting }-\sum P_{k l}^{(i)}\left(\Delta \cdot a_{k}-\Delta_{k} a_{l}\right)-\sum P_{k 0}^{(i)} \Delta_{0} a_{k}=\sum_{k=1}^{m} Q_{i k} a_{k},-\sum P_{k 0}^{(i)} \Delta_{k}=R_{k} \\
& \text { we have }
\end{aligned}
$$

[^1]\[

$$
\begin{equation*}
f_{i} a_{i}+\sum_{k=1}^{m} Q_{i h} a_{k}=R_{i} a_{0} . \quad(i=1, \cdots, m) \tag{9}
\end{equation*}
$$

\]

By the Cramer's formula concerning linear equations, we have

$$
\left|\begin{array}{l}
f_{1}+Q_{11} \cdots Q_{1 m} \tag{10}\\
\cdots \cdots \cdots \cdots \cdot{ }_{2} \\
Q_{m 1} \cdots \cdots \cdots f_{m}+Q_{m m}
\end{array}\right| a_{k}=\left|\begin{array}{l}
f_{1}+Q_{11} \cdots R_{1} \cdots \cdots Q_{1 m} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdot \\
Q_{m 1} \cdots \cdots \quad R_{m} \cdots \cdot f_{m}+Q_{m m}
\end{array}\right| a_{0}
$$

L t us denote these determinants by D_{0} and D_{k} respectively. Then we have

$$
\begin{equation*}
D_{l} a_{k}=D_{k} a_{l} \tag{11}
\end{equation*}
$$

$$
(k, l=0,1, \cdots, m) .
$$

For $l=0$, this is the identity (10) itself : and for $k \neq 0, l \neq 0$, after transposing, in the equality (9), the term of a_{l} in the left-hand side to the right and also the term $R_{i} a_{0}$ in the right-hand side to the left (i. e, exchanging the term of a_{j} and $R: a_{0}$ with negative sign), we have (11) by a similar method.

As the above equality $-\sum P_{k i}^{(i)}\left(a_{k} \Delta_{l}-a_{l} \Delta_{k}\right)-\sum P_{k 0}^{(i)} \Delta_{0} a_{k}=\sum Q_{i k} a_{k}$ is an identity, we may put Δ_{s} into a_{k}, and we have $\sum Q_{t h} \Delta_{k}=-\sum P_{k 0}^{(i)} \Delta_{0} \Delta_{k}$ $=R: \Delta_{0}$. Also, by the definition, $\Delta_{i} f_{i}=0$. Therefore, after multiplying the first row of the determinant D_{0} by Δ_{1}, \cdots, the last row of D_{0} by Δ_{m}, we have the following identities by adding them to the k-th row:

$$
\Delta_{i} D_{0}=\left|\begin{array}{l}
f_{1}+Q_{11} \cdots \cdots \cdot \sum Q_{1 k} \Delta_{k} \cdots \cdot Q_{1 m} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot \\
Q_{m 1} \cdots \cdots \cdots \cdots \sum Q_{m k} \Delta_{k} \cdots \cdot f_{m}+Q_{m m}
\end{array}\right|=\Delta_{0} D_{i} . \quad(i=1, \cdots \cdots, m)
$$

Denoting $D_{v}\left(1, t_{1}, \cdots, t_{m n}\right)$ by D^{\prime}, then there is a rational function D such that $D_{0}=\Delta_{0} D+D^{\prime}$. Then the above formula shows $\Delta_{0}\left(D_{i}-\Delta_{i} D\right)=\Delta_{i} D^{\prime}$, and this shows

$$
\begin{equation*}
D_{i}=\Delta_{i} D \tag{12}
\end{equation*}
$$

$$
(i=1, \cdots, m)
$$

and $\Delta_{i} D^{\prime}=0$ by comparing the t_{0}-degree of the both side of the identity. Moreoyer, the last formula $\Delta_{i} D^{\prime}=0$ shows that D^{\prime} is divisible by each f_{i} ($i=1, \cdots, m$), and D^{\prime} is expressed as $D^{\prime}=f_{1} \cdots f_{m} D^{\prime \prime}$ where $D^{\prime \prime}$ is a function of t_{1}, \cdots, t_{m} and therefore it may be considered as a constant because $t_{i} f_{1}$ $\cdots f_{m}=f_{1} \cdots f_{m}(i=1, \cdots, m)$. Thus we have $D_{0}=\Delta_{0} D+f_{1} \cdots f_{m} D^{\prime \prime}$, and putting 1 into all $t_{i}(i=0, \cdots, m)$ of this identity, we have $D_{0}(1)=e_{1} \cdots e_{m}$ $D^{\prime \prime}$. It is shown easily from the definition of $D_{0}, D_{0}(1)=e_{1} \cdots e_{m}$, and this shows $D^{\prime \prime}=1$. Therefore we have

$$
\begin{equation*}
D_{0}=\Delta_{0} D+f_{1} \cdots f_{m} . \tag{13}
\end{equation*}
$$

Finally, let us compute $f_{1} \cdots f_{m} \sum \gamma_{i} a_{i}$. It is performed by (8) and (11)~(12).

$$
\begin{aligned}
& \left.f_{1} \ldots f_{m} \sum \gamma_{i} a_{i}=\sum \gamma_{i}\left(D_{0}-\Delta_{0} D\right) a_{i}=\sum \gamma_{i} D a_{0}-\sum D \Delta_{0} \gamma_{i} a_{i}, \text { by (13) and (11) }\right)_{r} \\
& =\sum \gamma_{i} \Delta_{i} D a_{0}-\sum \gamma_{i} \Delta_{0} D a_{i}=D \sum \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right), \text { by (11), } \\
& =D \sum f_{i j}\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)+D C=\sum f_{i j}\left(D_{i} a_{j}-D_{i} a_{i}\right)+D C, \text { by (8) and (11), } \\
& =D C, \quad \text { by (11), }
\end{aligned}
$$

which is our proposition.
q. e. d.
4. Remarks. a) We shall prove that ψ is a homomorphism of the group $\mathfrak{F b}$ onto the group G. Let us consider a free group $\underset{\Downarrow}{ }$ generated by $m+1$ elements F_{0}, \ldots, F_{m}, and prove that the correspondeace $\varphi: F_{i} \rightarrow S_{i}$ defines an isomorphism φ of the group $\mathscr{F} /\left\{F_{1}^{2_{1}}, \cdots, \mathrm{~F}_{m}^{e_{m}}, \widetilde{\mathscr{F}}^{\prime}\right\}^{\prime}$ onto the group \mathfrak{G}. It is easy to see that our purpose follows from this immediately. Moreover, it is enough to prove that if there is a relation

$$
\begin{equation*}
\varphi(F)=\bar{S}_{i_{1}}^{\alpha_{1}} \cdots S_{i_{n}}^{\alpha_{n}}=1 \text { in } \mathscr{G} \tag{14}
\end{equation*}
$$

we have

$$
\begin{equation*}
F=F_{i_{1}}^{\alpha_{1}}, \cdots F_{i_{n}}^{\alpha_{n}} \equiv 1 \bmod \mathfrak{F}_{0}=\left\{F_{1}^{c_{1}}, \cdots, F_{m}^{e_{m}}, \mathscr{\mho}^{\prime}\right\}^{\prime} \tag{15}
\end{equation*}
$$

Firstly, rewriting F as $F \equiv F_{0}^{3_{0}} \cdots F_{m}^{3_{m}}\left(\bmod \mathscr{F}^{\prime}\right)$, we have $\varphi(F)=\bar{S}_{0}^{\beta_{0}} \cdots$ $\bar{S}_{m}^{\boldsymbol{S}_{m}} \equiv 1 \bmod \mathscr{E}^{\prime \prime}$, and this shows $t_{0}^{\beta_{0}} \cdots t_{m}^{\beta_{m}}=1$, and it follows $\boldsymbol{\beta}_{0}=0, \quad \boldsymbol{\beta}_{i} \equiv 0$ $\bmod e_{i}$ for $i \geqq 1$. Therefore F is expressed as

$$
\begin{equation*}
F=F_{1}^{e_{1} \gamma_{1}} \ldots F_{m}^{e_{m} \gamma_{m}} \prod_{k>l}^{0, \ldots, m}\left[F_{k}, F_{l}\right]^{g_{k l}} \bmod \psi_{0} \tag{16}
\end{equation*}
$$

where the powers mean the symbolic power. In this expression, we may assume that $g_{k l}$ is polynomial of F_{0}, \cdots, F_{m}, and especially such that

1) the F_{i}-degree of $g_{k l}$ is less than e_{i} for all $i \geqq 1$,
2) the $F_{k^{i}}$-and F_{l}-degree of $g_{k l}$ is less than $e_{k}-1$ and $e_{l}-1$ for $k, l \geqq 1$,
3) the F_{j}-degree of $g_{k l}$ is zero for $j<l<k$,
4) the F_{i}-degree of γ_{i} is zero for all $i \geqq 1$.

For, 1) follows from $\left.\left[F_{i}^{e_{i}}, \widetilde{V}^{\prime}\right] \subset \widetilde{\vartheta}_{0}, 2\right)$ follows from $\left[F_{k}, F_{l}\right]_{k}^{F_{k}-1}+\ldots+1$ $=F_{k}^{e_{k}\left(1-F_{l}\right)}$, which is combined with $F_{k}^{\left.e_{k}\right\rangle_{k}}$ into a factor, 3) follows from [F_{k}, $\left.F_{l}\right]^{1-F_{j}}=\left[F_{l}, F_{j}\right]^{F_{k}-1}\left[F_{k}, F_{j}\right]^{l-F_{l}}$, which are combined with $\left[F_{l}, F_{j}\right]^{g_{l j}}$ and $\left[F_{l z}, F_{j}\right]^{g_{k j}}$, and finally 4) follows from $F_{i}^{\rho_{(1-}^{(1-F i)}}=1$. Now we have from (14) and (16)

$$
\varphi(F)=\bar{S}_{1}^{e_{1} \gamma_{1}} \ldots \bar{S}_{m}^{c_{n} \gamma_{n l}} \prod_{k<l}^{, \ldots, m}\left[\bar{S}_{k}, S_{l}\right]^{g_{k l}}=1
$$

where γ_{i} and $g_{k l}$ are polynomials of t_{i} obtained from γ_{i} and $g_{k l}$ in (16) by replacing all F_{i} by t_{i}. Expressing this condition by means of a_{i}, and recalling the algebraic independence of a_{i}, we have

$$
\gamma_{i} f_{i}+\Delta_{i+1} g_{i+1, i}+\cdots+\Delta_{m} g_{m_{i}}-\Delta_{0} g_{i 0}-\cdots-\Delta_{i-1} g_{i, i-1}=0(i=1, \cdots, m)
$$

Comparing the t_{i}-degree, we have $\gamma_{i}=0$ from the normality of γ and g. Moreover, comparing the $t_{i 0}$-degree, we have $g_{i 0}=0$, and so on. Thus we have $\gamma_{i}(t)=0, g_{k l}(t)=0$, and this shows $\gamma_{i}(F)=0, g_{k i l}(F)=0$; that is $F \equiv \mathbf{1}$ $\bmod \mathscr{F}_{0}$, as it was desired.
b) In our group $\overline{\mathscr{E}}$ of linear transformations, let us denote $\overline{\mathfrak{J}}$ an invariant subgroup generated by $\bar{S}_{1}, \cdots, \bar{S}_{m}$ and $\overline{\mathscr{G}}_{0}\left(=\left(\mathfrak{S}^{\prime}\right)\right.$. Then the factor group $\overline{\mathfrak{G}} / \sqrt[5]{5}$
is a cyclic group with generator $\overline{S_{0}}$, and $\overline{\mathfrak{F}} / \overline{\mathfrak{C}^{\prime}}$ is an abelian group of the type $\left(e_{1}, \cdots, e_{n}\right)$. It will be shown easily that we have our main theorem concerning the group $\overline{(b)}$, which is an infinite group. But also, we have the inverse of this theorem concerning this group (⿶凵); that is, we have

Theorem 2. A necessary and sufficient condition for an element $A \in \sqrt{5}$ to
 $S A S^{-1} A^{-1} \in \mathfrak{H}^{\prime}$.

Proof. The commutator subgroup $\overline{\mathfrak{g}}$ is generated by the following elements with symbolic power

$$
\Delta_{i} a_{j}-\Delta_{j} a_{i}, \Delta_{i}\left(\Delta_{j} a_{0}-\Delta_{0} a_{j}\right) \quad(i, j=1, \cdots, m),
$$

and the group $\bar{G}_{0}=\left(G^{\prime}\right.$ is generated by these elements and $\Delta_{j} a_{0}-\Delta_{0} a_{j}(j=$ $1, \cdots, m)$. As it was shown in $\S 3, V_{\overline{\bar{\jmath}} \rightarrow ब_{\mathbb{G}^{\prime}}}(A)$ and $S A S^{-1} A^{-1}$ are expressed as $f_{1} \ldots f_{m} \sum_{i=1}^{m} \gamma_{i} a_{i}$ and $\sum_{i=1}^{m} \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)$, respectively. Let us denote the element $\sum \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)$ in $\overline{\left(\mathfrak{J}^{\prime}\right.}$ as

$$
\begin{gathered}
\sum_{i=1}^{m} \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right) \\
=\sum_{i=1}^{m} \lambda_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)+\sum_{i>j}^{3, \ldots, m} \mu_{i j}\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)+\sum_{i, j}^{1, \ldots . m} \nu_{i, j} \Delta_{i}\left(\Delta_{j} a_{0}-\Delta_{0} a_{j}\right),
\end{gathered}
$$

where λ_{i} has no terms of t_{1}, \cdots, t_{m}. Then, as it was proved in the preceding proposition,

$$
\begin{gathered}
f_{1}, \ldots, f_{m} \sum \gamma_{i} a_{i}=D \sum \gamma_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right) \\
=\sum D \lambda_{i}\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)+\sum D \mu_{i j}\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)+\sum D \nu_{i j} \Delta_{i}\left(\Delta_{j} a_{0}-\Delta_{0} a_{j}\right) .
\end{gathered}
$$

As it was shown in the mentioned proposition, it holds $D\left(\Delta_{i} a_{j}-\Delta_{j} a_{i}\right)=0$ for $i>j \geqq 1$. Also, $D \Delta_{i}\left(\Delta_{j} a_{0}-\Delta_{0} a_{j}\right)=D_{j} \Delta_{i} a_{0}-D_{0} \Delta_{i} a_{j}+\Delta_{i} f_{1} \cdots f_{m} a_{j}$ by (12) and (13), and $=\Delta_{i} D_{j} a_{0}-\Delta_{i} D_{j} a_{9}$ by (11), and hence $=0$. Finally $D\left(\Delta_{i} a_{0}-\Delta_{0} a_{i}\right)$ $=D_{i} a_{0}-D_{0} a_{i}+f_{1} \cdots f_{m} a_{i}=f_{1} \cdots f_{m} a_{i}$. Thus we have

$$
f_{1} \cdots f_{n} \sum \gamma_{i} a_{i}=f_{1} \cdots \cdot f_{m} \sum \lambda_{i} a_{i}
$$

But λ_{i} has no terms of t_{1}, \cdots, t_{m}, and therefore, a necessary and sufficient condition for $f_{1} \cdots f_{m} \sum \gamma_{i} a_{i}=0$ is $\lambda_{i}=0(i=1, \cdots, m)$, that is, $S A S^{-1} A^{-1}$ is contained in $\overline{\mathfrak{5}}$.

This theorem suggests us that the condition $S A S^{-1} A^{-1} \in H^{\prime}$ will be necessary in general for the validity of the main theorem, though for individual groups some special condition will guarantee a generation.

Mathematical Institute, Tôhoku University

[^0]: 1) F. Terada, On a generalization of the principal ideal theorem, this, journal, 2nd Ser., Vol. 1(1949).
 2) T. Tannaka, An alternative proof of a generalized principal ideal theorem, Proc. Japan Academy, vol. 25(1949).
 3) W. Magnus, Ueber den Beweis des Hauptidealsatzes, Crelle's Journal 170(1934).
[^1]: 8) It can be assumed that the functions $\gamma_{i}, f_{i j}, P_{k l}^{(i)}, \ldots .$. in this proof are polynomials of t_{i}, although it is not necessary for our purpose.
