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1. Introduction. In the theory of trigonometrical series, Riemann
introduced the well known methods (R, 1), (R;), (R, 2) and (R;) for evaluation
of series. These methods have been generalized to the following forms.

co

Throughout this paper, p denotes a positive integer. A serieszak is said
k=1
to be evaluable (R, p) to s if the series in

pity = (Y,

k=1

oo

converges in some interval 0 < ¢ < £, and fy(¢)—s as £ —0. A series Ea,,.
k=1
is said to be evaluable (R,) to s if the series in

Fi(t) = C5't 2 (sm kt) s

where

C) = f u~¥(sin u)? dus,
0
converges in some interval 0 < ¢ < ¢y and Fy(¢)—s as ¢t —0. It is well known
that (R,p) and (R,) are regular when p =2, while (R, 1) and (R,) are not
regular.

It is the purpose of this paper to obtain information about these Riemann
methods and generalizations of them by studying transformations which
involve simultaneously the Riemann and Cesaro transformations of series.
In terms of standard notation used by Zygmund [8, p.42] and others, the

oo

Cesaro transform of order a of 2 a;; is defined by
k=1

11 o% = s%[ A%,
where s% and A® being given by the relations

& = zs“x" Zanﬂ'

&gl — _— - -1 Kyt . N=0 — n=0
12 2Am=(1-2 and Tt = o = oo
If we put a = —1, for example, in (1.2), then we have A;'=1, A;!
=0#n=12....)and s;' =ax(n=0,1,2, ....): hence o;' has not meaning
when # = 1, 2, ., while s;* has meaning. It is well known that 4% ~
n*/Na+1), a+ —1, —2,..... A series is said to be evaluable (C, a) to s

if ¢ — s as # —oc0, and to be evaluable |C,«| to s if 3|¢% — o2 is
n n n+1
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convergent and ¢%—s as »— oo, In the following, let @ be a real num-
ber, not necessarily an integer, for which &« = —1. In formulating our defini
tion, we use the Cesdro sums s? instead of the Cesaro means ¢% which is
meaningless when a = —1.

A series E a; will be said to be evaluable to s by the Riemann-Cesdro
k=1
method of order p and index «, or, briefly evaluable (R,p,a) to s, if the
series in

—/sin kt\?
(1.3) o, a,t) = G, ’2< w )
‘where
1 f’ .
5 - u*?(sinu)?du (—1l<a<p-—1)
(1. 4) Cra = HNa +1) 0
1 (a = —1),

converges in some interval 0 < ¢ < #; and o(p, &, t)—>s as ¢ —0.

Under this definition, the (R,p, — 1)-means o(p, — 1, ) are identical
with the (R, p)-means f,(t), by s;! = a, and the (R, p, 0)-means a(p,0,?) are
identical with the (R,)-means F,(¢), by s = sy. Therefore, the (R,p, — 1)
method and the (R,p,0) method are reduced to the (R,p) method and the
(R,) method, respectively. Our main results are the following.

THEOREM 1. Let 0< 8 < 1, let X ay be evaluable (C,p —8) to s and let

k=l

(1.5) > o-3-1] = O(n).
k=1

Then the series E a; is evaluable (R,p,a) to s when —1Za<p—35—1.

k=1

This result implies that if 0 < 8 < 1 and 2 a;; is evaluable (C,p — 1 — 3)

k=1

tos, then X as is evaluable (R,p,a) to s when —1<a<p—8—1 Since
k=1
convergence implies Cesdaro summability of each positive order, we obtain
COROLLARY 1. The method (R,p, ) is regular when p =2 and —1=a <
p—1

If p =2, then we can put a = 0 in Theorem 1 and obtain

COROLLARY 2. Under the conditions of Theorem 1, the series >, ax

k=1

15 evaluable (R,) to s when p = 2.
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This Corollary is due to Obreschkoff [4] who proved that the result holds:
when p = 1. (R,p) analogue is also due to Obreschkoff [4].

THEOREM 2. The (R, 1, &) method is not regular when —1<a <O0.

THEOREM 3. If the series > a: is evaluable |C,p| to s, it is evaluable
k=1
R p,a) tos when — 1= a <p—1and a is an integer. Further, if the series

ZGA: is evaluable |C,1| to s, it is also evaluable (R,1,0) to s.

k=1
In this Theorem, if we put a =0, we have

COROLLARY 3. If the series is evaluable |C,p| to s, then it is evaluable
(Rp) to s. ’

(R, p) case of this Corollary is due to Obreschkoff [4].
THEOREM 4. Suppose that

(1.6) > (lasl — a) = 0(),
k=n

and the series zaﬁ is evaluable to. s by the Abel method. Then the series:

k=1

> as, is evaluable (R, 1,@) to s when —1<a <0.

k=1
(R, 1) and (R,) cases are due to Szasz [6,7].
THEOREM 5. Suppose that

2n

(1.7) 2 (lacl — @) = O(nr-"), 0<r<1,
k=n

and

(1.8) 2 |Ss — s| = o(n/log n).

k=1

Then the series > a: is evaluable (R, 1, ) to s when —1<a <0.
k=1

In this Theorem we can put « = 0 and obtain

CoOROLLARY 4. Under the conditions of Theorem 5, the series 2 a; 1S
k=1

evaluable (R)) to s.
(R, 1)-analogue of this Corollary is due to Szasz [5].

I take this opportunity of expressing my heartfelt thanks to Professor-
G. Sunouchi for his kind encouragement and valuable suggestions during the:
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preparation of this paper. I must express my heartfelt thanks to Professor
R.P. Agnew who read the original manuscript and named our summability
Riemann-Cesaro summability instead of generalized Riemann summability in
the original paper. I must also express my heartfelt thanks to Professor
S.Izumi who suggested to me the idea of the proof of Lemma 3 below.

2. Preliminary Lemmas.

LemMA 1. Zet A™qp(nt) denote the m-th difference of @(nt) with respect to
n. Then we have
@21 Amg(nt) = O(t™? | n?),
when m is a non-negative integer and p(t) = (sint/t)®.

LEMMA 2. Let 0< 8 <1 and let ¢.=0. Then

2.2 > gu = O(m)
k=1
implies
2.3 > qu/n**t = O(m~?)

and conversely.
These Lemmas are due to Obreschkoff [4].

LemMa 3. Let Agg:(":“) and let —1< a<p—1 Then

sin nt .
@9  lmen P Az, ( ) f *~3(sin #)’du = Cp a.
21 nt P(a +1) ne

In particular, if p =1, a =0, we have

= i
(2.5) lim 70 = = Oy

30 o P

This Lemma when p =2, a =0 is due to Obreschkoff [4].
ProOF. (2.5) is well known. For the proof of (2.4), firstly, we prove

in nt
lim ¢+ Sty (Si%-)” =T(a +1) Cy,a.
n=1

Let @ be an arbltrary positive number and let m = [q/t]. Then, we have,
by the definition of definite integral,

(2.6) lim t+1 3 ne Sm"t) f 4% (sin w)? du.
> n=1

Since & < p — 1, we have

oo

< sin nt
a+1 < fo-p+l a-p
t E: < ) = t E n

n=m+1 n=m
— 0(to‘—p+1m0&—17+1) )
— O(aa—pu)_




RIEMANN-CESARO METHODS OF SUMMABILITY 283

Thus, we have
t->0 nt
n=1

2.7 fim 221 S o (S‘L’“ﬁ) = f w(sin 2)? du + O(a*-»+1),
0

Since a is arbitrary, if a tends to infinity, we have (2.6).
Next, we shall prove (2.4). Since A% ~n®/I(« + 1), we may write

2.8) A% =n*D(a + 1) + En®,
where &,—0 as z# —> oo. Then, we shall prove
sin nt \?
o+1 o —— —
2.9 lim ¢ nE;enn ( nt ) =0

For each positive number & there exists an N such that |&,| < & when
7= N. Since a > —1, we have, for fixed N,

N-1

. sin nt \?
lim 2%+ 2 Ean® (T) =0

>0 n=1

Using the method analogous to the one which we obtained (2. 6),

< sin nt \?
1o+l 2 Eyﬂ’l‘”( nt )

n=N

lim sup
>0

sinnt ¥
nt

<& hm L sup o+l 2 i
n=N

| &3 »
« | Sinnt

<Eé& hm sup o+l 2 por

n=1

= Ef u®~? |sinu|? du = &K,
0
say. Since & is arbitrary, we obtain (2.9) and, using (2.6), (2.8) and (2.9),
we obtain (2. 4).

LeEmMA 4. If —-1<¢x<p 8—1, 0<8<1, then we have

i b\
(2.10) G(t) = t**1 ZA““""’ (ilzt—"> = Ok=7t7%).
n==K
Proor. Let us write
k+p
sin nt
G-t (Z+ 2 )asr () < v+ v,
n=k n=k+p+1
where p = [t"!]. Since p — a — & > 1, using (sin #nt/nt)? = O(nt)-?, we have
V(@) = ot 2 Aw+8 » (M)z)
n=k+p+1 nt
(2.11) = 0((k + p 4 1)-2e-rH1 2 (n — k)‘“""")
N=k+p+1

— O(k—p fe-p+1 pm+8—p+1)
= O(k~?t-9%).
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Putting () = (sint/t)?, by the repeated use of Abel's transformation
p-times, we have

p-p p-1
UQR) = to+1 2 A%HAPp (n + k) + £+ 2 Asd+i-p1IAg(p + b — i 8)
n=0 t=0
p-1

= W)+ > Wit),
i=0
say. Then, using Lemma 1, we have

Wi(t) = to+1 A:f:‘f""‘”*l A‘¢(p+7—_ﬂ‘)
(2. 12) — 0(t“+1p“+5—t+f'+1'tt—p(P + k)"’)
= O(k~rt-%),
when £=0,1,2,...., p — 1. Again, using Lemma 1, we have
p—p

Wi(t) = to+ ZA,?-» SA"tp(n )
n=0
p—p

(2.13) - O(tm S nesin k)_,,>

n=0
= O(k—ptd+1 pm+8+1)
= O(k~?1-%).
Summing up (2.11), (2.12) and (2.13), we have (2. 10)..

LEMMA 5. Under the conditions of Theorem 4, the series >, a is evaluable

k=1

(C,1) to s and s, = O(1) and Jurther

2.14) 2 las| [k = O(n-l)
k=n
LemMMA 6. If (1.7) and (1.8) hold, then we have
(2 15) Sp = O(”J.—T)
and
(2.16) > lasl /&= O(n).
k=n

Lemmas 5 and 6 are due to Szasz [5].

LEMMA 7. Let 0<8 =<1 Then, we have

@.17) Hit) = 1) A5 A2 o,

n=k

Proor. Since (2.17) when 8 = 0, 1 are obvious, we shall consider the case
0 <8< 1 Let us write

p+k oo

t . i
t- 82A 2 O o (D 32 Jage B2 S ue 1 v,
n=k n=p+k+l ’
where p = [t-1]. Then, we have, by the Abel transformation,
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k+p—1

Uy =1t 3 Ap, (Tt SRGEDEY it OF
n=k

”n n+1 P k+p

kE+p-1

= O(t—s-k-lt > A;ik) + O (%% + p)1)
n=k
— O(k'l t—8+1p—8+1) + O(k—l)

= O&™),
and
OEFEND W EREl
n=k+p+1
= O(t~%k + p)~Up + 1)7%)
= O(k™).

Thus we have (2.17).

LEMMA 8. Let 0<06 =<1 Ther we have
(2.18) AYH(t) = O(k~117),
where v is a nonnegative integer and AHi(t) is v-th difference of Ht)
with respect to k.

Proor. Lemma when 8 =0,1 is due to Hirokawa and Sunouchi [3].
Hence, we shall restrict the case 0 < § < 1. Let us write
sin(z + &) t}

AYHi(t) = N{ t-8 D A1 o

n=0

- t—séA_a-lN(sinm_Jrk)t)

— n-+k
81 Ay sm(n—l—k)t)
<2+n§+1)A 1A( r—
=U(t)+ V(2),

where p = [/-1]. Since AY(sinnt/n) = O(n-'¢Y), we have

p-1 . .
— 58 8 AY+1 w> 848 ,(ﬂn(_P_jk)j)
Ut)=t EA,,A ( oo + t0ASA Py

_ O(t 8. p-1gY+1 EA ) + O@® ‘5(p+k) 1£7)
n=0
= O(k 1Y~ 6+xp1 8)+ O(k 1t1)
= O(k~1tY)
and

oo

V(t):o(t~5-k—1t7- > IA;“I>

n=p+1
= O(k—ltv—ap—a)
= O(k~11").
Thus, we have the required.

LeMMA 9. Let 0 <3 =<1 Then, we have
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(2.19) Mlt) = 2 Hi(t) = O(m=1t1).

k=m
Proor. It is known that
V= ES—“—;—@ = O(m~12-).
See, for example, Hardy and Rogosinski [2, p. 29]. This proves Lemma when
8=0. When 8§ =1, Lemma is obvious. For the case 0 < 8 <1, we shall
write

mZEv(t) = t'siA;S—l iw

kE=m n=0 k=m n +_k
P =
=4 (T4 2 ) A
n=0 N=p+1

= U@) + V@),
say, where p = [t7!]. Here, we may easily see that this rearrangement is
permissable. We have, by the Abel transformation

p-1 .
U@ =3 DA sin (m + n)t

+ 10 A Timsp

s m—+ n
= O(t-s,PL—B.m—l) + O(t”s . p—a,(m + p)—lt—l)
= O(m~1¢7%),

and

V@) =1t" 2 A7 Fmen
n=p+1
= O(t=3 (m + p)~it=1+ p~?)
= O(m~1"1).
Thus, we have (2. 19).

3. Proof of Theorem 1. We may suppose, without loss of generality
by Lemma 3, that s = 0. It is known, from (1.2), that

n
o — 2: a+8-p p-8-1
Sy = An—k Sk 5
k=0

where A% is Andersen’s notation and s, = 0. Hence we have, putting @(t) =
(sint/t)?,

oo oo n
thE % p(nt) = 1o+t 2(])(”1‘) zAg:—g—p sp-8-1
n=1

n=1 k=0

oo

= 2 sp-8-1 ta+1 > A%+E-2 gy(nt)

k=0 n=k
3.1 = > SIGHR),
k=0

say. Here, we shall prove that this rearrangement is permissible. For
this purpose, it is sufficient to show that, for fixed ¢ >0,
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oo

N

3.2) o1 > sp-8-1 SV Aurd-r gy(pt) = o(1) as N — oo,
3 n=N+1

‘Since

o

tatt > AH-r g(nt) = 0( > (n—k)“+5’1"1-n—P>

n=N+1 n=N+1
= O(N-%N — k + 1)*+5-2),
we have, using the Abel transformation,

fo+1 2 sp- 5—1 2 Aa+8 rg(nt)

n=N+1
tw+12 sp-8 2 Aa+d-p- Lp(nt) 4 t*+1 st -8 2 A{'ffg,:’{(p(nt)
n=.V+1 n=N+1

= 0/2 kP8« N-P(N — k + 1)*+3- f’) + o(N?-SN-?)

kel
= o(N*~?-1) + o(N~%)
= o(1),
when o« < p — & — 1. Thus (3.2) is proved.
Therefore, for the proof, it is sufficient to prove that the series (3.1)

converges in 0 < ¢ < £, and its sum tends to zero as ¢ tends to zero. Let us
write

m o

2 s%-s-l Gi(t) = (2 + 2 ) = U (#) + Ut),

k=0 k=0 k=m+1

‘where m = [N/t] and N is an arbitrary fixed positive number. Using Lemma
2, we have, by (1.5),

(3.3) > ot k1m0 = O(m-?)
k=m+1

and hence, using (1.1) and Lemma 4,

Ust) = > ol 81A-3-1Gi(t)
k=m+1

(3. 4) =

=0 X loptileitet)

k=m+1
= Ot~ m~?)
= O(N-9).

“Thus, the series (3.1) converges for all £. By Abel’'s transformation, we
have

Ui(t) = 2 3,‘:—8_1 Gi(t)
k=0
m-1

= > s17HGu(t) = Gra(D)) + 570 Gul?),

E=0
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where Gi(t) — Gusi(t) = 121 > A%3-PAgp(n + F t)
n=0

= O(k~7$1-%)
by the method analogous to the proof of Lemma 4. Hence we have, from

Lemma 4 and summability (C,p — &) of the series 2 a,

k=1
m-—1
U\(2) = "(Z kp—sk—ptx—a> + o(mP~4mrt%)
k=0

= 0(m1—8t1—8) + o(m‘at‘s)
o(N*-%) + o(N-?)
= o(1),
for each arbitrary fixed N. Therefore, by (3.3), (3.4) and (3.5), we have

Il

> s Gt) = Un(t) + Ue)
k=0
= o(1) + O(N-9),
as t tends to zero, Since N is arbitrary, we have

limz sP=3-1Gy(t) = 0,

t>0 k=0
and the proof is complete.

4. Proof of Theorem 2. For the proof, we need the following:

LEMMA 10. For each §, 0< &< 1, there existsa series ,a. such that

n=1

o

(i) the series 2 a, converges to zero and (ii) the limit

n=1

s~ sin n¢
fim 70 2a
does not exist.

This Lemma is due to Hardy and Littlewood [1] when & = 1.

Proor. We shall prove Lemma by Hardy and Littlewood’s method. If

we put g,., = exp (v¢’) and ¢, = 1, then we can see easily that

a1, @/a—o and 10g(g,+1/a)/q, — .

From this sequence {g,}, we may construct a sequence of positive integers.
{n,} such that

n, Y, m,=n,4/n >0 and (logm,)/ nd-> oo,
where m’s are integers. Further, we may find a sequence of positive integers.
{&,} such that

k1, ki/k,—1 and (logm,)/ k8 n — oo,

Then, if we put ¢, = 27k,/n,, we have lim ¢, = 0. Now, we shall define our
e dad
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series 2 a, by

v=1
an = 1 sinnt, = 1 sin 2nky7
7y ny n,
for n, < »n < n,.,. Then, we may prove Lemma by the method analogous to
the proof of the Hardy and Littlewood lemma, so that we omit the proof
in detail.

Proor OF THEOREM 2. When a = —1,0, Theorem is well known. Hence

we shall restict to the case — 1< a < 0. When the series Ea, is defined

v=1

as in Lemma 10 for § = —a, we find a series > 4, such that B* = a,, where

v=1

bt n
B® is (C, ) sums of the series > b, with b, = 0. Then, putting s, = >a,
v=0 v=1

we have

2 bu=By= X A% Bs
n=1 v =0

n

—_— —a-1

- ZAIL-V a,
v=40
n-1

= 2 A0S, + Ayt an
v=0

= o(E u—a—z) + o(1)

v=1

= o(1).

Hence, the series > b, converges to zero. But, by Lemma 10, we see that

v=1

. < sinnt . - sin #nt
lim t* > a. - = lim t*+1 > BY ———
t->0 n=1 n=1

n >0 nt

o0

does not exists. Therefore, the series 2 b, is not evaluable (R, 1, «) and

v=1

the proof is complete.

5. Proof of Theorem 3. Putting ¢(¢) = (sint/#)?, by the repeated use
of Abel’s transformation (p — a)-times, we have
n n—-p+o
(5.1) 1341 > s (kt) = toHt > st AP g(kt)
k=1 I;_;
g2l D> serl Aig(n — 1 4 1),
i=1

We may suppose, without loss of generality,that s = 0. Since summability
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|C, p| implies summability (C, ), we have s} = o(n?) when 0 <:{=<p. Then,
using Lemma 1, we have

p-o
o1 3] sty A gln =i 1)
i=1

-
= o(t‘“l SMm—i+1)pe(n—i+ 1)—uf—v—1>
i=1
= o(1),
as n— oo, for fixed ¢ > 0. Therefore, for the proof it is sufficient to prove
that the series

5.2) e+l st AP ep(kt)

k=1
converges in 0 < t < ¢, and its sum tends to zero as ¢ —0. Using (1.1) and
Abel’s transformation, we have

m m
12+ > SPAP-ag(kt) = to+ > op AP AP-"gp(kt)
k=n k=n
m~—1

(5.3) = > Ut)Ac? + Un(®) o7, — Un-i(t) a2,
k=n

Where Un(t) = t*+! 2 A} AP %@(kt) and Agl = of —al,.. Now, we shall
k=1

show that Ux(t) is uniformly bounded in 0 < ¢ < 7 and for all n. If n2 <1,
then, using Lemma 1, we have

Uat) = t**1 > A2 AP-*gp(kt)
k=1

= O(tw+1 2 kPP t—w)
k=1

= O(nt)

= (1).
On the other hand, following Obreschkoff, we shall consider the series 1 +
0+0+ ..... Concerning this series, we have

sg: Aﬁ

B ol =1 n=12....; B3>-1)
Hence, from (5.1), we have

n n-D+a
11 AT p(kt) = o+ > AY AP%gp(kt)
k=1 k=1

p-o

+ 141 D) Ancen Ap(n — i+ 1 8),
i=1
that is,

P-o

101> Argpbt) = U,_,,q1) + 124 2 A A gn —i+ 1 8),
k=1

i=1
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" where

P-a
21 DA% Algpn — i+ 1 t)
jml
D—-o

= O(t“H Sn—it+ 1t —i+ 1)—1’#—?—1)

i=1
-

= 2 O((nt)w+t—p)

i=1
= 0(1)
when nt > 1. Putting p = [£71], we have

n P n
t2+1 > Argp(kt) = o+ (Z + > )A: @(kt)

k=l k=1 k=p+1

P oo
= 0( o1 k“) + 0(1*“1 > t-f’-k“-ﬂ)
k=1

k=p+1
— 0((Pt)w+1) + O(tw—pﬂpw—w»l)
= 0@)
when p —a > 1. And, when p =1, a =0, this result is well known. See,
for example, Hardy and Rogosinski[2, p.29]. Thus, U,(#) is uniformly
bounded in 0 < ¢ < 7 and for all . Then, using above results and (5. 3),
we have

i

(5. 4) e+l D st AP-Sep(kt) = 0(2 |Aag|) + O(lai]) + O(lotl)
k=n k=n
= o(1)

as m, n — oo, by our assumption. Hence the series (5.2) converges in 0 <
t < z. Since o(1) in (5.4) is uniform in 0 < ¢ < =, for an arbitrary small
& >0, there exists an N = N(&) such that

Pad
ol > s A"““q)(kt)f< 3
k=N

Further, we have
N-1
lim 22+t > s? A?=*q(kt) = 0,
>0 k=1
when a = —1. Therefore we have

lim sup |2%+! > SPAP-“q(kt) ’ <&
>0

k=1

Since & is arbitrary, we have

lim o+ > st AP-%gy(kt) = 0,

t->0 k=l
which is the required, and the proof is complete.

6. Proof of Theorem 4. We may suppose, without loss of generality,
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that s = 0. By Lemma 5, the series 2 a: is evaluable (C, 1) to zero: hence
k=1

6.1) st= > su=o(n).

k=1
Since we have, from (1.2),

n
— -1
s’; - 2 A:—k Sk,

k=0

we have
t“z s sir;nt = o E <2A5_£ Ih) sin nt
n=1 n=1
(6.2)
_ 2&(1‘ "2A smnt)
n=k
(6.3) B 2 s Hi(t),

k=0
say. Here, we shall prove that this rearrangement is permissble. For this
purpose, it is sufficient to prove that, for fixed ¢ > 0,

6.4) S S Ax At o)

k=0 NaN+1
as N— . Since

2 As- s1nm‘ —0(2 (”_k)m—z,n—1>

n=N+1 neN+1
= O(N-Y(N — k + 1)*71),
we have, using Abel’s transformation and (6. 1),

t“ZS;“ 2 As-l 'sin nt

k=0 k=N+1

N-1 o o .
sin nt

=32 s 2 A, 0 geg, B ATk

k=0 n=N+1 n= IV+1

N-1
= o(Ek-N-l(N k+ 1)~ 1) + o(N-N-1)

k=0
= o(D),

and (6. 4) is proved.

Here we remark that the rearrangement (3.2) is permissble when s, =
o(n).

Therefore, for the proof, it is sufficient to prove that the series (6.3)
converges in some interval 0 < ¢ < #), and its sum tends to zero as £ —0.
Convergence of the series (6.3) follows from the estimation of V(t) below.
Let us write

oo

Eska(t) = (2 + =

k=1 =1  k=p+l

) = v + v,
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where p = [(§&¢)~1], € being an arbitrary fixed positive number.
(2.18) and (6.1), we have

p-1

Ut) = 2 sk AHW(E) + s, H,(2)

k=1

= o(§k~k‘1t) +o(p-pt)

k=1

= o(pt) + o(1)
= o(1).
Since 74(2) = 2 Hi(t) = O(n~1£-1) by (2.19), we have
k=n
V()= 2 scHt)
k=p+1

= = Goar Teri(?) + Spapar(?)

k=p+1

< |ab+1l — ) 1 )
S o 3 leml ) 4 of
k;‘m E+1 pt
— O(p"t'l)
= O(&),
by Lemma 5. Thus, we have
lin}égup |U) + V()| = OE).
Since &€ is arbitrary, we have
lglg o) - vi)) =0,

and the proof is complete.
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By (2.17),

7. Proof of Theorem 5. We may suppose, without loss of generality,

that s = 0. By (1.8), the series 2 ai; is evaluable (C, 1) to zero; hence sl =

k=1

zs/g = o(n) and, by the remark in §6, the rearrangement (6.2) is permi-

k=1

ssible. Convergence of the series (6.3) follows from the estimation of W(¢#)

below. Let us write

j oo
>+ > ) = U(t) + V() + W(2),

k=h+1 k=j+1

2 ssHw(t) = (2 +

where 2 = [t-1], j= [t-#] and B > 1. Then we have, by Lemmas 7 and 8,

13

Ut) = ESh Hy(t)
k=1
h=1
= D sLAHt) + st Hy(t)

k=1
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h-1
k t k1
- °<§log (& + 1)'?) + O( logh "k )
o(ht/log k) + o(1)
= o(1).

i

If we put S, = 2 |sx| we have using (1.8) and (2.17)
k=1
J
Vil = 2 Isel |Hu(®)]

=h+1

( 2 lsmlk-l)

k=sh+1

1
= (2 s (% “’k’ﬂ)”f ~Sii1)

k=h+1

(3 b)) el
—(2 logk * k) log j J)+ologh h+1

k=h+1
= o(log 3) + o(1)
= o(1).

Lastly, by (2.16) and (2.19), we have

Il

W(t)= > scHt)

E=j+l

= —-2 i1 Mer1(t) + SzWs41(8)

kE=j+1

- (tlz IGL[)+0<]1“T

= O(t-1j")
= O(tfr-1)
= o(1),
and the proof of Theorem is complete.
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