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1. Introduction. The author proved several years ago following
theorem?), which is a generalization of the Hilbert’s principal ideal theorem.

THEOREM. Let K be the absolute class field of a number field k, and Q
be an intermediate field of K|k such that Q/k is cyclic. Then each ambigous
ideal in Q) is principal when it is considered in K.

By the Artin’s law of reciprocity, this theorem can be translated into a
group theoretical one. Let G be a finite group whose commutator subgroup
G’ is abelian. Let H be an invariant subgroup with cyclic factor group G/ H.
Let us denote S (=S,) a representative of a generator of the cyclic group
G/ H, and also denote S, -- .., S, representatives of generators of the abelian
group H/G’, with orders mod G’ e, -- - -, e, respectively. We shall assume
also that Sy, ----,S,. generate the group H; this is accomplished by adding
to them, if necessary, certain elements in G’ with e; = 1. Now the theorem
is translated into the following

THEOREM 1. If an element A = Sgr-- -+ Spen of H satisfies SAS™1A-1 € H',
then

n
Viuse(A) = I.[ Vnecf(si,)w’ =1.
j=1
Author’s proof of this theorem was rather complicated, and an alternative
simplified proof was given by Prof. T.Tannaka®. The aim of this note is
to give another proof transforming it into a problem concerning a group
of linear transformations as it was done by Magnus®, and we avoided the
computations concerning determinants as much as possible.

2. A group of linear transformations. Let us consider a group
generated by the following m + 1 linear transformations ;
Si:Z=tz+ a (1=0,1,---:,m)
where m is the number of S; in §1,and #, a; are supposed to be algebraically

independent with respect to the rational integral domain Z. We can show
easily that

Si’i""'Sﬁ{'i 2 =Tz4+ A= l‘ﬁl"'-t“:&"Z—I-A,
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where A is a linear form of g; with rational fun-tioas of #; as coefficients.
More precisely, expanding 1 — T as

1) 1—=T=1—+ 91 =22+ -+ = &A, + -+ -+ + 8l
where A; = 1 — £°, we have an identity®
2) A=8a,+ -+ + ey, and &(1) = a.
Moreover following relations are also verified easily.
3) SiSkSTISi s 7 = 2 + (Awar — A
4) S:22=Tz+A, S:2=24+C—>SSS :2=24TC
5) S:2=2z+C, S:Z=z2+C—>SS:2=24+C+C
We now introduce m relations ¢ =1 (= 1, ----,m)” into the coefficients

of the above transformations, ¢; being the order of S; mod G'. Let us
denote by & the group obtained by this manner, and also denote @&, the
subgroup of & consisting of the elements of the from Sz =z+C (i.e. T
=1). Then Sjii=1,----,m)is contained in &, as it follows from the
relation
(6) Sprz=z+1+t4+ -+t Ya=z+fia (=1, -, m),
where fi=1+#¢+ ---. + 2419, It follows from (3)~(5) that G, is an
abelian normal subgroup of & with abelian factor group &/®, To avoid
confusion, we shall describe an element S: 2/ = 2+ C of &, simply by C,
and the group operation wili be denoted additively.

The elements S% (i =1,----,m) of G are containedin G’, and there is m

relations between these elements and commutators. These will be written
as

@ s =TI 15, SP/ (=1, m),

where the sign [x, y] means the commutator xyx~!¥~! and P{) is an element
oI the group ring [G/G’] and the powers mean the usual symbolic vower.
In the following we shall confine ourself with a fixed representation (7)
among the possible representations. Replacing all s; by #;in P{?, we have

_a function which will be denoted by the same symbol P{?. Now, let us
introduce the relation (7) into the group & and denote the group obtained
by ©. These relations may be denoted additively as

4) The denominator of this coeffizient is a monomial of 2y, ¢, ...... tm. All the
rational functions of #; which will be appear in the followings are of this type,and
we shall denote A, gi, Py, etc., without notice there. We shall call the Z;-degree
of a function the 2;i~degree of the numerator of this function in its incommen-
surable form.

5) This symbol will be used till the end of this paper.
T

6) The coefficient 3; is just the derivationga;— which is defined in the free group
i

generated by Z, ...... ,tm. Cf.R.H.Fox, Differential calculus in free groups, Ann.
of Math., vol. 57(1953).

7) Notice that we introduce no relations for #,, which is corresponded to S=.3S; in
G,and is treated distinctively from the other elements ?,, ...... ,tm in the following.
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0,.ec0m
7 fia, = 2 PR(Aa, — Avar) (Z=1,----,m)

E>1T
The subgroup of & corresponding to &, will be denoted by &,. Then the
correspondence S;->S; defines a homomorphism ¥ of @& onto G (c.f. 4).
8. Proof of the theorem. An inverse image S - - - Sff," in our Theorem
by the homomorphism {r is expressed as
Z?=Tz+ A T=12 -t A=8a,+ - + 8a a,.
Then an inverse image of SAS-1A-! is an element of (550 expressed, from
{2), as
(1 — THay — AvA = 8i(Asay — Agai)) + -+ -+ + (A, @y — Aoaiy), 85(1) = aly,
m
and this will be rewritten as 2 v: (Aga; — Aiay). But also, an inverse image
i=1

of VasarSis = (I S Szm St Spm1- - -Spamys is fi - oS @i, = fieo - S
. :

3;a:,; and therefore, f;-- ~-fm2 v: & is an inverse image of Vaye/(A). Now
let us prove the following ‘

PROPOSITION. If there is a relation

m L....,m .
8) 2 vi(Aiay — Do) = 2 fiAia; — Asa) + C
i=1

>
in the group &, then there is a rational function D of ty, -+++,tn such that
f1' .- ‘fm E Yia; = DC.

Each element of H has an inverse image of the formz fiAa; — Aja),
and the relation (8) is a general form of the inverse image of the assumption
SAS-'A-1 € H of our theorem, where C satisfies the relation Y(C)= 1.
From this proposition, we have Ve (A) = Y(fi - fm 2 vi@) = W(DC), and
it follows from (4) that Y(DC) is a conjugate of Y(C) =1, and this shows
our main theorem.

PROOF OF THE PROPOSITION®. From (7*) we have

Tyeeeny m m m
fia, — 2 PO (N a; — Acar) — ZP,%) Doay= — ZP;(J)) Ay,
k> k=1 k=1

Rewriting — ZP,(G'?(A'aL, — Aeti) — ZP%AU a, = ZQika,c, — EP,Q(? A= Ry,

k=1

we have

8) It can be assumed that the functions v, fij P,g?, ...... in this proof are polynomials-

of ¢;,although it is not necessary for our purpose.
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m
9 fia; + ZQikalc = Ra,. (i=1----,m)
k=1
By the Cramer’s formula concerning linear equations, we have
it Qu o Qum fit @Ry Qi
(6 10) N G= | e a
le """" fm+ Qmm le“ st Rm“ b fm+ Qmm
L t us denote these determinants by D, and D, respectively. Then we have
(11) Da, = Dy, (1=0,1,.---,m).

For I = 0, this is the identity (10) itself: and for £2=+0, /+0, after transposing,
in the equality (9), the term of @; in the left-hand side to the right and also
the term Ria, in the right-hand side to the left (i. e, exchanging the term of’
a; and R:a, with negative sign), we have (11) by a similar method.

As the above equality — 2 P (A — aily) — 2 P Noay, = 2 Qi 1s

an identity, we may put A; into a,, and we have 2 Quly = — 2 PLOAN;:
= R:A,. Also, by the definition, A;f, = 0. Therefore, after multiplying the
first row of the determinant D, by Ay, ----, the last row of D, by Am, we

have the following identities by adding them to the %-th row:

 F U P
= ADi. (i=1,--,m)

|
‘ Qm] """"" 2 leAk' o 'f;n. + Q‘mm

Denoting Dy1,#,, -- - -, t,,) by D', then there is a rational function D such that
D, = AD + D'. Then the above formula shows Ay (D; — A:D) = AsD’, and this
shows

(12) D; = A:D (i=1,----,m)
and A;D' = 0 by comparing the #,-degree of the both side of the identity.
Moreover, the last formula A;D’ = 0 shows that I is divisible by each f;

(t=1,----,m), and D' is expressed as ) = f,---- f,D"” where D" is a function.
of ¢, ----,¢, and therefore it may be considered as a constant because #;/:
coriSm=f1 S G=1,----,m). Thus we have Dy,= AyD -+ fi-+--fuD", and
putting 1 into all #; (1= 0, ----,m) of this identity, we have Dy1) =e; - -em

D”. It is shown easily from the definition of Dy, Dy(1) = e, - --en, and this
shows D"’ = 1. Therefore we have

(13) Dy = AoD + fi- - Sone

Finally, let us compute f]""fmz via;. It is performed by (8) and (11)~(12).

f; e ',;n 2 Vi = 2 ')’i(DO —_ AOD)G,; = 2 'yzD ay — 2 DAgfyfd(, by (13) and (11),—-
= Z'YfAi Da, — 2 vidyDa; = D Z yi(Aiay — M), by (11),

= DSV Aas — Asa) + DC = SfisDaa; -- Diar) + DC, by (8) and (11),
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which is our proposition. q.ed.

4. Remarks. a) We shall prove that { is a homomorphism of the
group & onto the group G. Let us consider a free group § generated by

m + 1 elements F,-. - .,F,, and prove that the correspondeace ¢: F;->S. defines
an isomorphism ¢ of the group &/{F#, ----,Fm, &} onto the group &. It

is easy to see that our purpose follows from this immediately. Moreover,
it is enough to prove that if there is a relation

(14) P(Fy= S@.... S =1 in 6,
we have
(15) F=Fx, ....Fin=1mod o= {Fp, ----, Fip, T').

Firstly, rewriting F as F = Fj»--..F}n(mod &), we have @(F) = Sfo --..

S =1 mod &, and this shows #°....8p = 1,and it follows 3, =0, B; =0
mod e; for 7 =1. Therefore F is expressed as

0,....,m
(16) F=Fpm.. . .Faow I [F, Fpe mod &,
kE>1

where the powers mean the symbolic power. In this expression, we may
assume that g; is polynomial of F), ---., F,,, and especially such that

1) the F;-degree of gy is less than e; for all 7 =1,

2) the Fy-and F,-degree of gi; is less than ¢, —1 and ¢, — 1 for £,1=1,

3) the Fj-degree of g4, is zero for j < I < k,

4) the F;-degree of «; is zero for all 7 = 1.

For,1) follows from [F%, §]< &, 2) follows from [Fy, F]5%* ™ +....n
= F;k“"‘F ¢, which is combined with Fiv* into a factor, 3) follows from [F,
F -1 = [F, F;)1[F, F;1'-%, which are combined with [F, F;}°» and [Fy, F;1%%,
and finally 4) follows from F{'-#) = 1. Now we have from (14) and (16)

PR )

¢(F) = SEWl cee .§;5,7leym H [STL: S,]f’lcl =1,

k<l

where ; and gy are polynomials of #; obtained from «; and g;; in (16) by
replacing all F; by f;. Expressing this condition by means of a;, and recalling
the algebraic independence of @;, we have

Vil + AisrGier,s + oo+ Amm, — Doio — -+ — D191, =0(E =1, - .., m).

Comparing the #;-degree, we have r; = 0 from the normality of v and g.
Moreover, comparing the f#;-degree, we have g, =0, and so on. Thus we
have () =0, gwu(?) = 0, and this shows i(F)= 0, gu(F)=0; that is F=1
mod &, as it was desired.

b) In our group ® of linear transformations, let us denote $ an invariant
subgroup generated by S, ----, S, and ®, (=6/). Then the factor group /9
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is a cyclic group with generator S),, and /& is an abelian group of the
type (e, «- -+, ey). It will be shown easily that we have our main theorem

concerning the group €, which is an infinite group. But also, we have the
inverse of this theorem concerning this group ®; that is, we have
THEOREM 2. A necessary and sufficient condition for an element A € § to
satisfy Vise (A) =1 is that A is an ambigous element, that is, A satisfies
SAS-1A-1 € §.
Proor. The commutator subgroup &' is generated by the following
elements with symbolic power

Aias — Ajai, AdAsao — Dody) &j=1,.--.,m),
and the group &, = ¢ is generated by these elements and A,z — Aga; (j =
1, <.-.,m). As it was shown in §3, Vi,e (A) and SAS-1A-! are expressed as

m m
FroeoSm 2 via; and 2 vi(Ai@ — DNoas), respectively. Let us denote the element
i=1

(=1

> A — Aoai) in & as

> vildaay — Do)

m Ieooe,m 1y e m
= Sabiay — Ma) + D) pildas — Aja) + 3 visllDsag — Agay),
i=1 i>J 6J
where A; has no terms of ¢, ..., 4. Then, as it was proved in the preceding
proposition,

fi, oy Sm 2 via; = D 2 VilAiag — Agai)

= > D\{Aay — Do) + > DpisAias — Asai) + >, DusAdAsap — Doas).

As it was shown in the mentioned proposition, it holds D(Aa; — Aja:) = 0
for 2 >] = 1. AISO, DA,:(A;HU - Aoaj) = DJA,:GO — DOAza; + A-f1 v 'fmaj by (12)
and (13), and = A:Dja; — A:Djay by (11), and hence = 0. Finally D(Aiay — Aoas)
= Diay — Doa; + f1++ S = f1++ - -fua. Thus we have

SieeoSm 2 Vi@ = fie -fm 2 Nia;
But A\; has no terms of #;,-..-,%,, and therefore, a necessary and sufficient
condition for f;-- --fmz viai=01is ;=0 (=1, ....,m), that is, SAS-14"?

is contained in . _

This theorem suggests us that the condition SAS-'A-!¢ H' will be
necessary in general for the validity of the main theorem, though for
individual groups some special condition will guarantee a generation.
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