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Introduction. This paper contains some topological results principally
concerning zero—dimensional spaces. We observe first that the dimension of
a uniform space can be so defined that invariance under completion is
trivial. Katétov’s result [10], that the covering dimension of normal spaces
is preserved under Stone-Cech compactification, follows as a corollary.
We obtain sharper results in the zero-dimensional case, including a repre-
sentation of the completion of #X as the structure space of the Boolean
algebra of uniformly continuous functions on #X to the two-element
field. An example shows that inductive dimension zero need not be pre-
served under Stone-Cech compactification.

The concluding section of the paper answers three questions raised
in [9], by counterexamples, and contributes some propositions in continua-
tion. Two of the examples were communicated by Professor V.L.Klee.
Others who have had a hand in the paper are M. Henriksen, T.Shirota,
and H. Trotter, in the counterexamples, and especially S.Ginsburg. The
paper grew out of our collaboration [5] with Professor Ginsburg, which
involves closely related ideas.

1. Dimension and Completion. The term dimension, unqualified, will
refer to the Menger-Urysohn inductive dimension [8]. The Lebesgue covering
dimension is known to coincide for metric spaces [11]. We define below
two “covering” dimensions for uniform spaces. In this connection we note
the special uniformities / and e [18,14] consisting of all normal coverings
having finite resp. countable normal subcoverings. For any uniformity u,
the finite coverings in # define a uniformity f#. (The same is true for
countable coverings [5]). The completion of a uniform space fuX is the
Samuel compactification of uX [13].

DEFENITION. The (finite) largz dimension dl(uX) of a uniform space
uX is the least integer m, if such exists, such that every covering in %
has a refinement in #, no m + 2 elements of which have a common point.
The uniform dimension du(uX) is dl{(fuX).

We remark that du(#X) < dl(uX), if both are defined. The problem of
the reverse inequality seems quite difficult and is not touched on below.

1.1. THEOREM. Large dimension is invariant under completion.
Proor. Let #X be the completion of #X. That dl(#X) < dl(zX) is obvious.
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Suppose dl(uX) = m. Let {Us} be a large covering of #X and {V,} a large

star-refinement of {U,}. Then {Vg} is a large refinement of {U.}. Since
{VsN X} is large on #X, there is a large refinement {Wy} such that no m +

2 sets W, have a common point. In #X form WJ. Then {Wi} is a large

covering of #X [12], refining {U.}, and no finite subfamily has a common
point unless the corresponding W, already have a common point [12]. Hence
the theorem follows.

1. 2. CorOLLARY. Uniform dimension is invariant under Samuel compacti-
fication.

1.3. COROLLARY. Uniform dimension is invariant under completion.

1.4. COROLLARY (Katétov). The covering dimension of normal spaces is
invariant under Stone-Cech compactification.

For the covering dimension of a normal space X is the uniform demension

of fX, and the Stone-Cech compactification is /X,

Every zero-dimensional space X can be embedded in a zero-dimensional
compact space, namely the structure space of the Boolean algebra M(X) of
open-closed subsets of the given space [16]. Stone’s construction is equivalent
to completion under the uniformity defined by all finite open partitions. (Note
that every zero-dimensional space X has a uniformity # such that «#X has
uniform dimension zero, namely that just mentioned). In general, let C(xX,
T) be the algebra of all uniformly continuous functions on #X to the two-
element field 7. The structure space H(C(u#X,T)), the space of maximal
ideals in the hull-kernel topology, is always compact and zero-dimensional
{16].

1.5. THEOREM. The Samuel compactification of uX is homeomorphic with
H(CuX,T)) if and only if uX has uniform dimension zero; in this case there
is a natural homeomorphism.

Proor. For any point x in oX =fuX, let I, be the ideal in CuX,T)
«consisting of all functions f such that x is a limit point of /~1(0). Clearly I,
is a maximal ideal.

Let M be a maximal ideal in C(uX, T). Let Dy be the filter or all open-
closed subsets @ of X such that the function f; sending @ to 0 and X — @
to 1 is in M. (Precisely, Dy is filter base; it is that because a maximal
ideal is prime). If Dy is Cauchy then there is precisely one point % in ¢ X
which is a limit point of every element of D Let g be any element of 7.
Then {g-1(0), g~*(1)} is in #, and since x is not a limit point of g¢~I(1), the
Cauchy filter Dy must contain g-%0). Therefore I, = M, and since M is a
proper ideal, I, = M. '

Suppose Dy is not Cauchy and #X satisfies the condition. Then there is
a finite partition {@,, ....@Q.} in % such that no ; is in Dy. We can assume
n=2; for 0 is a finite intersection of the sets X — @;, and hence not all
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these are in Dy. But then neither fo nor 1—f, = fo, is in M. Hence M is
not maximal. _

Thus if duw(®X) = 0, there is a natural one-to-one correspondence between
the points of ¢X and the maximal ideals of C(uX, T). Since H = H{C(uX, T))
is compact, it suffices to show that a neighborhood of a point in ¢X is a
neighborhood in H. But every neighborhood of x contains an open and closed
neighborhood @ such that if QN X = R, fz is in C(uX, T); for every Cauchy
filter has a basis consisting of such sets. The set of all maximal ideals not
containing fz is open and closed in H, and the proof of sufficiency is complete.

If #X has uniform dimension non-zero, so does X, by 1.3. The uniform
dimension of a compact space is the covering dimension, which coincides
with the inductive dimension [16]. Hence the proof is complete.

1.6. COROLLARY. The Stone-Cech compactification of X is zero-dimensional
and naturally homeomorphic with HM(X)) if and only if fX has uniform
dimension zero.

1.7. CorOLLARY. The Wallman compactification of X is homeomorphic with
HM(X)) if and only if X has covering dimension zero.

Proor. Samuel showed [13] that the Wallman and Stone-Cech compactifi-
cations are equivalent precisely for normal spaces. If X is normal, then the
uniform dimension fX is the covering dimension of X. If X is not normal,
then its Wallman compactification is not Hausdorff [19]. And a space of
covering dimension zero is clearly normal.

2. Disconnection, Consider the following five possible properties of
completely regular spaces.

(a) The open-closed sets form an open basis.

(b) Every finite normal covering is refined by an open partition.

(c) Every finite open covering is refined by an open partition.

(d) For every continuous real-valued function f, f~%(0) is open.

(e) The closure of every open set is open.
All the open sets concluded to exist in (b) — (e) are obviously closed.
Properties (a),(b),(c) express that the inductive dimension of X, uniform
dimensin of fX, covering dimension of X, respectively, vanish. Property (d)
defines pseudo-discrete or P-spaces [2]; (e), extremally disconnected spaces [6].

Evidently (c) or (e) implies (b). Since the stars of points in finite normal
coverings form an open basis [18], (b) implies (a). From the definition of
-complete regularity, (d) implies (a). In normal spaces (b) and (c) are equivalent
(every finite open covering is normal [18]); and obviously (c) implies normality.
It is well known that (a) and (c) are equivalent in compact spaces [16] and
in separable spaces [8].

2.1. THEOREM. Property (d) implies (b).

Proor. In view of 1.6, it suffices to 'show that BX = /X satisfies (a).
Now the proof of the Gelfand-Kolmogoroff theorem in [3] shows that every
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neighborhood of a point » in BX contains an inverse image of 0, under a
continuous real function of X, whose closure in BX contains p. With (d),
such a set is open and closed; since its characteristic function extends
continuously to BX, its closure in BX is open and closed. Since BX is
regular, the theorem follows.

The completion of eX is called vX. If vX= X, then X is a @-space.
[7,14]. The structure space of the algebra of all continuous real-valued
functions on Xis BX [3]; vX is the space of homomorphisms of that algebra
onto the reals [7]. :

P-spaces are characterized [2] by the property

(d) Every Gs-set is open.

Thus if X is a P-space, then M(X) is an &,-additive field of sets. For any
& complete Boolean algebra B, let K(B) be the subspace of H(B) consisting
of all maximal ideals closed under countable union.

2.2, THEOREM. If B is an complete Boolean algebra, then K(B) is a
P-space and a Q-space. If X is a P-space then K(M(X)) = vX

Proor. That every Gs in K(B) is open is clear. Using results of Hewitt
and Shirota, (1) K(B) is a @-spaca because every CZ-maximal family of zero
sets has a common point [14]; (2) to show that K(M(X)) is vX it suffices.
to show that X is dense in K(M(X)) and that every continuous real-valued
function on X has a continuous extension on X has a continuous extension
on K(M(X)) [7], both of which are easily seen.

If X is not a P-space then neither is vX, for the class is hereditary.
Thus K(M(X)) = vX precisely for P-spaces.

2.3. THEOREM. A 2zero-dimensional space X satisfies (e) if and only if
M(X) is complete.
Proor. The necessity is trivial. But if X satisfies (a) but not (e), consider

any open set U for which U is not open. The family of all open-closed sets.

contained in U can have no supremum in M(X).

Stone [15] demonstrated 2. 3 for compact spaces, together with numerous
further results on these spaces. See also Hewitt’s paper [6]. The basic
reference on P-spaces is [2].

2.4. THEOREM. An extremally disconnected P-space of non-measurable
power is discrete. -

Proor. M(X) is a complete Boolean algebra or non-measurable power.
Its maximal ideals I closed under countable union are precisely those such
that M(X) — I contains an atom[4]. Hence K(M(X)) is discrete (the complement
of a point is the hull of its kernel and hence is closed). Hence, by 2.2, X
is discrete.

We have shown (c) or (d) or (e) implies (b), which implies (a). If there
is a non-discrete space simultaneously satisfying (d) and (e), then there may
‘be a non-normal one; but it is consistent with the usual axioms for set
theory to assume (d) and (e) imply (c). (For it is consistent to assume all
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<ardinal number are non-measurable [17]). No other implications hold among
these properties in completely regular spaces.

We shall not give all the examples. The well known Tychonoff plane,
described e.g. in [8] and incidentally below, can be shown to satisfy (b) but
no more. Modifications of this example give several others. A non-normal
P-space is given in [2] (hence (d) does not imply (c)). Theorems in [2] facilitate
the construction of a linearly ordered space satisfying (d) (and hence (c))
but not (e).

2.5. Example. (Henriksen-Shirota). The space X will be zero-dimension-
al, but BX is not zero-dimensional, and hence X does not satisfy (b). For
convenience we use redundant coordinates. X consist$s of all ordered quad-
ruples (x,9,«,3), where x and y are real numbers in [0,1], if x is rational
then « is any ordinal < w, if x is irrational then a is any ordinal < w,,
and 3 depends on y by the same rules, provided that if x = y then,a = 8.

A neighborhood of (x,y,a,3,) x £, is required to contain an order
neighborhood in the set of all (x,%,7,8), y=a,8<=B. A set U is a neigh-
borhood of (x,x, «, ) if (i) there is B < a such that a =+ > 3 implies
(%, %,7,7) in U, (ii) for every rational y there is n ordinal &) < @, and
for every irrational y there is an ordinal 8(¥) < w;, such thatall (x,,¢&,
&) with a« = & > B and & > &) are in U, and (iii) there exists a neighborhood
V of x in the real line such that all (¥,x,&,€) with y in V, £ > 8(»), and a =
& >3 are in U. .

Evidently X is a T, space satisfying (a) and hence is completely regular.
Furthermore, the real valued function ¢ on X defined by ¢(x,3 «a,3) = « is
easily seen to be continuous at each point. Hence the sets A consisting of
all (1,9, «, 3) and B consisting of all (0,y, «, 8) are closed sets separated by
a continuous functions; therefore the closures in 8X of A and B are disjoint
{1]. However, A and B cannot be separated by an open partition.

Suppose S is an open and closed subset of X containing A. In particular,
S contains {(1,1, «, a)}. Hence for each countable ordinal, for some neigh-
borhood V of 1 in the reals, for every y in V,S contains all (y,1, ¢, &) with
& > 8y, &). Uncountably many V’s contain some fixed neighborhood U.If y is
irrational then liminf. 8(y, &) < w, and the closed set S must contain all
9,9,8,8) with 8 >\ for some A. Then the argument reverses; if S con—
tains a cofinal subset of T, = {(y,%, 3, 3)}, with » rational resp. irrationa],‘
then S contains a non-void residual subset of 7. for all irrational resp.
rational z in some neighborhood of y.

Concluding, X — S is supposed to be an open and closed set containing
Ty. Let the real number z be the supremum of those y for which X— S
contains a cofinal subset of Ty. Either S or X — S, say S, contains a cofinal
subset of T.. Say z is rational. Then for some 4 >0, for every irrational
t >2z— 0, almost all of T, isin S. Then there exists rational # >z — 6 such
that a cofinal subset of T, is in X — S, by definition of z; but this is impos-
sible. Similarly for the other cases; thus A and B cannot be separated.
Therefore X does not have the property (b).
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3. Homogeneity. In this section terms and abbreviations of [9] will
be used. Generically S will" be a topological space; a figure F is an
ordered n-tuple (F,,....F,-,) with F,&S and F;=F, The definitions of
topological equivalence (#~#ype) and Frechet equivalence ( f Zype) of figures
are the obvious extensions of homeomorphism resp. equivalence of Frechet
dimension. The points x,%, in S are m-(micro) resp.s-(semi) equivalent if
they have bases of neighborhoods Us., V., such that the figures (Uy, %),
(V«,5), resp. the open sets U., Va, are pairwise of the same ¢ type.
Notice the weaker relations mf, sf, obtained by substituting Frechet
equivalence in the preceding sentence. The space S is packable resp. shrin-
kable about x if there is a basis of neighborhoods U, of x such that each
figure (U, x) is of the same ? type resp. f type as (S, x) ; the space is locally
packable resp. locally shrinkable at x if x has a packable resp. shrinkable
neighborhood. The phrase “at (about) x” will be omitted if this is true for
all points of S.

The existence of a packable (shrinkable) basis follows from the definition
of the local property. It does not suffice to assume a neighborhood of x
packable (shrinkable) about x — witness the letter “77.

One of the most interesting questions on homogeneous spaces is when a
microhomogeneous space is homogeneous. The main theorem of [9] rests
heavily on shrinkability in showing that this implication holds in connected
linearly ordered spaces. We notice

3.1. A microhomogeneous zero-dimensional space is homogeneous.

For if two points have equivalent open neighborhoods there are corres-
ponding open-closed subneighborhoods U,V ; there is a mapping of the
whole space sending U to V, V to U, and leaving S — U — V fixed.

3.2. A packable space is s; a shrinkable space is sf.

3.3. The s-rooms (sf-rooms) of a locally packable (shrinkable) space are
open and closed.

Proor. If S is packable, any two points have neighborhood bases all
of the same ¢ type, namely the type of the space. Hence the s-rooms of a
locally packable space are open. Since they partition the space, they are
closed. The arguments on shrinkable and locally shrinkable spaces are
similar.

3.4. If S is locally packable (shrinkable) at x, and x is s-equivalent to y,
then S is locally packable (shrinkable) at y.

3.5. If the packable space S is compact HausdorfY, it is totally disconnected ;
if it is connected, it is locally connected.

The proofs are evident.

Now a packable space may be Boolean; it may be connected, locally
connected, and non-compact. If it contains a compact resp.connected open
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subset, it is locally compact resp. locally connected and not-compact. The
first part of this assertion follows formally from the fact that local com-
pactness is s-invariant [9]. The second part is easily proved; it is worth
noting that one has to do here with the not commonly considered property
ot local connetedness in a neighborhood of a point. Precisely,

3.6. If S is locally connected in a neighborhood of x, and x is s-equivalent
to v, then S is locally connected in a neighborhood of ¥.

The parallel propositions 3.4 and 3.6 contrast with the counterexample
(for weaker properties) 3.1 of [9].

3.7. Example. (Trotter). Let S be the quotient spacz of the product of
the Cantor set with the interval [0,1] obtained by identifying each point (x, 0)
with (f(%), 1), where f is an automorphism of fhe Cantor set under which the
orbft of each point is everywhére dense. Such an automorphism is easily
described in the representation of each point x in the Cantor set as a sequence
(%) of zeros and ones. Regard the sequence (x;) as the reversed formal
dyadic “number” (x-;); add one in the last place and carry, possibly to
infinity. .

It is easily verified that S is a locally packable homogeneous indecom-
posable continuum which is neither locally connected not totally disconnec-
ted.

It is also false that packbility or shrinkability about a point is invariant
even under m-equivalance. This settles a question raised in [9].

3.8. Example. Let T be the triple (X, Z,0) in the complex plane, where
Z = {1/n}, and x+ iy is in X if and only if (i) ¥ and y are =0 and < 2 and
either ¥y = 0 or y = nx for some integer », or (ii) x+ 4y isin L =[1 + 24,2
4+ 27]. The set S is the set of all finite sequences (s, ....s,), with s; in Z
for i< » and s, in X — Z, less the set of all(s;), s; in L. Let Ug) designate
the set of all points in S with j-th coordinate in the open set U, which
contains gq. A neighborhood basis at the point s, with last coordinate s,, is
given by (a) if s, == 0, the set of all Ua(s,); (b) if s, = 0, the set of all unions
Ua($)J Un-,(2), where t is the next to last coordinate of s. For the point 0
the last qualification is vacuous.

It can be shown that S is packable about 0 but not shrinkable about
any of the m-equivalent points (si, ....0).

It was conjectured in [9] that every shrinkable connected space is locally
connected. Professor V.L.Klee observes that the pseudo-arc refutes the
conjecture. The product of any connected non-locally connected finite-dimen-
sional space by the Hilbert cube is another counterexample. ® The point is
perhaps now obvious; packability is the central property, and shrinkability
serves chiefly when there is invariance of domain (and thus the properties

= In his review of |9] in Zentralblatt 61, T.Genea gives still another counter-example
to conjecture.
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coincide). There is invariance of domain in the spaces most used in [9], the
connected linearly ordered spaces and the locally Euclidean spaces. (Theorem
2.13 of [9], on locally Euclidean spaces, omits a hypothesis; the space must
of course be Hausdorff). Finally, Klee points out that a product of two-
point homogeneous spaces need not be two-point homogeneous ; it suffices if
one factor is connected and the other is not.
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