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Introduction. It was proved in [3] that if X is arcwise connected and
(X)) =0 for i< m,n<i<gq, then Hi(X,G)= Hi/(K,G) for i< q, and H(X,
G)/3(X,G)= H,(K,G), where K = K(mn(X, m)), and 3(X,G) is the spherical
subgroup of the g-th homology group H,X,G). In other words under the
above conditions, the group 7. determines in a purely algebra’c fashion the
homology structure of X in dimension < g. The group . also partially
determines the g-dimensional homology group of X. In [3] Eilenberg-MacLane
invariant k?*! determines fully the structure of X in the dimension = q.

A.L.Blakers introduced the notions of group system and set system in
[2]. It was proved that if in the set system & = {X;} the natural homomor-
phisms 7:i(X;-;) »m:i(X;) for all i < g (g > 0) are trivial, then the chain trans-
formation « induces isomorphism «y: Hi(S(®)) == H;(K(II(S)) for all i < g,
and for i= g, the induced homomorphism «: H(K(®))— H(KII(S)) is
onto.

In § 2 we give a generalization of Eilenberg-MacLane invariant k?*1({p);
this invariant is a cohomology class of a suitable algebraic cohomology group
H+Y(KII(S), m(X,)) of the group K(II(&)), with coefficients in 7 (X,).

It is shown that this invariant k?*!(®d) fully determines the structure
S(®) in the dimension < ¢, and we have the following :

THEOREM. If the natural homomorphisms mwi(Xi-)—mi(X:) for i< q,q >0
are trivial, then
H{(S(©),G)= H(KII(S),G) fori<ag
HY(S(©),G) = H{K*, G),
where K* is the new complex which we will define in § 3.
The main purpose of the present paper is to show the second .part of
the above theorem.
In §4 we state algebraic considerations.

1. Preliminaries. We shall use notations and terminologies in [2] and
[3].

Let X be an arcwise connected topological space with a point x, which
will be used as base point for all of the homotopy groups considered in the
sequel. Let a sequence & = {X;}, 1= 10,1,.... be a set system in X (cf. [2]).
With the system we associate the groups 7(S) = mi(X;, Xi-1),t=1,2, ....
with % as base point. (m (&) = m(X;, Xp) = m(X).) We consider operator
homomorphisms Ai : mi(©) = m:i_«(S), for i = 2,3.. ..

(1.1) For each set system S; the groups w{(S) and homomorphisms A; form



A NOTE ON EILENBERG MACLANE INVARIANT 97

a group system. 1I(©) is called the group system associated with the set system
S. (See [2], § 10).

We write [#] for the naturally ordered set of integers {0,1,....n}. Let
a: [m] —[n] be a monotonic map, such that a(?) < a(j) for i < j. The map
a is called degenerate if a(Z) = a (j) for some 7 < 7. We introduce the special
monotonic maps &x: [#] — [#] defined as the identy map and & : [#n — 1] > [#].

If =0, ....n the map &, (¢ fixed) is defined as the monotonic map of [# — 1]
onto the ordered set {0,1,....,7—1,7+1,n}.
(1.2) &L &l_ = ¢& &} 0<j<i<mn (See[l] §1)

a®; [m —1]—[n] for a: [m] —[n] are defined by a® = a &,. If0<7 < ....
< i, < m, then we define q® - inductively by a®i--i) = [gtia.-#D]0D,
Let 0=/ </ < .... =<m be the set complementary to 7, ....%, in [m], then
we also write

alrie b = @y . jym -

Let & = {G;, ¥} be a group system. Blakers introduced the semi-simpli-
cial complex K(®) on the group system. We shall recall the definition and
some results. An zn-cell of K(®) is defined to be a sequence of functions ¢ =
(@1, @y, -...), where @; (¢ fixed) is a function of a variable «, a being the
map from [z] to [#] with values in G; subject to the following conditions:

(®1): If «: [{] —[n] is degenerate, then @i(a) = 0 for n > 2,

@i(a) =1 for n=1or 2,
(D2): Yugu(a) = pi(a®) p(a®)[p(a®)]~!, where a is a map [2] — [n],
(D3): ‘I’3¢3(a) = [pi(aw,) ?12(0((0))] <Pz(a(z)) [VJz(OC(l))]_l [<Pz(a(3))]—l, where
« is a map [3] = [z],

(1) : Yril@:)a) = pila,)Pi-1(a®) + 2;=1( — Ypi_i(a¥?), where
« is a map [Z] — [n].

We define the s-facz (# = 0,1) of an 1-cell ®; to be the unique 0-cell d,.
The j-face ®Y of an n-cell &, (j= 0,1, ....,n) is defined by ®D = (P, p,?,
....) such that @) = @i(&a) where a is the map [i] = [#n — 1]. @ satisfy
the conditions (®1), ($2), ($3), (Pbi).

With these definitions Ki®) is obviously a semi-simplicial complex. We
shall intoduce the symbol U0 = Py pmp fr0=i < i< 53<.... S0,

Let ® = (@1, @;....) be an n-cell, then @,,,.... is the trivial functions.
Since @» has the only non-degenerate map &, : [#] = [7], @n is determined by
@i'Ex) € Gu. We define y(®) by v(®) = @al&n).

Let G be an abelian group with G, as operator, and we assume that ¢,G,
is trivial on G. Then we can construct a local system of abelian groups in
K, and we denote by H'(K((), G) the cohomology group of K with coefficients
in this local group. Let S(X) be the total singular complex. We denote by
S{S) the subcomplex of S(X) consisting of all singular simplexes T such that
T:A,— XicX for = 0. A subcomplex M(&S) of S(&) will be called minimal
provided : (i) For each g =0 the collapsed g¢-simplex T : A,— % is in M(©)
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and (ii) For each T € S(&), M(&) contains a unique sigular simplex T’ € S(&)
compatible with and homotopic to T.

We shall consider the prism II, = A,-; X I,q > 0 where A,-, is the (g —
1)-simplex used to define singular (¢ — 1)-simplexes. The maps €._;: A;-y—
Ay-1,2=0,....,q — 1 define maps p;: II,-, — II, by setting p)(x, ?) = (e]_,(2), ?).

We further have the maps 8 : A,y = 11, (0 =< ¢ < 1) defined by bj(x) = (%,
t). P: II,— X is a singular g-prism in X, and P = Ppi: II,., — X is the
i-th face of P,i=0,...., ¢ —1 The singular (¢ — 1)-simplexes P(t) = pb;:
A,-1— X, 0= ¢ =<1 will be considered.

(1.3) For any g-simplex in S(©), there is a singular (q + 1)-prism Pr in
X subject to the following conditions : (i) Pi(z) = PP, (ii) Pr (0)= T, (iii)
P(1) € M(®), (iv) If T € M(S) then Pi(t) =T for all t € I, (v) Pilt) (A1)
Xi. (of. [1] §5 (6.1))

If we denote @, T = Pr(t) (0<¢<1), then for every singular g-simplex
in S(&) (. T)(p) is continuous with respect to p and ¢ and conditions (i)-(v)
can be rewritten as follows: (i) @;: S(&)— S/©) is simplicial, (i) ¢y is the
identity, (iiiy o.T € M(S), (iv)y @T =T for TE€ M and 0<¢ =<1, and (v)
@ T(Q, ) X

This is proved similary as ([1] §5). Thus we have the following :

(1.4) The inclusion simplicial map i: M(S) — S(S) and the simplicial map
@1: S(©)—> M(S) are maps such that the composition @,i: MS)—>MS) is
the identity, while the composition ip,: S(&)— S S) is chain homotopic to the
identity.

A corollary of (1.4) is

(1.5) The inclusion map i: MS)—S.S) induces isomorphisms of the
homology and cohomology groups of the S(S) with those of the minimal complex
M(S).

Let G be a local coefficient system in S(&) and G’ be the induced local
system in M(S).

(1.6) The inclusion map ¢ : M(S)— S(S) induces isomorphisms
*: H(S(S),G) = H(M(S), G,
ix: H(S(®),G) = H(M(S),G').

In particular, when (&) acts as a group of operators.on G and Vr.mry(S)
acts trivially on G, the group G induces a local coefficient on S(&) and local
coefficient system on K(II(S)).

(1.7) The simplical map @, maps the minimal complex M, isomorphically
onto the minimal complex M.

Let X, A be arcwise connected topological spaces such that X>A > x,. A
singular g-simplex T: A, — X such that T(A,,,-1)<A, T(d)) = % determines an
element of the homotopy group 7(X, A). We denote this element by (7).
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Consider a map f: Ag+1,,—> X such that f(dl,,) = %, then the map f deter-
mines an element ¢(f) of 7(X).

(1.8) Let f be a map such that Agsr,q— X, fidgs1, -1) = A and f(Dg+1,0) =
x%. Let T'=fel,,(i=0,....,q+1). If g =1,T* (i fixed) determines an element
aT?) of m(X), and if q =2, T (f fixed) determines an element a(T') of (X,
A). Moreover, the following relations hold good :

() = a(THa(T°)a(T*)*, g=1
(1.9) Jiclf) = aa(T)a(T*) [a(TH]* [a(T®)], q=2
el = aa(T) + 2" (— aD), q=3

where « is the element of m(X) determined by the edges d..,, d.,, and the map
fido: mdX) =Y, A) is a homomorbhism induced by the injection X — (X, A).
(ef. [2]).

2. Invariant. Let T € S(&) be a singular g-simplex. For «: [{] — [q],
1=<i=4q. Ta is an i-simplex of S(&). Let Ta be a map such that A; - X,
To(Aiyi-1) < Xioy and Ta(d)) = x). Hence an element a(Ta) € m(S) is deter-
mined.

We put @i(a) = a(Ta). @: (i fixed) is a function of a variable, the variable
being a map from [t] to [¢q] with values in 7m«(S). We assume that if « is
degenerate @i(a) =0 for 7 >2 and @i(a)=1 for i =1,2. The sequence of
functions (g, ... ., @n, .. ..) Will be called the schema of the singular simplex
T. The function @n is trivial for n > ¢g. The function of the schema satisfies
certain identities which are immediate consequences of the additivity theorem
(1.8) and the definition of homomorphism A: (cf. [2] §3).

Then the schema ® = (@, @,, ....) of T is an n-call of K(II(S)).

We define «(T) by «(T) = ®d. Obviously «(T®) = d®, hence « is a simpli-
cial map. Since M(&) is a subcomplex of S(S),

«: M(S)— KII(S))
is defined. By ([5] p. 391) we have the following:
2. 1) If T, and T, are maps such that (A, A1, d°) = (X, X,-1, %) and
T = TP, then jd(Ty, T1) = a(To) — a(T), where d(To, Th) € m{(X,).
LEMMA. If in the set system © = {X;} the homomorphisms mi(Xi_1) = m:
(X)), i< p, ¢ >0 are trivial, then thereis a semi-simplicial map « : K(II(S))—~
M(S) such that «x = the identity and « is determined uniquely on K'-\(I1(S)).

Proor. M(©) and K(II(S©)) have exactly one 0-simplex T° and one 0-cell
@O respectively. We define «(d°) by «(P°) = T°. Let P! be a 1-cell of K(IT
(®)) and T’ a map which represent y(®P!) € 7 (X), then there is T e M
homotopic with 7. We define «(d) by «(P!) = T!. It satisfies x« (P!) = P!
Suppose that « is well defined for all cells of dimension<: (1<:=<g¢q). Let
® be an i-cell of K(II(S)), such that y(®) € mi(Xi, Xi-1), YWDPD) € mi_y (X,
Xi-), ¥(P@ 1) € m(X1). By the inductive hypothesis there are (¢ — 1)-simplexes
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Ty, 7=0,....,7 inMsuch that Ty = («®P) and we have T% = T¢~" for k< J.
This implies the existence of a map f: A:,i-; — X;-; such that fe] =Ty, j=
0,...., i. A map f such that f(A:,:-1)ZX;-1 determines an element c(f) € 71

(Xi-1). The elements c(f), y(®P), ¥(Pe,1y) are connected by (1.8) and the
elements y(®), y(®D), y(P,1») are related by

AyY(®) = YD, 1)) V(DPDP) [y(PD)],
AsY(P) = [Y(Po,15) Y(DPP)] HDD) [Y( PP [Y(DPD)],

AAD) = YD o,) UPD) + | (— 1Y ADD),

It follows that A:(y(®)) = A—:(c(f)), where A;_; are the natural homomorphisms
Aoy i Xi-1) = mi( Xi—1, Xi—p). Thatis Ai—9(7(®)) = Ai—; c(f) Where 9; are the
natural homomorphisms 9; : 7:i(X:, Xi—;) — mi-1(X;-;). But from the hypothesis
the natural homomorphisms 7ri_(Xi-») = mi-(X;-;) are trivial, and hence
from the exactness property of the homotopy sequence of the pair (X;-,,
Xi_2), M—; are isomorophisms into and hence 2;y(d) = c(/).

It follows that the mapping f has an extension 7”:A; — X; such that y(d)
= ¢(T”) and there is an element T € M(S) compatible and homotopic with
T’. We define «(®) by «(d) = T. It satisfies xr (D) = P.

Now, we shall prove the uniqueness. If ¢ = 1, this is obvious. Suppose

that the uniqueness has been proved for 0 <7 < g — 1. Assume that x(®) =T
and «'(®) = 7", where ® is an i-cell in K{II(S)). Then TV = x (®PD) =«
(®W) = T'Y, hence T, T" is compatible. By (2.1)
Md(T, T") = a(T) — a(T") = y(®) — ¥(P) = 0.

Since A: (7 fixed) is an isomorphism, &(T, T") € mi(X:) is zero. Therefore T, T’
is homotopic in X; fixing the boundary of X;, and by virtue of the fact that
T, T € M(S), it follows that T = 7", and hence « = «'. q.e.d.

Let & be a (q + 1)-cell of K(II(S)), then «®® = T® is a g-simplex of
M(S). By the simpliciality of «, (T®) = (TW)¢-D for j < i, hence a map of
(®): Agr1,— X, is defined by fid)el,, = T™. Then f{P) determines an element
c(f(®)) of m(X,). We define k+Yd) by kYD) = c(id)) € m(X,). Thus k1*!
(®) is a cochain, i.e., BT+ Y(P) € C* YK, m(X,)). We have easily the following
lemma (cf. [3] p.503):

LEMMA. R*™Y®) is a cocycle.

The cohomology class of the cocycle %*{(P) will bs dznoted by Kk?+1(p).
It is an element of the cohomology group H"*Y(K, m(X,)).

By the way analogous to the proof of Theorem 1 of [3] we have easily
the following

THEOREM I. If in the set system © = {Xi;} the natural homomorphisms
wi(Xi-1) = mi(Xz) for all i < q,q >0 are trivial, then the cohomology class ki*!
(®) € H'* K, m(X,)) is a topological invariant independent of the choice of
minimal complex M(S) and the simplicial map x used in its definition. If k is
any cocycle in the class K**Y(®) and M(S) any minimal subcomplex of S(S),
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then a suitable choice of « will produce k as the cocycle ki+!.

3. The main theorem. Suppose that M(S) be a fixed minimal subcom-
plex of S(&). We assume that 7:(Xi-1) > 7:(X;) are trivial fori < g, ¢ >0,
and that a function « has been selected so that to every cell ® of K(II(S))
of dim =g, there corresponds a singular simplex «(®P) of MS) such that «x«
() = P.

The obstruction cocycle defined by making use the function ® is k'*! €
Z™YK(TI(®)), m(Xy)). For each i-cell i< g, ® of K(II(S)) we shall denote
by [®] the singular simplex «{d).

Thus «[®P] = &, and [P) = [P®]. For each g-cell & of K(II(S)) and for
each x € m(X,) we shall denote by [®P,x] the unique g-simplex of M(S)
compatible with #(®), such that d(«(P), [P, x]) = x. Thus «[®,x] = O, [P,
0] = x®, d([D®,x], [®,]) =y —x, and [P, x]® = [GD] for =0, ....q.

Every g-simplex T of M(&) is of the form [®,x]; i.e. T = [«T, dlxx
T,T)]. Thus a complete description of the simplexes of M(&) of dimension
= q is obtained.

(8.1) Let [®y, x], [P1, %], -. .., [®o+1, Xgs1] b2 given. A (q + 1)-simplex T
in M(S) such that T™ = [Py, x:] exists, if and only if there is a (q + 1)-cell of

q+1

K(II(®)) such that ®© = ®q, i+ (P) + > (— 1)x) = 0 and if g = 2, i,(k*!
i=0
q+1

(®) + am + 2 (— 1fm) = 0.
i=0
LEMMA. Let fy and f1 be two maps such that Agrr,,— X, folDpe10) = N1
(Ag+10) = % and fo =f1 on Dygr1,0-1, @ > 1. Let T = fie,,, be maps such that
A~ X for i=0,....,9+1,7=0,1. Sincz T} and T: are compatible, d(T;, T?)
is defined. Let o be the element of m\(X,) determined by the edge d),,, d.,, and
either of the maps f, or i (which agree on this edge). Then

q+1

e(fy) — c(fo) = ad(TS, T) + 2 (—1F d(Ti, T). (¢f.13], p. 615)

i=1

ProoF OF (3.1). The necessity can be proved in the same way as the proof
of ((4.1)[3]). We shall prove now the sufficiency. Let ® and «(®®) are a
(g + 1)-cell of K(II(S)) and a g-simplex of M(S) respectively. Then we have
d(k(DD), 1) = x; for x; € m(X,), where f; is a simplex of M(S) such that f;
= [OW, %]. Map f: Ag+1,4— X, is defined such that fe],, = f;. The map f will
be extended to a map f: Ay+1— X,s1. To prove it we consider the map x(®®):
A, — X,, then the map defines a map g: As+1,i— X, such that g = gel,, =
& (PD) = [d®,0]. Since fé!,, = fi = [®D, x:], we have f = gon Ag1,, By the
above Lemma '

() —clg) = Do (— 1) dgnf) = 2., (— 1z
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Therefore c(f) = B(®) + 2:;( — 1)x;,
i0(f) = iy (B(D) + Do (—1)x) = 0,

hence f can be extended to map f: Ay —> Xy+1- If we take a simplex of
M(S) compatible and homotopic to f;, then we have

TO = () =fi = [@P, 5] = [P, x:].
The case ¢ = 2 is proved similarly.

These considerations lead to a description of the cochains of dimension
< g on the M(S) with coefficients in any group G. Indeed the cochains of
dimension < ¢ may be identified with the corresponding cochains of K(II(&)).
The cochains of dimension g are G-valued functions f(d,x) of two variables
of which the first is a ¢-simplex of K(II(S)) while the second is an element
of 7 (X,).

Such a function f is a cocycle on M(S) under following assumptions.
For every (q 4+ 1)-cell ® of K(II(&)) and for every system of elements x,

.y Xg+1€7m(X,) such that

) it @) + 20T, (= 1) = 0
the equality
(%) 2’::}( — 1) ADPD, %) =0

holds for g > 2. If g =2 then in (x), (*x) we have to replace the terms %
and fAP®, x) by ax, and af(P®, x), where a€m(X,) is the element repres-
enting the 1-cell dy ).

A function f{P, x) yields a coboundary in M(S) proveded there is a cochain
£ € C""YK(II(&)), G) such that (Sg) (®) = f(d, x) for all ¢ and x.

Therefore, we define the new complex K* as follows: each (g — 1;-cell of
K* corresponds 1 to 1 to each g-cell ®¢ & K(II(S)), a g-cell of K* is the
symbol ® = [P, x], (g + 1)-cell of K* is ¢ = [P, x] such that its faces [,

q+1
%], ..., [®CD, x,,,] satisfy the condition 4(F"* (d)) + > (— 1)ix;) = 0.
i=0
Resuming the above results we have the following theorem :

THEOREM II. Let & = {x;} be a set system, and let natural homomorphisms
Ti(Xi-1) > m(X;) for i< q,q >0 be trivial. Then for any coefficient group G,
the cohomology group H(S(S),G) is isomorphic to HIK*,G) for i < q,1i.e.

H'(S(©),G) = HK*G) for i <gq.

4. Algebraic considerations. We consider the fcllowing algebraic
situation. Let & = (7r;, G) be a group system and G be an abelian group and
suppose that a cocycle Zt+! (K($), w,(X,)) is given for 1< q. We consider a
function fAd, x) with values in G, of two variables, the first of which is a ¢-
cell of K((8), while the second is an element of 7/X,). These functions f(,
x) are subject to the following condition :

(4.1) For every (q + 1)-cell & of K() and for every system of elements x,
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ceiey Xgu1 € (X, the equality

(i) i RD) + D (= 1) =0
implies
a+1
(ii) > = 1) fldD, x;) = 0,
=0

where i, is the injection homomorphism i,: w/X,) = w(Xy+1). If @ =2, in (i)
and (ii) we have to replace the terms xy and APV, %) by axy, and of (GO, %)
respectively, where « € 1(X,) is the element represented by D,1).

The following lemma shows that these functions fi®P, x) break up into
the sum of functions of one variable each.

(4.2) Ewvery function f(®, x) € G satisfying (4.1) may be represented as

(iii) D, x) = p(x) + 7(P)

where
(iv) p € Hom(m(X,), G), pi,"%0)) =0, r€CYKG),G),
(v) dr = pk.

Conversely every pair (p,r) satisfying (iv) and (v) yields by (iii) a function
Db, x) satisfying (4.1). The representation (iii) is unique and is given by

(vi) p(x) = fAd, x) —fIdD,0), »(®)=,f(P,0).

We obtain the proof of (4.1) by modifying the proof of (5.2) of [3].

We now form the group Z/k,G) as the group. of all those pair (p,7) in
the direct sum Hom (7,(X,), G) + C(K(II(©), G) such that &r = pk, p(i;'(0)) =
0. Any pair (0,7) with 8 = 0 satisfies the last conditions, hence each cocycle
r € Z(K(I1(©), G) may be identified with the element (0, r), accordingly Z%(K(I1
(©)), G) is a subgroup of Z"k,G). Since B(K(II(S),G) is a subgroup of
Z'(k, G) we may form the factor group

EYk, G) = Z'(k, G)| B(K(II(S), G).

Then H(K(II(S), G) is a subgroup of E!. The following theorem is
proved :

TueoreM III. The group system II(S), groups w(X,), G and the cocycle
ke Z+Y(KIL(S), m(X,)) determine an abelian group E°(k, G) and a homomor-
phism X of this group into Hom (7w (X,), G). The kernel of this homomorphism
is the group H'(K(II(S)) regarded as a subgroup of E".

The image of X is the subgroup A(k) of Hom(m,(X,), G) which consists of
every homomorphism p: 7(X,) — G such that pk is a coboundary: pk &€ Bi*!
(KII(®)), G). Thus (E% X) is an abelian extension of H(K(II(S), G) by A(k).
The subgroup A(k) of Hom(w(X,), G) and the extension in question are
independent of the choice of the cicycle 2 within its cohomology class in H'*!
(KIL(S)), G).
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THEOREM IV. Let © = {X;} be a set system and let natural homomorphisms
mi(Xi-1) > mi(X:) for i< q,q >0 are trivial. Then for any coefficient groud
G, the cohomology group H'(S(©),G) (i < q) is determined by S, G as

H{(S(S), G)~ H(K(II(S),G) i< q,
while H(S(©), G) is determined by the characteristic cohomology class K1 €
H*Y(K(I(S)), G) as

H'(S(®), G) = EYk, G),
where k is any cocycle in the cohomology class K7+1,

Proofs of Theorem III, IV are analogous to that of Theorem II, Theorem
IV in [3].
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