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1. Introduction. Let φ(t) be an even integrable function with period
2π and let

00

(1. 1) φ(t) ~ 2 «» Cos n*>

ί

φa(t) = γ— J φ(u) (t - ur-1 du (a > 0).(1. 2)

G. H. Hardy and J. E. Litt]ewood [2] have proved the following theorem :

THEOREM A. If φ(t) satisfies

(1.3)

and

(1. 4) \d{u*φ(u)}\ = 0(t),

0

then the Fourier series of φ(t) converges to zero at t = 0.

If we replace the condition (1. 3) by

(1- 5) I \φ(u)\ du = o^/log i) ,

ϋ
then the theorem does not hold [8].

Concerning the condition (1. 5), S. Izumi and G. Sunouchi [4] have proved
the following theorem :

THEOREM B. If β> 0 and

(1.6)

then the Fourier series of φ(t) is summable (C, β) to zero at t = 0.

Theorem 1 and 2 are concerning with the condition (1. 6) and there are
many theorems of analogous type. (See the papers of S. Izumi [3], G. Sunouchi
[9], M. Kinukawa [6, 7] and K. Kanno [8].) In this note we shall give some
theorems relating closely with these theorems.

THEOREM 1. If
±

(1. 7) φβ(t) = o(i 3/(log J-) ) (β, 7 > 0), as t -> 0,

*) Part I of this papear: this Journl, Vol. 7(1955), 110-118.
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and

(1. 8) f d \ A φ(t)
-

= O(t) (Δ > 0, 0 < t ̂  17;,

/te Fourier series of φ(t) is summable 1C, -J^-——] to zero at t = 0.
V H- Δγ /

From the Theorem 1, we obtain immediately the following corollary ί:

COROLLARY. If φβ(t) = oft?/ (log — -\ \ , (/5 > 0) as t -> 0,

/ / tφ(t)
I d\

Ί N A

(logτ)
(Δ>0,

//te Fourier series of φ(t) converges to zero at t = 0.
This is a dual of F. T. Wang's Theorem [11].

THEOREM 2. If (1. 7)

(1 9) <?(*) = O ίίlog y ) Λ (Δ > 0), ast-*0,

( Λry/5 \
C, ^ } to zero at t = 0.

1 4-Δy /

On the other hand G. Sunouchi [10] has proved the following theorem :

THEOREM C. If φ(t) = O(ί-δ) (1 > δ > 0), and φβ(t) = o(*v), 7 > /3 > 0, «s
ί^βw the Fourier series of φ(t) is summable (C}a) to zero at t = 0, where

a = /38/(y + δ - β) + £.

And he remarked that this theorem would be valid without £. In fact, this
is certainly true. That is, we have the following theorem :

THEOREM 3. Under the assumptions of theorem C, the Fouries series of
φ(t) is summable (C, a) to zero at t = 0, where a = β8l(y 4- δ — β\

2. For the proof of theorems we use frequently Bessel summability
instead of Cesaro summability. It is well-known that these two methods of
summability are equivalent.

Let Jμ(t) be the Bessel function of order μ, and let

(2.1) αμ(f)=

(2.2) Vl+μ(V
then
(2. 3) Fg?μ(f ) = O(l) as t -> 0 and Fg?μ(f ) = O(/-^+1>) as ί -> oo,
for k = 0, 1, 2, ........ , where the index k denotes the #-times differen-
tiation.

Moreover we need some lemmas.

LEMMA 1. Let V(x) and W(x) satisfy the next condition :
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(i) V(x) is monotone function and there exists a real number d > 0 such
that x?V(x) is non-decreasing,

(ii) W(x) is non-decreasing,
(iii) W(x)/V(x) =- 0(1) for x>0,

then if φ(x) = O(x)V(x))) and φa(x) = o(xcW(x)) for x > 0, we have

φΛ,(χ) = 0 rfα-αOδ/α+α'c/α (V(x)^(W(x)Y^ \ (0 < a < θ),

where V(x), W(x) are positive for x > 0 and — Kc^a + b for x-+ 4- oo,
or V(x), W(x) are positive for 0 < x <Ξ η and — Kc^a + b for x -> + 0.

Proof runs over similarly as a theorem due to G. Sunouchi [10].
Let Kff\t) be the ^-th Cesaro mean of order a of the series

then we have

LEMMA 2. If -Ka^I, then

κy\t) -
and

(2. 4) Sg W -

where An = n 4- (OL + l)/2, A = — (
' ' ' ' a

(2.5) \Kf\t)\<M!nt*, _Aat
/ x/' \»*

(2.6)

< M/nt* + M/nP,

(2. 7) j (̂  J «£»>(/) j S ΛΛf+ i, /or λ > 0,

^M»A-Λ/-<1+Λ>, for nt>\3 /ϊ>0, 0<α^l.

(J. J. Gergen [1] and M. Kinukawa [7])

LEMMA 3. If~l<a^l and φ^t) = o(t),
then

lim lim sup Γ ^(/) K%\t) dt = 0.

LEMMA 4. T/* ^?ι(/) = O(ί), then we have

lim lim sup I ψ(t) R(*\t) dt = 0.
W^oo fc->co J

fc/n

:wδ^r tzwJ ^ = O(k/n).

Lemma 3 and 4 are due to J. J. Gergen [1].

fc/n

where ξ is a fixed number and y = O(kjn).
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3. Proof of Theorem 1. First we consider the case a = —--- ~~ > 0.
Δ7 4- 1

We denote by σ* the a-th Bessel mean of the Fourier series (1. 1). Neglecting
the constant factor,

co <7p(ω) oo

(3. 1) < = J ωφ(t) Vι+«(ωt)dt = M + J ) ™φ(t)V^ωt)dt = 7 + /,

'

Δ

say, where C is a fixed large constant and p(ω) = (logω)"+1 /ω. If we put

<9(/) = *?<«/ΛogiyYand θ(ί) = J |̂ (ί)|, then we have by (1.8)

(3. 2) flf ) - O(t), ®(t) =

Now we out

/

I 1U^ - J

V - ̂ - Vl+

u
- - Vl+a(ωu) du

Then, using the formula

we get

= ω-HAi + Λ2 + As), say.

Since ωt > Cωp(ω) > 1, by (2. 3), we have

[ ( 3 \ / "I \AΊoo

-ω"1/ _J_(ω«) ^ +^J Πog—J
2 \ W / Jί

/

, -fα-J_+3\ / 1 \Δ-1
J«-~ϊ(ωu)u^ - ^Πog^J

t

/

_(α_-L+3)
fa-λ.(ωu)u *
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and

Λ nί Γ1 > c«+3>/, nΛ3 = 0|J «-r ,-<"«> (k*-J

§ +o{/V^-<

Similarly, for Δ ̂  1

Λ3

For 0 < Δ < 1, it is easily to see that #~eΠog—J has the minimum value

at u = exp ( — J for 0 < u < 1 and is monotone decreasing for 0 < u

< exp ( — Y where β is any positive number. And so

Λ a = O\ω-τ I w-<α+3-e> u
[ J

ί -- L Γ"
+ OJ ω 2 / w-(

i

f _L / 1 \Δ-1
ω " 2 ^«.Π0gJLJ ^<-+»

du

2 /- log — + O(ω~

_1-Δ

for 0 < Δ < 1, where δ^ e e .

Summing up the estimations of Λι,Λ a and Λ3j we have

(3. 3) Λ(/) = O(α>-^+2> (log— V ί-<««>) for ί ̂  Cp(ω).

We first investigate J. Integrating by parts, J becomes

f~ Γ logτ
/ ωφ(t)Vl+«(ωt)dt = / ω(9(ί) ^ _ i_Z_ Fι+Λ (ωί)

(7p(ω) <7p(ω)



270 κ KANNO

= - / ω θ(t) dA(t) = - Γ ω θ(t) Mt) Γ + ω ί Λ(ί) dθ(t) = J, + J,,
J L JC'p(ω) J

) Cp(ω)

( Γ / "I N-^Ί0 0 )
, = 0\\ ω-C +i) /-<«+ι>( log-i )

I L \ Γ / J<7p(ω) )

Cp(ω)

where

= O

α+ as
and

2 = θ
Cp(ω)

/ Γ / 1 \ Δ

= O a>-(*+1> ί-<Λ+a> [log— J
I L \ t /

+ θ|ω-<-+1> Γ /-<*+

<7ω(o)

+ θ|ω-^+1) Γ ί-^+

£p(ω)

/ I \ΔΊC O

«+D (log—)
\ / / Jc7p(ω)

+ O I ω-<-+ι> (Cp(ω))-^+i> Λog
I \

= O ω-<*+1>

α+υ) as

by (3. 2) and the similar estimation to those of Λ(t).
Thus, if we take C sufficiently large, we get
(3. 4) / = Λ 4- /2 = o(l) as ω ->• oo.

Now there is an integer k > 1 such that & — 1< /3 ̂  ̂ . We may suppose
that k — K β < k, for the case β = k can be easily deduced by the following
argument. By integration by parts #-times, we have

- p ω

/ = J ωφ(t)Vι+J( ωf)dt

^P(
+ ( - l^ω**! J

o
fc

(3. s) = ^ - V"17* + ^ - VΛ+Ϊ' say
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From (1.8), φ(t) = O/Ylog —) \ Then we may put in Lemma 1

V(t) = (log— \ and W(t) = Λog -Λ Ί . Hence
\ t ) \ t /

(3. 6) φh(f) = o I ** Λog yΛ β v 1 for β = 1,2, ... .k - 1,

and
1

(3.7) φk(t) = o\t*l Λog4 ) ^
I \ ί /

Therefore,

7/ = Γω*^/)^-!^ ^̂ ^

= θj(lθg ω"+l (^Og7ϊ ~—Δ~) ^ 7 Γ

Since Δy + 1 = Δ^+ll^ the eχponent of log ω is

7 tf + 1
-Δh Q

Λ -fl /^γ ^ 4-1 /β(α: + 1)

Thus, we have

(3.8) Λ = o(l) asω-»oo, for Λ = 1,2, ...., ft - 1.
Here the terms /A, ^ = 2,3, , ^ — 1, appear for a > 2.

[. ^ 1+a'~ Jo

1 \ V Ί^PCω) )
g-i)

t / Jo ;

(tog
V (log ω) «-

<3.9)

= oj(logω) α+1 i = o(l), as ω -> oo.

Concerning /fc+1, we split up four parts,

Λ+ι = «"+1 J ι̂(?β("« ̂ / ^ )̂ (' - .fc-0-ι ί/w

0
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f
~l /•tt+o)-1 Λ^pCω) /nt+ω

-1

du] dt + ] du] dt
0 U ω"1 ιί

rρ(ω)-ω~1 Λ^Pίω) J?p(ω) ΛM+W

ΛJ *-J *J
0 w+ω-1 o (7p(α>)

(3.10) = #t + #2 + tf3 - £4, say.

Since Vwa(t) = O(l) for 0 ̂  ί S 1,

(t -

= ° ω

^3 Γ Ίw+ω"1 \

I N I (* - *)^-β *»
L J" J

(3. 11) = ol ωP+i f Mg

Ί v du \ = o ((log »)- ' ) = o(l), as «

(lθg«-) J

^ Λit+ω-1

/Γ2 = ω*+ι J w(n) fi?w I Fί*>β(ωί) (t - wf-^-i rfί

ω"1 M

Γ̂

ω> 3 Λ M + -

ϊ;+1 I x "Ί λ i du \

- 1 (ΪQSuΓ t t

/.^PCw) _τ

( I fjβ-U+βO Γ ηw ί-ω A \ω*~*\ T—. iτ^l(ί-MH rfα

ω"1 (log » τ

_ 1 +Δ(β-qQ

as ω -> oo.
C x ^Δ(β-«) )

(3.12) = o (log ω) y+-^r- L = 0(l\

Concerning K3, if we use integration by parts in the inner integral, then

K3 = ω*+J J φβ(u) du] V W , (ωί)(ί - uT^'1 dt

ϋ w+ω"1

rCp(ω)-ω~l ,|- ^ -.̂ ^

•/ I L 1+0> Jtt+ω"1

ϋ

- (k-β-DJ w'1 V»-»(at)(t - u?-*-* dt\_
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0pr-

O\ ωfc(lθg ω)~Δ I

o

, ».. Γίωi
+ω3 J ί

0

oJ α>fc(lθgω)~Δ I
( J

.««.) β

— / « -_(„ _ ω-ι)-α
-ί

«) du

= o «^loκ «)- log

Δγ+l + Δfcί Δγ+l + Δ
θj(logω)" 7 α

, fc-Q+Dv
oj (log ω) α+1 1 + 0(1) = 0(1),

^P(») 9 ^P(ω)
1* \ —"—du /

»/ n0g_L)τr */ _!g Y M+ω

as ω -> oo.

^a+«) Γ nβ-a+ ) --- ! _ _ I (/ _ ^-p-! Γp(ω)

« C0g w)T "ω"1

6>(ω) \- —

= θ| ω^"05 / u3-(1+«> Λog^ ) γt/
I J \ u /

Λ(/3-αθ

= θjω8-"(lθgω) γ ω-<0-*> (log ω) rt+1 1 = 0(1), as ω ~> oo.

Thus, we have
(3.13) K$ = o(l), as ω —> oo.

7^4 = ωfc+1 / (̂«) c?w ί Vy?Λ(a>ty(t - ιtf-P-1 dt
J _1 J

Γ°
Yp(ω) Λί +ω-1

ί I Γ )= O\ ωί;+1-(1+α) I ^>0(w) «w / £-<ι+ Λ> (ί — ^)fc-β-i J/ L
' *f _ι •/ J

rcp(ω) / ι \-L r*-"1
I b / J- \ V —(1+Λ) / I

» i w3 ( log— ) du(Cp(ω)) I (t — ur°~ldt\
J _ι \ u ' J ί
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. /P(ω) / 1 *-- Γ -\U+ω-

= 0\ ω*+1(lθg ω)-Δ / H3 ( log — ) y I (ί — W)fc-^
I J _ χ _, V W / L Jc-pU)

-

. -1

ίfe
V U / i IcΌί j>)

C'pCω)-!

Γ /
= oJ ω8+I(logω)~Δ / ^3 ( log — ) y duΛ J ., V u)

C'p(ω) —ω

i- ; τ+ι (log ω)-Δ (log «)" γ Λd5§W^-) +1

V ω /
Δγ+l Δ(β + l)f Δγ +1 ΔQ

(3.14) =θj(lθgω) γ +"«

Summing up (3. 10), (3. 11). (3. 12). (3. 13) and (3. 14), we get

(3. 15) / fc+l = o(l), as ω -> oo.

From (3. 1), (3. 4),' (3. 5), (3. 8), (3. 9) and (3. 15) we have

(3. 16) σ* = o(l) as ω -> oo, for a > 0.

Next, we consider the case — 1 < a, <Ξ 0.
If we denote by σ* the n-th Cesaro mean of order a of the Fourier series
of φ(t) at t = 0, and

= / φ(t)K"(t) dt

Γ Γ« Γ
(3. 17) = J ί̂) ΛJKO Λ + J φ(t) Rl(t] dt + J

0 fc/w fc/w

= / 1H-/ a + /3,.

say. By (3. 6)

(3. 18) φι(t) = o| ̂ ^logl-y"^ (Δ+^> J =

Hence, by Lemma 3 and Lemma 4, we get

(3. 19) Λ = o(l), I, = o(l), as n -> oo.

Therefore, it is sufficient to show that 73 = o(l). Let

n
Jfcp(n) *

(3. 20) /3 = j J , + J I φ(t) Sl(t) dt == Λ + /-,
fc/w , fep(w)

say. If we put

( i \Δ

°g~ΰ) cos (Arott + A) ,
I -. / 7y \ « + l ****'

/ « (2siπf)
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then

Λ(t) = O( (log —) jnt*+*)
\\ t / /'

Integrating by parts we have

. ---I f* - J L t f β ' t Λ t T -ί\tdθtl-κ
Λn J A% { [_ J fcp(Λ) J \

fcp(n) fcp(n)

say. The calculations of Kι and K? are similar to those of Jι and /2 in the
former half of this theorem. Thus, if we take k sufficiently large we obtain

(3. 21) h = 0(1), as n -> oo.

In the estimation of 7i, we may suppose that m — K β < m, where
m( > 1) is an integer. Integrating by parts m-times we have

/

p(»)

?<*) S£00 Λ =
fc/w

Λfcp(w)
Λ

(3.22) 4-(~l) m /

g Lemm2

(T / 1 \Δ (Δ+~^) Ί*P(W)
-o| ^(toβ-j-) ^-α^-α+.,J

k^say. Using Lemma 4 and (3. 6), we get

(3.23) = o(n κ«+v 4. o((log n) p 7 7 ) = o(l) as w -> oo,

for /ί = 12, , m — 1.
Similarly,

i f d \m~~l Ίfcp(w) Δ(fc-β-l)
Φm(t) ( -r~ } S?(t) = o((logn) β+i = o(l), as w -̂  oo.

V α* / Jfc/7z

Concerning Zm+1,
fcp(W)= J

fc/W ϋ

fcw u+kln

j (~j
0 */Λ

*p(n) u+fc/M fcp(n)-fc/n fcp( n) fcp(») w+fc/»ι

+ J rf«J rfί + J ^J Λ - J Λ.J *
*/ u 0 it+fcjn fcp(n)-fc/n fcρ(n)

= M i 4- M2 -f Λί3 + Mi, say.
The methods of the estimations of Mv (v = 1, 2, 3, 4) are similar to those of
the former half of his theorem. Thus, we get

(3.25) Lm+l = o(l), as n -> oo.

Summing up '(3.17), (3.19), (3.21), (3.22), (3.23), (3.24) and (3.25), we get
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(3. 26) σ« = o(l), as n -> oo for - 1< tf S 0.
From (3. 16) and (3. 26), the theorem is proved completely.

4. Proof of Theorem 2. We denote by σ* the α-th Bessel mean of the

Fourier series (1. 1), where a = A ., > 0. Then
Δ7 + 1

co Cp(ω)

σ* = J ω 9<ί) VWωf ) * = f J + J(4.

0

^

say, where C is a fixed large constant and p(ω) = ^ gύ>^ — .
G>

By the assumption (1. 9),

= 0\ ω-«
I C(lθgω)«

Thus, if we take C sufficiently large, we have

f 4. 2) / = o(l), as

The estimation of / is similar to those of Theorem 1. So we have

(4. 3) J = o(l), as ω -> oo,

From (4. 1), (4. 2) and (4. 3), we have

cr* = o(l), as ω -> oo,

which is the required.

5. Proof of Theorem 3. We use Bessel summability and denote by <r*

the Bessel mean of Fourier series (1. 1), where a = - ̂  - ~ . Then,
7 + o — β

(5. 1) J ω^) F1+α(«f) ̂  = ( ί + Γ ) ω^Kί) ̂ n- (ωί) dt = ϊ + J,

0 0 CO)"?

say, where p = — — — =
^ '

By the assumption φ(t) = O(f ~8) and (2. 3), we have.

/= OJ Γ ωf-δM
( J

-

Therefore, if we take C sufficiently large, we get

(5. 2) / = o(l), as ω -» oo.

Now, there is an integer k > 1 such that & — 1< /3 <; & We may suppose
that k — 1 < β < k. By integration by parts &-times, we have
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fc Γ Ίtfω-P C0<a'P

I~*Σ(- I)'"1 ω* ψh(t) V£;? W) 4- ( - If ω^ I φk(t) V&Jfrt) dt
fT L Jo J
ll-l 0

fc

(5. 3) = 2( - V 'Λ + ( ~ V Λ+i, say.
71 = 1

In Lemma 1, we may put V(ΐ) = W(ί) = 1, £ = — δ, # = β and c = 7.
Hence we get

f,Λ(f) = β(f-«<β-*)/β+*y/β) for ft = 1, 2, . . . ., k - 1.

And

Therefore,
-(i+α) ΊCiBβ

βftίf-βo-wp+Λyi/p^)
Jo

Since p = ^ ^ = — — — , the exponent of α> of the last formula isr '

δ)

--
Λ + δ α + δ

Thus, we have

(5.4) /A = 0(1), a s ω - > o o (fc = 1, 2, . . . ., k ~ 1).

Concerning 7fc,

The exponent of ω is
p) - p(7 - /8)

- β)_ _ _
7 + δ 7 + δ 7 + δ

Therefore,
(5.5) 7fc = o(l), as ω -> oo.

Concerning 7»+i, we split up four parts,

7*+1 = Γ ω^φβ(u)du f Vg>Jίωt)(t -ur-P-1 dt
J J
0 u

Γ
-1 pπ-ω-1 /^,-P ΛU+CO-

rfMJ rfί + J.1

 ΛJ

,..-1

dt
ω-ί u
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rω'P-αT1 /*CΌ>~P /»<Vp Λtt+ω"1

du I dt-\ du\ dt

0 il + ω"1 0 Cω~p

(5. 6) = /£ + K, + Jϋ + JSΓ4,

say. Estimations of them are similar to those of the theorem of the author
[5]. And so, leaving out the detailed calculations, we have

Kι = o(or<?-0>) = 0(1), for 7 > A

ft = O(COΪ-«-M-«), for 7 - α = (7 - ffX7 + δ) > ̂
7 4- ό — p

K3 = 0(ω

fr+u+*)(P-ι)-p(γ+fc-0>) -j. 0(ω0-α-P(v-*>),

and

ft = o(ωβ-«-p<γ-*>).

Since >3 - α - p(7 - α) = j8 - α(l - p) - pγ = /8 -- r - - ~ = £ -

p (7 + δ) = 0 and k 4- (1 + α)(p - 1) - pίγ + * - )8)=7 ' : ( f t - 1 - £)< 0,
7 + o

(5. 7) ft = o(l), as ω -> oo (i = 1, 2, 3, 4).

Summing up (5. 1), (5. 2), (5. 3), (5. 4), (5. 5), (5. 6) and (5. 7), we obtain

σl = o(l)3 as ω -> oo,
which completes the proof of theorem 3.
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