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1. Introduction. Let ¢(¢) be an even integrable function with period
27 and let

(1.1) @(t) ~ 2 an COS nt,
_11
1.2) @a(t) = T(lj)f p(u) (t — u)*~1 du (a >0).
0

G. H.Hardy and J. E. Littlewood [2] have proved the following theorem :
THEOREM A. If @(t) satisfies

(13) f | p(w)] due = o(t/logi), as t—0
:
0
and
(1.4) f |d{up(w)}| = Ot), 0<t<m A>1,
0

then the Fourier series of ¢(t) converges to zero at t = 0.

If we replace the condition (1.3) by
4
(1.5) f | ()] du = o(t/log tl> ,
0

then the theorem does not hold [8].
Concerning the condition (1.5), S.Izumi and G. Sunouchi [4] have proved
the following theorem:

THEOREM B. If B >0 and

(1.6) Pa(t) = o<tﬂ/log—}>,
then the Fourier series of @(t) is summable (C,3) to zero at t = 0.

Theorem 1 and 2 are concerning with the condition (1.6) and there are
many theorems of analogous type. (See the papers of S. Izumi [3], G. Sunouchi
[9], M.Kinukawa [6,7] and K.Kanno [8].) In this note we shall give some
theorems relating closely with these theorems.

THEOREM 1. If
1

7 Pa(t) = o(t-3/<log %)y > B,y >0).  ast—0,

*) Part I of this papear: this Journl, Vol 7(1955), 110-118.
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and

(1.8) f[d og~ s (1) H = 0) (A>0, 0< =7,

then the Fourier series of ¢(t) is summable (C, z;'yf ;yl) to zero at t = 0.

From the Theorem 1, we obtain immediately the following corollary::

oy
COROLLARY. If ¢a(t) = 0 (t5/<log -1) ) (B>0) ast—0,

and f’ _teld) H o) (A>0, 0<t=7),

(log

then the Fourier series of ¢(t) converges to zero at t = 0.
This is a dual of F. T. Wang’s Theorem [11].

THEOREM 2. If (1.7) and
(1.9) o) = 0<<1og % ) (A>0), as t—0,

then the Fourier series of @(t) is summable (C, %) to zero at t = 0.

On the other hand G. Sunouchi [10] has proved the following theorem :

TuEOREM C. If 9(2) = O(t~%) (1 > 8 > 0), and @gt) = o2Y), v >B >0, as
t—0, then the Fourier series of ¢(t) is summabie (C,a) to zero at t = 0, where
a=B8/(y+8—-8)+ &

And he remarked that this theorem would be valid without & In fact, this
is certainly true. That is, we have the following theorem :

THEOREM 3. Under the assumptions of theorem C, the Fouries series of
@(t) is summable (C, ) to zero at t =0, where ¢ = B3/(y + 8 — B).

2. For the proof of theorems we use frequently Bessel summability
instead of Cesaro summability. It is well-known that these two methods of
summability are equivalent.

Let J.(2) be the Bessel function of order p, and let

2.1) au(t) = Ju(t)[t+

(2.2) View(?) = ap3 (@),

then

2.3) VE@E) =01) ast—0 and 4% (t) O(~-®+D) ast— o,
for £=0,1,2, ........ , where the index 2 denotes the Z-times differen~
tiation.

Moreover we need some lemmas.
LEMMA 1. Let V(x) and W(x) satisfy the next condition :
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(i) V(x) is monotone function and there exists a real number d >0 such
that x*'V(x) is non-decreasing,

(ii) W(x) is non-decreasing,

(iii) Wi(x)/V(x) = O(1) for x>0,
then if p(x) = O(XV(x)), and pudx) = o(x°*W(x)) for x > 0, we have

D) = o{ w=eplararcia V()= (W(x)'s } 0<a < a),

where V(x), W(x) are positive for x >0 and —1<c=<a-+ b for x— + o,
or V(x), W(x) are positive for 0 < x<n and —1<c=a-+b for x— +0.

Proof runs over similarly as a theorem due to G.Sunouchi [10].
Let K*Xt) be the n-th Cesaro mean of order a of the series

—1~ -+ Zcoskt,
2 k=1

then we have
LEMMA 2. If —1<a=1, then
KPt) = S@&(t) + RE(t),
and
cos (At + A)
A§{‘)<2 sin L)H“ :
X 2

where An=n+(ax+1)2 A= —(a+ Dx/2, A® = (n Z a) and

2.4 SPA2) =

@.5) \R#X2)| < M/nt 'Tj[ Rﬁ{”)(t)‘ < M/nts + M/nt,

(2.6) (i) SE(E) = Q=2 t-a+w), for mt =1,

@.7) }< = ) Ko(t)| < M, for B0,
< Mn=it-+® for mt>1, k>0, 0<a<L

(J.J. Gergen [1] and M. Kinukawa [7])

LEmMA 3. If —1< a =<1 and () = oft),
then

k/n

lim lim sup f @(t) K&(¢)dt = 0.
k>co N—pco
0
LEMMA 4. If ¢i(t) = O(t), then we have
z+£y
lim hm sup f @(t) R@(t)dt = 0,

N->e0
k/n

where & is a fixed number and y = O(k/n).
Lemma 3 and 4 are due to J. J. Gergen [1].
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3. Proof of Theorem 1. First we consider the case « = %’yﬁffl > 0.
7

We denote by o2 the a-th Bessel mean of the Fourier series (1.1). Neglecting

the constant factor,
Op(w)

3.1 %= f w@pt) Viiawt)dt = f f w@(t)Visa(wt)dt = I+ ],

Cp(w)
A

say, where C is a fixed large constant and p(w) = (log ®)** Jw. If we put
t
A
at) = tg;(t)/(logitl) and O@) = f |dO(¢)|, then we have by (1.8)
0

3.2) at) = O@), |t) = O(2).

Now we put

1\
o (log~>
A(t) = f ———u—‘ V1+u((l’u) du
%

- w+—- M _1_ og )
w f Ju+ (‘"“) ( for x = Cp(w).
wr 3
Then, using the formula
f ];Saf) dt = J,-1(az)]az"! for v > %,
we get ‘
log
(o(a“-%)A(t): [ f ]a+—(wv) dl) ( ) ]

v~

+f f]‘“i(“’”)dv ((log >>du
= [ —w'lla_l?(wu) z;'(‘”T (Iog;) Iﬂ

- - w—i_;. -
— Aw‘lf Ju—i(wu)u (a=g3) (log%)A la’u,

201 f j.,__(mu)u <1og )du

= (D—I(Al + Az + A3), say.
Since w? = Cop(w) > 1, by (2.3), we have

-1 1\*
A= O(w 7 p-(@+2) (log 7) )
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and
1

1 1\24
A; = O{ f 0 T u @ (10g—u—) a’u}
t

oo

+ O{f 0T u=@+3) (log #)* du}

1

O{ w‘% (logtl)A t‘(‘“")} + O(w‘%)

Il

= -L -(a+z)< i)A}
O{ 0w 5t vlog ;
Similarly, for A=>1
Ay = o{w—i’ $- @ (log—l— }

A-1
For 0 < A< 1, it is easily to see that u‘f(log~) has the minimum value
u

at % = exp < — l—l—gé—) for 0 < # < 1 and is monotone decreasing for 0 < %

<eXP<—

5
A= 0{ w‘%f —(@+3=€) gy—e (10g——> du

+0( f u- ("”)(log—) du}

+O{m 2[ u— @+ (Iogu) - du}
1

L 1\A-1
= 0{ w 2 t“~(log~t—> t—(ﬁ+2-e)}

-1 1\2-! L
+ 0w 2 t‘f(log?) )-[-O(m—z)

for 0< A< 1, where §=¢€¢ « .
Summing up the estimations of A;, A; and A;, we have
(3.3) A(#) = O(w- @+ <log~;—)A £~ (@) for = Cp(w).

We first investigate J. Integrating by parts, ] becomes

f " oV alart)dt = f " wll) <1°t_—) Viea (@t) dt

Op(w) Cp(w)
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- _ f T o) dAD) = — [mem A) ]“’ +w f T AW Q) = T+ I

Cp(w)

Cp(w) Co(w)
where
=0 {[a,-(mﬂ) t‘(w+1)<logl‘)<\.j]w }
. t Cp(w)
@+1 A
= O{ - @+ C-(@+D) AR (log o }
(log@}* \"™ (Clogwyast
= O(C~@*D) as @ — o,
and
a A
.].‘, = O{ (of @~ @+ =(@+2) <log_;['_> 'do(t)l }

Cp(w)
1 A oo
O{w““‘”)[ t-@+ (log ——) o(t) ] }
¢ Cp(w)

= A
- O{(D—("“‘l)f - (@+3) (]_0g?1> o(?) dt}

Cw(o)

1l

'( > 1 A-1
+Olw‘(“+1)f $-@+3) (1og7) @(t)dt}

Cp(w)

1\a7=
= 0{ @~ @+1) [t—(aﬂ) (Iog*_> }
¢ Cp(w)

+ 0{ w=@+D (Cp(w))~@+D <log CP:([(D) )A}

. = O(C~@+D) as o — ©,

by (3.2) and the similar estimation to those of A(Z).
Thus, if we take C sufficiently large, we get
3.4) J=L+J]=01) as w — oo.

Now there is an integer % > 1 such that 2 — 1< B8 <% We may suppose
that 2 —1 < B < &, for the case @ = k can be easily deduced by the following
argument. By integration by parts k-times, we have

Cp(w)

I= f wp (1) Vise(ot)dt

Cp(w)

= S (-1 [Pt Vi) |

Cp(w)
+(-1or [ gtV

0

0

k
(3.5) = D — 11, + ( — 1)thsr, say.

h=1
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From (1.8), @(t) = 0(<Iog ~) ) Then we may put in Lemma 1
1\ 1 7
V() = (Iog7> and W(¢) = <Iogfi~) . Hence
h
. 1 \a-5(ar)
(3.6) <;;,L(t)=o{t’“ (log7> } for h=1,2,....k—1,
and
3.7) Pt) =0 t'c/ (log—) }
‘Therefore,
1= [w”@,(t) Vi (wt) }
Ch(and e
=0 ‘ { g t’l<log )A s )(mt)"(nw) o )}
1L 0
n 1
»ﬂ(h (1+a)) o A- 5(A+7)
0{ (log <1°g (log w)ﬁl—) }
o1 (- (1+u))+A—~~(A+—1—)
o{(logm)‘” g Py }
Since Ay +1 _ AB+1) , the exponent of log w is
v a+1
Ak RAY+1) AR _ARB+1) . —AR
a+1 By a+1 Bla+1) B(a+1)
‘Thus, we have
(3.8) I,=01) as w— o, for h=1,2,...., b —1
Here the terms I,, h =2,3,...., k—1, appear for a > 2.
Cp(m)
L= [ oot V%’iw” (@) |
0
Al_ '
o{ e Ltk ‘””)(Iog ) Y ilUP(m)}
[ 0
A(k (1+w)) __1_
o{(logw) e (log- wT> Y }
: (log )ait
BA__ayel
(3.9) o{(log w) 1+ }
(k=(B+1))A
_ o{(log ©) } = o(1), as o — oo,

Concerning I:+;, we split up four parts,
Cp(w)

13
Loy = o+ f V® (wt) dt f pa(u) (¢ — wf-P-1 du
0 0
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Cp(w)

u‘l Utw ™
= f dw f dt+ f du f
0 Cou
Cp(w) —w ™ Cp(w) Cp(w)
+ f du f dt — f du f dt

Cp(w)
310) =K + K.+ K; — K,, say.
Since V¥ () = O(1) for 0 <t =<1,

-1

-1 U+ o .
K = ot f oLy f Visu(wt) (¢ = wf-2 de

w

-1

o] el

(3.11) o{ b+l f ——’%—7 du} = o((logw)- ") = o(l), as w—»co.
)
u
Cp(w) -1

K, = o+ f pp(u) du f V® (wt) (¢ — wf—F-1 dt

uU

Cp(w) +w-—1
f ( f ()~ C+®) (f — y)-8-1 4t }
log )_
Cp(w) e o=l
- o{ wot-a f et [(t — - ﬁ} du}
w1 (Iog " )7

e gz o T

1 A(ﬂ
(312 = o{ (log o)y " &t } =ol), as w—>co.

Concerning K3, if we use integration by parts in the inner integral, then
Cp(w)

Cp(w) ~w
K; = m’“lf () duf V&, (0b)(t —uf-B-1 dt
0 u+w~ 1
o+ 1 p=e ’r e Cplw)
= @t <pg(u)du-l | @ o~ VENwt) (t — u)f”“’“J
Y Uto~?
Cp(w)
— ®k—B—1) f w1 VED(wt) (£ — u)-5-2 dt}.

=M1""(k_‘B—'1)Mg.
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Op(w)

M, = 0{ w(log w)~2 f Pp(u) (Cp(w) — uf—P-1du
0

Cp(w)

+ wh-* f Pp() (2 — a)’l)‘(””“du}
0

Cp(w)

= 0{ w*(logew)* f “_‘J%*T (Cp(ew) — u)=F-1 du
(e )

0 Y

Cp(w)

3
tore [ W e )
y (log -)7
u

1 _A
= o{ o'(log w)~2{ log A‘m—q— )_ i ( (log @) **" )k}
[0]

(log w)***
1 A
+o 41 w8 *(log —2— )—7 ‘(‘aogﬂ)ﬁi >‘8'” }
A
(log w)a+1 @
_Ay+l, Ak { 1, AB-®)
= o{(log ) y &+ } + ol(log )7 e }
k= (B+1)
= o{ (log ) &+ } + o(l) = o1), as o — oo,
Cp(w) 5 Cp(w)
M, = 0{ w“f ——fu—l——l—du‘[ @~ 1+®) p-+®) (& — uy-8-2 dt }
0 (10g—)7 U+~ 1
U
Cp(w)

= 0{ ot 1+®) f §8-U+a) n‘iA]:f_T ﬁ(t _ u)k_ﬂ_lJCP(w) du}
1 =\ utw™!
; o 1)

1
4B +®) (logl> Ry du}
u

ACP(w)

= of w2 f

A(B-a)
N AlB-a)
= o{we"‘(log w) v B9 (log ®) ot } = o(1), as w — o,
Thus, we have
(3.13) K; = o(1), as w — oo,
p(w) Ut~
K, = o**1 f @pa(u) du f VE (oot (t — u)f-F-1dt
Cp(w)—w™? Cp(w)
Cp(w) Ut~
= O{ w‘”l‘(““)f pp(ne) duf -Q+® (p — y)-B-1 4t }
Cp(w)—w™ 1 Cp((w)
Cp(w) o1 U+

i
o

{mk‘“ 1u9<10g%) Y du(Cplw))” "™ f —1(t—~u)"—ﬁ—1 dt}

Cplw)—w™ Cp(w)
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Cp(w) 1 -1 Utw” !
= o{ o*+(log co)"Af ’ u3<log -—) Y ((t — )-8 ] du}
_1 u L Cp()
Cp(w)—w™ *
Cplw) 1 1
= o{ w8 1(logw)~2 f u3<10g ) v du}
-1 u
Cp(w)—w
L A
- a+1 \ B+
= o{ 0®*1 (log 0)-2 (log @) 7 (Uig&)—) ' |
(4]
Ay +1 A(B+1)
B14) = o{(log o) 5 *as } = o(1), as @ —» oo,
Summing up (3.10), (3.11). (3.12). (3.13) and (3.14), we get
(3 15) L = 0(1), as w —r o0,
From (3.1), (3. 4),, (3.5), (3.8), (3.9) and (3.15) we have
(3.16) % = o(l) as @ — oo, for a >0.

Next, we consider the case —1< a =<0.
If we denote by o2 the n-th Cesdaro mean of order a of the Fourier series
of p(t) at £ =0, and

7ot = f (t) K2(t) dt
0

k|n k3 k.1

(3.17) = f o) KX(t)dt + f @(t) Ru) dt + f @(t) SUt)dt

0 kin kin

= Il + IZ + 13:
say. By (3.6)
! 1 +_L

(3.18) oul®) = o{ t'(loglt)“ plars )} = o),

1 _ éle) _ ABa—-1)
for alas =27 Ba+1 =
Hence, by Lemma 3 and Lemma 4, we get
(3.19) I, = o(1), I. = o(1), as m—>oo.

Therefore, it is sufficient to show that I, = o(1). Let
_A__
(log n) *+*

p(n) = ” ,
kp(n) x
3. 20) L= { f 4 f }cp(t) Su#)dt =Ji + I,
kin Jkp(n)

say. If we put

1 A
x| log —
A(t) = < g uz cos(A,,u+A)d
u (Zsinﬁ e
)

t
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Alt) = 0<(log tl)A /mm)_

Integrating by parts. we have

__1 [ _
b= A f 0t)dAt) = Aa{[ﬂu‘) A(t)
kp(n)
say. The calculations of K, and K, are similar to those of J; and J: in the
former half of this theorem. Thus, if we take % sufficiently large we obtain
(3.21) J: = o(1), as 7 — oo,

In the estimation of J;, we may suppose that m — 1< B < m, where

m ( > 1) is.an integer. Integrating by parts m-times we have
kp(n)

then

f A(t)dem} K + K,

kp(n)

d \u-1 kp(n)
= 1) SH)dt = — gty %Yl sue
]1 kfln ¢( )S ( ) [E( » ¢h( )( dt ) n( )ka
kp(n)
(3.22) +(— 1)mf ¢m(t)( ) Sat) dt = 2( — 1Ly 4 (— 1 L,
k/n h=1

say. Using Lemma 4 and (3.6), we get

/ 1
L,=o0 {{ th<10g'1—>A— Ty nh-U+a)f-1+a) _lkp(n)}
t

1k/n
- A_(A+ L)
(3.23) = o(n B@+D 4 o((log n) B Yy = 0(1) asn — o,
for h=12,...., m—1.
Similarly,

(3.24) L, = [(pm(t) (g;)m_ls:(t)J:/ = o(logn) oot = o(l), as n—>co.

Concerning L.,
kp(n)

t |
Ly = f (5) sxwae f )t — w81 du
lc/n
U+k[n

f () du f (d—";)ms:(n (t — uyn-6-1 gt

kp(n) u+k/n kp(n)—-kn kp(n) Kp(n) U+k|n
-I-f duf dt+f duf dt—f duf dat
0

uw+k/n kp(n)-k[n kp(n)
= Ml -+ M,a -+ M3 -+ M;, say.
The methods of the estimations of M, (v = 1,2, 3,4) are similar to those of
the former half of his theorem. Thus, we get
(3.25) L. = o(1), as n — co.
Summing up ¥(3.17), (3.19), (3.21), (3:22), (3.23), (3.24) and (3.25), we get
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(3.26) a? = o(1), asn—o for —1<a=x0.
From (3.16) and (3.26), the theorem is proved completely.

4. Proof of Theorem 2. We denote by o% the a-th Bessel mean of the
Fourier series (1.1), where a = AR >0. Then
Ay +1

oo Cp(w) oo
(41) oo = f © @) Visa(ot) dt = ( f + f )mgp(t)VHa(wt) dt
0 0 Op(w)
=I+]

A
a.
say, where C is a fixed large constant and p(w) = (ogw)® .
(0]

By the assumption (1.9),

I= 0{ f i mm)%um(mg%—f dt} = 0{ w-*(Cp(w))~* (log —L)A}

C
Cp(w) P(m)
-A (l’
= 0{w-sC-*w"(1ogo ) (log —2 )| = o).
C(log ©) w

Thus, if we take C sufficiently large, we have
{4.2) I=o0(1), as w — 0.
The estimation of J is similar to those of Theorem 1. So we have
4.3) J = o0(1), as @ —r ™.
From (4.1), (4.2) and (4.3), we have

oz = o(l), as o> o,

which is the required.

5. Proof of Theorem 3. We use Bessel summability and denote by o%

the Bessel mean of Fourier series (1.1), where a = 74-@58— 3 Then,

2 Co P >
(5.1) f op(t) Viidot) dt = (f -+ f ) o@p(t) Viia(wt) dt = I+ ],
0 0 Cw™P

say, where p = B a .
e P v+ 8 o+ 8
By the assumption @(¢) = O(t~*) and (2.3), we have.

J= o{f w13 (wt)- 0@ dt} = 0w [t—wmr }
P Cu~P
— O(C—(n+8) w—¢+p(m+8)) = O\fc—(as+8))_
Therefore, if we take C sufficiently large, we get
(5.2) J=o01), as o — oo.

Now, there is an integer %2 > 1 such that 2 — 1 < B <% We may suppose
that 2 — 1< B < k. By integcation by parts k-times, we have
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Co™P

k w0~ P
1= 3= @t gut) Vet [ (=170 [T gty Vityan ar
0
0

h=1
k
(5.3) = 2 (= 1P, + ( — 1F Ly, say.
h=1

In Lemma 1, we may put V() =W({#)=1, b= -8, a=L and c=1.
Hence we get
@u(t) = o(t~3B-WIB+1YIB) for h=1,2,...., k—1.
And
Pit) = o(t1-4+1),
Therefore,
—(+@) 0w~ P
I, = 1:c,,ht(—S(B—-h)/B+hv)lﬁ(wt) ]
0
= o{ o= U+@)gy ~p{~8(B—1)+hy}/B+p(1+2) C—(N+1)—(8(3—h)+h‘/)!ﬂ!,_
B _ «
v+ 8 a+38’

r—1+a)— 2{ -8B ~h) +hy—B1+a)

the exponent of o of the last formula is

B
=h—(+@) = G{=Bl+a+d+hy+8)
L a - __ 5

=—(@+D+ wd+a+d=———= <0

Thus, we have
(5. 4) I, = o(1), as w—oo (=12 ...., k—1).
Concerning I,
I, = [wkt'/"p"'"(wt)’(1"“"‘):‘0“’—" = O{"~A+®)-ply-B+k-(+a)} CY-B+E-Q+a)}
o .
The exponent of w is

EFl—p)— 1+ a)d—p)—ply—B)
_kKy+8—=B) _y+8—-B+B _ Bly—R8)

vy+8 v+ v+
vy+38—-R8
=1l = (*—-1—R3)<0.
715 ( 3)
‘Therefore,
(5.5) I, = o(1), as w —> o,

Concerning I;.:, we split up four parts,

Co P Cor P
Lot = f 0 o) d f VO, (wot) ( — uf-P-1 dt

1]
1

w” u+wL ' Cow ™ P u+w~!
= f duf dt + f du[ dt
% w1 u

0
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o P-w"l pCuP Cw™ P u+re” !
+ du f dt — f du f dat
0 el 0 Co~P
(5.6) =K +K,+ K; + K,

say. Estimations of them are similar to those of the theorem of the author

[6]. And so, leaving out the detailed calculations, we have

K, = o(w~9"B) = o(1), for v > 83,
K,‘ = 0(&)3‘“‘6’(7‘“)’ for fy__ a = (7(;:}_3%(1_;8) > 0'
K; = 0"+ A+®G-D-p+k=-B)) 4 (B~ -PY-®))

and
K, = o(wB~%-rP0-),

Since B—a —p(y—a)= B—a(l—p)—py=B— —2 ay_ _pg_

a+s a-+3d
p(fy+8)=0andk+(1+a)(p—1)—p(v+k—B)=1+7§f8—B(k~1—B)< 0,

(5.7) K = o1), as w— oo (i=123,4).
Summing up (5.1), (5.2), (5.3), (5.4), (5.5), (5.6) and (5.7), we obtain
o = o(1), as w —r ™,

which completes the proof of theorem 3.
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