ON THE ASPHERICITY OF THE HIGHER DIMENSIONAL COMPLEX

HIDEKAZU WADA

(Received February 15, 1955)

1. W. H. Cockcroft [1] discussed the non-asphericity of the two-dimensional complex K, which is composed of a given non-aspherical two-dimensional complex L, and two-dimensional cells attached to L. According to his consequences, if $\pi_1(L)$ is (i) Abelian or (ii) a finite group or (iii) a free group, or if L contains only one two-dimensional cell, then K is non-aspherical.

In the present note, we consider the *n*-dimensional complex K $(n \ge 3)$, which is composed of a given non-aspherical *n*-dimensional complex L, and *n*-dimensional cells attached to it. In this case, we shall prove the asphericity of K in the complete form; namely, K is aspherical, if and only if $\pi_r(L) = 0$ for 1 < r < n-1 when $n \ge 4, \pi_{n-1}(L)$ is a non-zero free $\pi_1(L)$ -module and $H_n(\widetilde{L}) = 0$, where \widetilde{L} is the universal covering complex L of. Then, it is shown that \widetilde{L} is of the same homotopy type as a set of (n-1)-spheres having a point in common.

2. Let L be a connected, *n*-dimensional CW-complex [3] $(n \ge 3)$. We shall say, following Hurewicz [2], that L is aspherical, if and only if its homotopy groups satisfy the conditions

(2.1)
$$\pi_r(L) = 0$$
 $(r > 1).$

LEMMA (2.2). L is aspherical, if and only if (2.3) $\pi_r(L) = 0$

 $(1 < r \leq n).$

In fact, we need only to show the sufficiency. From (2.3), we obtain, using the Hurewicz' theorem,

$$\pi_{n+1}(L) \approx \pi_{n+1}(\widetilde{L}) \approx H_{n+1}(\widetilde{L}) = 0,$$

where \widetilde{L} is the universal covering complex of L, and $H_{n+1}(\widetilde{L})$ is its integral homology group. Using the same arguments as above, we get inductively (2.1) for every r > n.

Next, let K be a complex such that

$$(2.4) K = L \cup \{e_i^n\}$$

where $\{e_i^n\}$ is a set of *n*-cells attached to the (n-1)-skeleton of *L*.

LEMMA (2.5). If L is a non-aspherical complex such that $n \ge 4$, and if

$$\pi_r(L) \neq 0 \qquad (1 < r < n-1),$$

for at least one r, then K is non-aspherical.

In fact, we can easily see the non-asphericity of K from a part of the exact homotopy sequence

H. WADA

 $0 = \pi_{r+1}(K, L) \rightarrow \pi_r(L) \rightarrow \pi_r(K).$

LEMMA (2.6). If L is non-aspherical, and if

$$\pi_{n-1}(L) = 0 \qquad (n \ge 3),$$

then K is non-aspherical.

In fact, we assume that K is aspherical. Then, from a part of the exact homotopy sequence

$$0 = \pi_n(K) \to \pi_n(K, L) \to \pi_{n-1}(L) = 0,$$

we see that $\pi_n(K, L) = 0$. This holds only when K = L. As L is non-aspherical, this contradicts to the hypothesis that K is aspherical.

Now, under the construction of (2.4), let us take a set of elements $\{\alpha_i\}$ of $\pi_{n-1}(L)$ as follows: Let the characteristic map for e_i^n be $f_i: E^n \to \overline{e}_i^n$, and let $x_0 \in \dot{E}^n$ be a fixed point. Let us take a fixed path ρ_i from $f_i(x_0)$ to a fixed point y_0 of L, for every i. Then ρ_i can be considered as a homotopy of $f_i(x_0)$, which can be extended to a homotopy from \dot{E}^n into L. The terminal map of this homotopy represents an element of $\pi_{n-1}(L)$ with reference points x_0 and y_0 , which we shall call α_i .

LEMMA (2.7). Let K of (2.4) be aspherical. Then $\pi_{n-1}(L)$ is a free $\pi_1(L)$ -module with the basis $\{\alpha_i\}$.

PROOF. Let \widetilde{K} be the universal covering complex of K, and let \widetilde{L} be its part over L. Then \widetilde{L} is evidently the universal covering complex of L. Let the reference point of $\pi_n(\widetilde{K}, \widetilde{L})$, $\pi_{n-1}(\widetilde{L})$ etc. be $\widetilde{y_0} \in p^{-1}y_0$, where p is the projection. Let $\bigcup_q \{\widetilde{e_{i,q}^n}\}$ be *n*-cells of \widetilde{K} which cover e_i^n , and whose indices i, q are given as follows: The boundary map of $\widetilde{e_{i,q}^n}$ together with a suitable path from $\widetilde{f_{i,q}}(x_0)$ to $\widetilde{y_0}$ is projected to a map representing $\xi_q \cdot \alpha_i$ ($\xi_q \in \pi_1(L)$), where $\widetilde{f_{i,q}}$ is the characteristic map for $\widetilde{e_{i,q}^n}$. Evidently we obtain (2.8) $\widetilde{K} = \widetilde{L} \bigcup_{i,q} \{\widetilde{e_{i,q}^n}\}.$

Therefore $\pi_n(\widetilde{K}, \widetilde{L}) \approx H_n(\widetilde{K}, \widetilde{L})$ is the free Abelian group with generators $\{\alpha_{i,q}\}$ corresponding one to one with $\{\overline{e_{i,q}^n}\}$. If K is aspherical, then, from a part of the exact homotopy sequence

$$0 = \pi_n(\widetilde{K}) \to \pi_n(\widetilde{K}, \widetilde{L}) \xrightarrow{d} \pi_{n-1}(\widetilde{L}) \to \pi_{n-1}(\widetilde{K}) = 0$$

$$p \downarrow$$

$$\pi_{n-1}(L),$$

~ ~

we obtain

$$pd: \pi_n(\widetilde{K}, \widetilde{L}) \approx \pi_{n-1}(L),$$

where *d* is the homotopy boundary homomorphism, and *p* is the isomorphism induced by *p* itself. From the construction, it is evident that $pd(\alpha_{i,q}) = \xi_q \cdot \alpha_i$, which shows that $\{\xi_q \cdot \alpha_i\}$ ($\xi_q \in \pi_1(L)$) constitute a set of free generators of $\pi_{n-1}(L)$. Namely, $\pi_{n-1}(L)$ is a free $\pi_1(L)$ -module with the basis $\{\alpha_i\}$ [4].

LEMMA (2.9). If K of (2.4) is aspherical, then $H_n(\widetilde{L}) = 0.$

In fact, we obtain the required result from a part of the exact homology sequence

$$0 = H_{n+1}(\widetilde{K}, \widetilde{L}) \to H_n(\widetilde{L}) \to H_n(\widetilde{K}) \approx \pi_n(\widetilde{K}) = 0.$$

3. We shall prove the following main result in this note:

THEOREM (3.1). Let L be non-aspherical. Then n-cells $\{e_i^n\}$ can be attached to L so that the resulting complex K of (2.4) is aspherical, if and only if

(i) when $n \ge 4$, $\pi_r(L) = 0$ (1 < r < n - 1);

(ii) $\pi_{n-1}(L)$ is a non-zero free $\pi_1(L)$ -module with a basis $\{\alpha_i\}$;

(iii) $H_n(\widetilde{L}) = 0.$

PROOF. As the necessity is an immediate consequence of Lemmas (2.5), (2.6), (2.7) and (2.9), we shall prove the sufficiency.

Let $f_i: (E^n, x_0) \to (L, y_0)$ be a representing map of α_i , and let $\widetilde{f}_{i,q}: (E^n, x_0) \to (\widetilde{L}, p^{-1}y_0)$ be its covering map, where q is an index such that every path ρ_q from \widetilde{y}_0 to $\widetilde{f}_{i,q}(x_0)$ is projected by p to an element $\xi_q \in \pi_1(L)$. Let $\beta_{i,q}$ be an element of $\pi_{n-1}(\widetilde{L})$ represented by $\widetilde{f}_{i,q}$ together with ρ_q^{-1} . It is evident that $\beta_{i,q}$ is projected to $\xi_q \cdot \alpha_i \in \pi_{n-1}(L)$ isomorphically by p. Let e_i^n be an *n*-cell attached to L by f_i , and let $\widetilde{e}_{q,i}^n$ be attached to \widetilde{L} by $\widetilde{f}_{i,q}$. Then $\widetilde{e}_{i,q}^n$ represents a generator $\alpha_{i,q}$ of the free Abelian group $\pi_n(\widetilde{K}, \widetilde{L}) \approx H_n(\widetilde{K}, \widetilde{L})$, where \widetilde{K} is given as in (2.8). As $\pi_n(\widetilde{K}, \widetilde{L})$ and $\pi_{n-1}(\widetilde{L}) \approx \pi_{n-1}(L)$ are free Abelian groups, whose generators satisfy the condition

$$dlpha_{i,q}=eta_{i,q},$$

d is an isomorphism onto. Therefore from a part of the exact homotopy sequence

$$\pi_n(\widetilde{K},\widetilde{L}) \xrightarrow{d} \pi_{n-1}(\widetilde{L}) \xrightarrow{} \pi_{n-1}(\widetilde{K}) \xrightarrow{} \pi_{n-1}(\widetilde{K},\widetilde{L}) = 0,$$

we obtain (3.2)

$$\pi_{n-1}(K) \approx \pi_{n-1}(K) = 0.$$

Next, let us consider a diagram

(3.3)
$$\begin{array}{c} \pi_n(\widetilde{K},\widetilde{L}) \xrightarrow{d} \pi_{n-1}(\widetilde{L}) \\ T \bigvee \qquad \qquad \downarrow T \\ T & \qquad \downarrow T \\ H_n(\widetilde{K},\widetilde{L}) \xrightarrow{\partial} H_{n-1}(\widetilde{L}) \end{array}$$

where ∂ is the homology boundary homomorphism, and T is the Hurewicz isomorphism. As d is an isomorphism onto, and as the commutativity holds in (3.3), ∂ is an isomorphism onto. Therefore, from a part of the exact homology sequence

$$0 = H_n(\widetilde{L}) \to H_n(\widetilde{K}) \to H_n(\widetilde{K}, \widetilde{L}) \xrightarrow{\partial} H_{n-1}(\widetilde{L}),$$

we obtain $H_n(K) = 0$ using (iii), which shows

(3.4) $\pi_n(K) \approx \pi_n(\widetilde{K}) \approx H_n(\widetilde{K}) = 0$ from (3.2) and the Hurewicz' isomorphism. On the other hand we obtain $\pi_r(L) \approx \pi_r(K)$ for 1 < r < n-1 when $n \ge 4$. Therefore from (i), (3.2), (3.4) and from Lemma (2.2), we conclude that K is aspherical.

COROLLARY (3.5). If L is an n-dimensional compact manifold with finite $\pi_1(L)$, any attaching of n-cells to L does not generate an aspherical complex.

We can see that L is non-aspherical. In fact, if $\pi_r(L) = 0$ for 1 < r < n, we obtain $\pi_n(\widetilde{L}) \approx H_n(\widetilde{L}) \neq 0$, as \widetilde{L} is compact and orientable. So, from (iii) of Theorem (3.1), we can see the conclusion.

COROLLARY (3.6). An (n-1)-dimensional real projective space P^{n-1} $(n \ge 3)$ cannot be attached by n-cells so that the resulting complex is aspherical.

As $P^{n-1} = S^{n-1}$, the (n-1)-sphere, the conditions (i) and (iii) of Theorem (3.1) are satisfied. On the other hand, (ii) is not satisfied. In fact, $\pi_{n-1}(P^{n-1})$ is not a free $\pi_1(P^{n-1})$ -module, but a relation $\xi \cdot \alpha + (-1)^n \alpha = 0$ holds good for the generator ξ of $\pi_1(P^{n-1})$ and α of $\pi_{n-1}(P^{n-1})$.

4. In this section, we shall determine the homotopy type of L, which satisfies the conditions of Theorem (3.1).

THEOREM (4.1). If a connected non-aspherical n-dimensional complex L can be attached by n-cells $\{e_i^n\}$ so that the resulting complex K of (2.4) is aspherical, then \widetilde{L} is of the same homotopy type as the (n-1)-spheres having a point in common.

PROOF. Let us assume that L satisfies (i), (ii) and (iii) of Theorem (3.1). Let Z be the set of (n-1)-spheres $\bigcup S_{q,i}^{n-1}$ having a point z_0 in common, where the indices (q, i) correspond one to one with $(\xi_q, \alpha_i), \{\alpha_i\}$ being a basis given by (ii) of Theorem (3.1). Now, we shall define a map

 $q: Z \rightarrow \widetilde{L}$

such that

$$g \mid S_{q,i}^{n-1} \colon (S_{q,i}^{n-1}, z_0) \rightarrow (\widetilde{L}, \widetilde{y_0})$$

represents an element of $\pi_{n-1}(\widetilde{L})$, which is the inverse image of $\xi_{\eta} \cdot \alpha_{\iota}$ by the projection p.

Using the Hurewicz' theorem, the only non-trivial group $H_i(\widetilde{L})$ $(i \ge 1)$ is $H_{n-1}(\widetilde{L})$ from (i), (ii) and (iii); and $H_{n-1}(\widetilde{L})$ is the free Abelian group, whose generators correspond one to one with $\{\xi_q \cdot \alpha_i\}$. Evidently $H_{n-1}(Z)$ is mapped isomorphically onto $H_{n-1}(\widetilde{L})$ by the induced homomorphism by g. Therefore, from [3, Theorem 3], g is a homotopy equivalence.

From Corollary (3.6), we can see that the condition of Theorem (4.1) is not sufficient.

BIBLIOGRAPHY

- W. H. COCKCROFT, On two-dimensional aspherical complexes, Proc. London Math. Soc., (3), 4(1954), 374–384.
- [2] W. HUREWICZ, Beiträge zur Topologie der Deformation, IV, Kon. Wetensch. Amsterdam, 39(1936), 215-224.
- [3] J. H. C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55(1949), 213-245.
- [4] J. H. C. WHITEHEAD, Combinatorial homotopy II, ibid., 453-496.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.