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Introduction. The concept of parallelism for Euclidean straight lines:
was extended by E.Cartan [1]V to that of parallelism for geodesics in a
simply connected Riemannian space with non-positive curvature. A further
extension was given by H.Busemann [2], [3]. He developed in terms of
corays a theory of parallelism for rays in a metric space called by him an
E-space (or a G-space) and introduced the concept of asymptotes.

In a Euclidean space a coray from a point p to a ray [ is identical with
the half straight line ¢ parallel to | from p and the asymptote through p
with the straight line which contains ¢ as a subray. In an E-space the
union of all corays which contain a coray to a ray [ is called an asymptote.
In [3] he defined a G-space with non-positive curvature and showed that, if
such a space is simply connected, the concept of asymptotes is symmetric:
and transitive.

The initial point of an asymptote is called an asymptotic conjugate point
if it exists. In the previous paper [7] we showed some properties of the set
of asymptotic conjugate points for a ray. H.Busemann [5] studied a G-surface:
which is a 2-dimensional G-space and homeomorphic to the Euclidean sphere
S punctured at finite number of points @, a;, ...., a. In the present paper
we deal with asymptotes on such a G-surface R which has non-positive
curvature. Throughout this paper we denote by K{(I) the set of asymptotic:
conjugate points for a ray [. The main results of this paper are summed
up as follows:

1. For a ray ! there exist at least two asymptotes from every point of’
the set K(I) and the number of thesz asymptotes does not exceed % + 1 [§2,
§4].

2. If R is a Finsler spacz of class C” (r = 4) (or a Riemann space of
class C" (r = 3)) and a point p does not belong to the set K{I), then in a
suitable neighborhood of p the limit ci:cle through p is an arc of class C-
at least [§3].

If any point of p has locally differentiable circles in the sense of H.
Busemann [THE GEOMETRY OF GEODESICS, ACAD. PRESS INC.] we have the-
following 3, 4 and 5.

3. The union of all rays which contain a coray as a subray coincides
with an asymptote [§3].

* We wish to thank Prof. H Busemann fcr his kind advice in the investigation.
1) Numbers in brackets refer to the references cited at the erd of the pzper.
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4. The relation between ray and coray is symmetric and transitive [§3].

5. The set K(I) consists of finite number of unbounded and continuous
curves no two of which has common points. If the set K(I) has branch
points, then the number of these points is finite. At each branch point the
number of branch curves is equal to that of asymptotes issuing from this
point [§4, §5].

1. In this paragraph we explain some preliminary concepts.

In a metric space the distance between two points x and » will be denoted
by p(x,5). The axioms for a metric space R to be an E-space are follows :

A. R is metric with distance p(x,¥) not necessarily symmetric.

B. R is finitely compact.

C. R is convex metric.

D. Every point x has a spherical neighborhood S(x, a(x)) ( = {¥|p(x,¥) <
a(x), p(y, %) < a(x)Xa(x) > 0)) such that for any two distinct points @, b in S(x,
a(x)) and any positive number & there exist positive numbers 8i(a, &) (& =
1,2) not greater than & for which a point @, with p(ai, @) + p(a, b) = p(a:, b)
and another point &, with p(a, b) + p(b, b:) = p(a, b,) exist and are unique.

If the metric is symmetric, then R is said a G-space. If further R has
dimension 2 in the sense of Menger-Uryson, R is said a G-surface and is
topologically a connected manifold.

The axioms A, B and C guarantee the existence of a segment T(p,q)
from p to g (or T(q,p) from g to p) whose length equals the distance p(p, q)
(or p(g,p). The prolongation of a segment is locally possible and unique
under the axiom D. The whole prologation of a segment is said a geodesic.

A geodesic & has a parametric representation x(7), — oo <7< 400,
such that for any real number T, a positive number &(1y) exists such that
P(x(Tl), x('Tz)) =T, — 71(72 = 'Tl) for ['Ti - 'Tgl = 8('7'0) (Z = 1, 2) If for any two
real numbers 7, and 77, = 7)) p(X(11), %(T.)) = T, — 71, then we say & is a
straight line. A half straight line is said a ray.

In [2; §4] the number #,(x) and the term “direction” were introduced.
The number #,(x) is defined as the least upper bound of those @3’s for which
any segment with end points in S(x, 3) is a cocentral subsegment of length
AB. 7(x) is positive for any point x and any number A not less than 2.
The number 7, is defined as min (75(x),1). A segment T(a, b) with the length
nq is said a direction.

Let D, and D, bz two directions. Let a; and @, be the initial points of
D, and D, and b, and b, the end points of D; and D,. Following H. Busemann
{2; §7], the distance of D; and D, is defined as

§Dy, D) = 5 (pla, @) + p(b, b))

The set of all directions on R is finitely compact under the above metric.
The distance of two half geodesics (or two geodesic subarcs) is defined as

that of their initial directions.
Let x(7),[0 <7 < +oo, be a parametric representation of a ray I, and let
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{ps} be a sequence of points which converges to a point p and {.} a sequence
of positive numbers which diverges to infinity. Then the sequence of
segments {T(pn, x(Tn))} always contains a subsequence {T(Pn, %(Ts,))} Which
converges to a ray t under the above metric [2; §11]. This limit is equivalent
to the closed limit introduced by Hausdorff [2; §7]. We denote this by
Flyssc T(Dn, ¥(7s)) =1t. ¢ is said a coray from p to [. The union I of all
corays which contains t as a subray is said an asymptote to {. If Ul is not
a straight line, its initial point exists and is called the asymptotic conjugate
point of U.

From the result of H. Busemann [2; (11.6)] we deduce:

(1.1) Let a ray [ be given. If a point p does not belong to the set K{(I),
then there exists only one coray from p to .

If N is a G-space and every point p has a spherical neighborhood S(», &,)
such that a side be of a geodesic triangle abc in S(p, &) is at least twice
as long as the segment connecting midpoints & and ¢’ of the others, i.e.,
pb,c) =2p,c’), then R is said to be with non-positive curvature [3]?.

If RN is a G-space with non-positive curvature and simply connected, then
all geodesics are straight lines. From this and the result of H.Busemann
[2: (11.9)] we immediately see that

(1.2) Under the above condition for any ! the set K({) is vacuous.

We further see from his results [3; (4.3), (4.4)] that the following (1.3)
and (1,4) hold.

(1.3) Under the same condition let x(1), 0<7< +o0, and x(7), 07
< 4o be parametric representations of rays r; and g, respectively. The
following two conditions are equivalent and necessary and sufficient for these
rays to be corays each other.

(@) o(x(T), %A(T)) < 400 for 0 =<7 < +o0.

() px(T), £2)P < o0 (or p(x,(7), 21) < +0) for 0 =7 < +oo.

(1.4) Under the same condition, the relation between ray and coray is
symmetric and transive.

In what follows we restrict ourselves to the case where R is a G-surface
with non-positive curvature which is homeomorphic to the sphere S punctured
at the finite number of points @, ay, ...., as. Suppose that C,, C, ...., C; are
simple closed geodesic polygons on R, no two of which have common point,
such that each C; bounds a tube U; homeomorphic to a circular disk punctured
at center. Then R — Y%, U; is a bounded open set [4]. A tube U; is said
non-expanding or expanding according as any minimal sequence of closed
curves homotopic to the boundary C; is bounded or not.

Let R be a universal covering G-surface of it and ® a covering trans-

2) A Riemann space of class Cr(r =4) is with non-positive curvature in the usual
sense, if and only if this condition is fulfilled [3].

3) The distance between a point p and a set E is defined asYinfzer p(p,z) and
denoted by p(p, E).
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formation of R onto ®. The image A® of aset A on %t will be called A
and A is said to lie over A. For every point p on R there exists a positive
number «, such that under & an open circular disk S(Z, a,) is isometrically
mapped onto S(p, «,). For a ray I there exists only one tube which contains
I or a subray of . To fix the ideas, in what follows this tube will be denoted
by U,. By replacing the ray ! by its suitable subray or the boundary C, by
another suitable closed gzodesic polygon homotopic to it, if necassary, we
suppose that the initial point » of [ coincides with a vertex of C, but | has
no other common point with C,. For a point 7 there exist only one ray T
and only one simple geodesic polygon Eo with the common initial point pe
which lie over | and C; respzctively. The other end point?’ of a, lies over the
point 7. Hencs there exists only one ray T with the initial point 7 which
lies over |. Under & a part 50 of R bounded byz Y and C:are mapped onto
the tube U,, and the contraction (1')]((}; —T—Y;) of ¢ is univalent. From

(1.3) it is easy to see that, if and only if the rays Tand 7V are not corays each
other, the tube U, is expanding.

2. We bagin by showing the following important theorem.

(2.1) THEOREM. LZLet | be a ray on R. Then the number of corays from
any point p to | is finite and does not exceed k + 1.

Proor. We prove only the first part. The second part will be proved
in [§4].

By choosing suitably the closed polygon C,, if necessary, we further
suppose that the point p does not belong to the tube U,. Let & be a positive
number and 7 the initial point of the ray . Further let /, denote the length
of the closed geodesic polygon C) and m 1. u. b. zqy, p(P,%). We show at first
that the number of the homotopic classes containing the closed geodesic
polygons

T, 7) + T(r, @) + T(g, %) + T(%, p),
where x is any point of S(p, &) and g any point on [ such that p(p,q) >1I; +
my + &, is finite.

To do this, suppose that this is false. Since 3 is with non-positive curvature,
there exists a unique geodesic arc L from p to g homotopic to the geodesic
polygon T(x,p) ! + T(q,x)"!, and L is continuously deformable to a geodesic

arc M which connects p to » when g varies on | from ¢ to . Let ; be a
point on R which lies over the point p and 7 the end point of the segment
M issuing from?) which lies over M. The number of such points7 contained
in S(;, Iy + my + &) is finite. For if this is not so, in virtue of the finite

compactness of ‘Eﬁ, the set of such points? has an accumulation point. But
this contradicts that R is a universal covering G-surface of . From this

we see that there exist in S(p, €) a point randon!la pcint g (p(p, @) > 1y + my +
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&) such that the point 7 obtained in the above way does not belong to S(p,
Iy + my + &). Next we show that this contradicts to the above supposition.

On % let T be the ray issuing from 7 which lies over the ray I. Then
the end point ¢ of taa geodesic polygon T(x,p)~*+ T(q,x)~*, is on the ray
[. Let y bs the point on the segment T(:Z 1;)‘1 such that p(;,ﬁ =m + &.
Further let the segment T(x, ¢)~! intersect at first the closed geodesic polygon
C, at a point s. Then there exist on T(}, 37) the point s which lies over s
and on R the geodesic polygon Z‘o which lies over C, and contains the point
5. We denote by 7 the initial point of 50 and the subarc C; of C, from 7»
to s. Let | be the ray issuing from 7 which lies over ! and, suppose that the
subarc a, of EO from 7 to s lies over C, and ¢ isthe point on I’ which lies
over the point ¢. It is not hard to see that the closed curve C, " + T(r,q) +
T(q,s) is continuously contractible to a point. Hence the segment T@’,?j lies
over the segment 7TY(g,s) and there exists on the prolongation of T(Ef ;) the
point ¥ such that pfq~',x~’) = p(g, %) and T((?, x) lies over T(q,%). Under ® the
points % and ¥ are mapped onto the point x.

On the other hand the rays T and U are distinct since 7' e Sp,ly + my
+ &) but r & Sp, Iy + my + E). Hence the segments T(";, x~)<I> and T(; ;")qD
are distinct, but this contradicts that T(Tl, 0P and T(E’,I’)(D are segments.
For the segments T(S~, ;)q) and T(; A?S(D are proper subsegments of T((:IT :'BCIJ

and T(Z’,}’)d) respectively. Thus we end the proof of the above. By use
of this the first pa:t is proved as follows:

Let {$.} be a sequence of points which converges to the point p and {g.}
the sequence of points on | which diverges to infinity. Without loss of
generality we suppose that each p, is contained in S{p, &) and the distance
from p to each g. is greater than I/, + m, + & Let us denote by I',, Iy, ...
T'x the homotopy classes which contain the closed geodesic polygons Ly :

T(p,7) + T7,@n) + T(@n, Pn) + T(Pn,p) (n =1,2,....).

For each I'i(0 =<7 < K) there exists a geodesic arc T:, which connects p to
7, sucn that the closed geodesic polygon T(p,7r) + T;'is contained in the
homotopy class I';.

Let fl~‘z be the segment issuing from p which lies over each 7;. The

end point 7, of each segment T lies over the initial point » of [. From the
above proof we see that the points 7; (0 <i < K) are contained in S(p,l, +
my + E). Let [; be the ray issuing from each 17: which lies over the ray I.
Then it is easy to see that the end point of the geodesic polygon, which
lies over each T(pu,p)~* + T(gn,Dn)"1, is on one of the raysT(,,Tl, .... and Ix.
Let {T(pn,, @s)} be any subsequence of {T(pn, g»)} which converges to a coray
t from-p to 1. From the above it is easy to see that’the ray g is the image
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of the coray EE = Fluse T(En.,?fn‘)) from ; to one of the rays ‘I:, T{,

and Y} under ®, which proves the first part.
From the above proof we have the following

(2.2) Suppose that for a ray | there exist m corays U, U, .... U,
from p, and let U; be the coray from a poiut P to a ray T;, (Y;,fb =) and lie
over each ;. Then there exists a positive number B <ay) such that a coray
from every point x of S(p, B») to | coincides with the image of the coray from the

point x(e S(Z, B3»)) to one of the rays Th, E, eove, li, under ®.

If the proposition does not hold, there exists a sequence of points {pn},
which converges to p, such that a coray 1, from each p. to [ does not

coincide with the image of the coray from E, to any of the rays I:, I:;, e,
I;,,. Then the sequence of the rays {t»} contains a subsequence which converges
to a coray ¢ from p to [, since the set of corays to | forms a closed subset

of all half geodesics of R under the metric £ [2; §9]. Then the ray p issuing
from 5 which lies over ¢ is not a coray from 5 to any of the rays E,,Ig,
T

me

Thus we arrive at a contradiction.

(2.3) THEOREM. For a ray | there exist at least two asymptotes from
every point p of the set K(I) to l.

Proor. Let U be an asymptote from » to [ and © the geodesic which
contains I as a subray. Let {.} be a sequence of points, which converges
to p, such that each p, lies on & but not on 1. By virtue of the definition
of asymptotes, a coray t, from each p. to [ is disjoint from U.

Suppose that there exists only one asymptote I from p to [. Then there

exists on N a point 5 and a ray f which lie over p and [ respectively, such
that a coray from every point x ( € S(p,Bp)) to [ coincides with the image

of the coray from x (€ S(p,/3,)) to [ under ®. Take a positive integer N so
large that

S, B») D pn for every n = N.
Then the ray r. which lies over each t, and issues from p, (n = N) is a coray

to I. Hence each {,J contains a ray I which lies over . From this it follows
that each r. contains Il as a subray, which contradicts to the fact mentioned
above. Thus the theorem is proved.

(2.4) THEOREM. For a ray | the set K(I) is closed.

Proor. Let p be any point which does not belong to the set K(I). Then
there exists on &t a point 5 and a ray T as described in the proof of (2.3).
Let I be any ray which lies over 1 and is not a coray to Y. Then the coray
ffrom every point x of S(Z, By) to I” does not lie over a coray from x to I.

For the coray from every point of Eﬂ S(z, B»y) to T lies over a coray to I. From
- this we see S(p, By)NK(l) = ¢. Thus the theorem is proved.
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(2.5) THEOREM. Let | be a ray on K. Then the set K(I) does not contain
an isolated point.

Proor. Suppose that the set K(I) contains an isolated point p. The
initial point of every asymptote coincides with the point p and the set K(I)
consists of only one point p [7]. Hence R is simply covered by the system
of asymptotes issuing from p. From this it follows that R is simply connected
and the set K(I) is vacuous, which contradicts to the asssmption. Thus the
theorem is proved.

As we see in the above, Theorems (2.3), (2.4) and (2.5) follow from the
first part of (2.1) and (2.2). In this paper Theorem (2.1) and Proposition
(2.2) play an important role. Next we show by the following example that
the finite connectivity of R is essential for (2.1) and (2.2).

ExampPLE 1°. In a 3-dimentional Euclidean space referred to the rectangular
coordinate system (x,,z2), consider the sequence of points {p+n} (n = %1,
+2 ....) where for each 7 the point p.. and p_, are given by (2%, 1,0) and
(—2"1,0) respectively, and replace the circular disks with the centers Pain
and the radii 1/4 by the half cylinders

Zin: (x—2"2 4+ (y —12 =1/16, 0 <z < +o0, and

Zoyn: (x+2"+(y—1r=1/16, 0<2< + (n=12,....).
Then we have a surface S instead of the xy-plane. To smooth the joint
parts we use an arc C of the algebraic curve represented by rectangular
coordinate system (&, 7) as follows :

E—1/4p + (p—=1/4p +1/4 = 0.
As shown in Figure [1], for the joint part of each Z,.(or Z_,) we smooth
the section by every plane through the axis. Thus we have the surface S

13

[ R ——

R . W,

Fig. 1
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replaced the circular disks with the centers pi. and the radii 1/2 by the
surfaces of revolution. .

Obviously S is a differentiable surface of the fourth order and with
nonpositive curvature. Let | be the half straight line

0=x< 4+, y=0,2=0
and gy and g.» (or g-,) the geodesics which contain the segments :
—3/2<x=<3/2 y=1,z2=0 and
4 12=x=<2"1—1/2, y=1,2=0
(or —2"11 4+ 12<x<—-2"—1/2, y=1,2=0)(n=1,2,....).
Further let {g.} be the sequence of the points where each g¢. is given by
(2*,0,0). It is easy to see that for » = 3 there exists a unique segment from

»(=1(0,2,0)) to g which intersects the geodesic gn_1, Obviously Flus:i. T(p,
@s) coincides with the half straight line g :

0=x< +o0,y=2,2=0.

Let S be a universal covering surface of S and Za ray which lies over
the ray r. Next we show that the ray gis not a coray to any of the rays
which lie over the ray I.

~ Suppose that zis a coray to a ray T which lies over the ray . We

denote by Eand 7 the initial points ofz and Trespectively. Since all geodesics

on S are straight lines, for any sequence of points {E,} onl which diverges

to infinity F1l ns+1(p, 7s) coincids with the ray E Under a covering trans-
formation @ the closed geodesic polygons

T}, )+ T(7, 72) + Tomd)  (n=12,...)
are mapped onto a system of closed curves any two of which are homotopic.
Under & each T&,?n) is mapped onto a geodesic arc from p to the point

7n. Let sy be the first common point of each T(z, ;;) with the system of the
geodesics gy and g+n(n = 1,2, ....). Obviously all points s, lie on one of these
geodesics. For a positive number A < 1) let Mx be the geodesic arc where
the length A is laid off each T(;,?n)(b from p. Then it follows that Flus..
M, coincides with the segment :

02, y=2 2=0.

But this is impossible, since the subarc of T(p~, a)fb from p to each s, is a
segment.

3. In this paragraph, we deal with the relation between ray and coray.
To do this, we begin by showing some properties of the limit circles with
respect to a ray I. Let x(r), 0 < x< +co, be a parametric representation
of the ray I. In [2] the function a(p,!) was defined as follows:
a(p,l) = lim, ;... (p(p, A7) — 7).
This limit exists for every point p, since p(p, ®(7)) — r is a bounded and non-
increasing function of .- By making use of this function the limit circle Z(p,[)
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through a point p is defined as the set of points ¥ which satisfy the relation

3.1) ap,!) = a(x,1).

As can be easily seen from the definition |a(p, ) — a(g, )| =< p(p, g) holds
for any two points p and ¢q. Hence a(p,!) is a continuous function of a point
». From this it follows that limit circles are closed sets. The following (i)
and (ii) were proved by H. Busemann [2; §10, §11].

(i) If a limit circle Z(p,!) intersects the ray [ at a point x(r,), then the
closed limit of the circles K(x(1), T — 7o) (= {x|p®(r), %) =7 — 7o(T > 70))
as 7— + oo coincides with the limit circle L(p,!).

(ii) A half geodesic ¢ is a coray to the ray !, if and only if its parametric
representation ¥(1),0 < T < +oo, fulfills the following relation :

a(y(ty), 1) — a(@)1s),1) = 7, — 71 for 7,7, = 0.
From (ii) we see that, if Il is an asymptote to the ray [ and a point @ is on
U but not the initial point of U, then any point z of U is the unique foot of
a on L(z,1). We further see from (2.3) that if g is the initial point of 1 then
any point z of Il —a is a foot of @ on L(z,1) but not unique. For a limit
circle ZL(p,1) the set Ei( = {x|a(p, ) > a(x,1)}) is said the interior of ZL(p, )
and the set E, ( = {x|a(»,!) < a(x,1)}) the exterior of L(p,!) [2; §10].

Generally in an E-space the limit spheres with respect to a ray simply
cover the whole spacz. If a G-space with non-positive curvature is simply
connected, all geodesics are straight lines and the interior of any sphere is
convex. Hence the interior of a limit sphere L(p,!) is convex. For if x(7),
— oo £ 7 < +oo, represents the geodesic carrying [, say p = x(r;), then the
interior of L(p,() is the union of the spheres S(x(7.,), 7, — 7)) where 7, < 71
<< . ... < Tp—>+ .,

If a G-space with negative curvature is simply connected and of finite
dimension, then the interior of a limit sphere L(p,!) is strictly convex. For
suppose that a segment T(a,b) lies on L(p,!), and x’ on the asymptote to |
through a variable point x( € T(a, b)) lay off from x in the interior of Z(p,!)
a fixed distance & > 0 obtaining a curve w(x’). If the space is two dimensional,
the curve w(x’) is strictly convex turning its concave side toward TY(a,b).
On the other hand w{x’) € L(w{a’),!) because L(p,1) and L(w(a’),!) is equidistant
at distance a. But ZL(w(a’),!) is convex and turns its concavity away from
the segment TY(a,b) which is impossible [3; §4]. This can be extended to
higher dimensions.

(3.2) THEOREM. If R is a Finsler space of class C” (r = 4) (or a Riemann
space of class C" (r = 3) and simply connected,then any limit circle is an arc of
class C! at least.

ProoF. Let (1), — o < T < +oo, represents the geodesic & carrying
a ray [. A limit circle Z(x(1),!) is a convex curve turning its concavity
toward with 7( > 7,). As such, it has one sided geodesic tangent. Consider
any point s € L(x(1,),[) and on the asymptote U through s a point x in the
interior of the limit circle Z(x(,),!). The circle K(x, p(x,s)) is convex. If it
has a unique supporting line or tangent at s, then Z(x(7,),I) can have only
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one supporting line at s (because it touches K(x, p(x,s))) and Ki(x, p(x,s)) lies
on the side of L(x),!) toward which it is concave. On R small circles are
differentiable both in the sense of the local coordinates and geodesically.
Hence K(x, p(x, s)) has for small p(x,s) a unique supporting line at x. In virtue
of the concavity of L(x(ty),[), we can see that the limit circle L(x(t,),!) is of
class C! at least.

The above argument can clearly be extended to higher dimensions.

(3.3) THEOREM. Let|be a Finsler space of class C" (r = 4) (or a Riemann
space of class C™ (r =3)). Let a ray | be given and p any point. on R which
does not belong to the set K(1). In S(p,3») the limit circle L(p,)) is an arc of
class C' at least.

Proor. Let y be a coray from p to | andg a ray on R which lies over
y. Then Eis a coray to a ray I which lies over I. We denote by 5 and 7
the initial points of E'and Trespectively. By (2.3) a coray from every point
x of S(p, B») to [ coincides with the image of the coray from the point % of

S(;, By) to | under @.
Let {gs} be a sequence of points on [ such that limus.+.p(7,gn) = + .
Then for a point x of S(p, B,) and a sequence of segment {7T(x, g»)}, there

exists a positive integer IV such that the end points 21; of the segments T(;,
En) (xe S(~p, B»)), which lie over the segments T(x,@gx) (n = N), are on the
rayTor other rays (finite in number) which are corays to | and lie over 1.
The closed limit of the sequence of the segments {T(;,En)} coincides with
the coray Efromjc toI~, and?f lies over a coray Y from x to I. Obviously
p(%, qs) = pl2, q.) for each z.

Hencz, by virtue of the definition of the function a(x,!), we have

| a(x 1) = a(z, 1)
for every point x of S(p,3,). From this it follows that under & the subarc
of the limit circle L(ES in S(;, B,) is isometrically mapped onto S(p,S,)N
Lp,1). By (3.2) the arc S(Eﬁp)ﬂL@,T) is of class C!, and hence S, 3,)N
Lp,!) is also of class C!. Thus the theorem is proved.

In the rest of the paper we assume that every point p of it has lccally
differentiable circles K(p,7) with p as center (0 < 7 < min(7,, &), i.e., the
c'rcles K(p, ) have unique supporting direction at every point.

(8.4) Let a ray | be given and W, and W, two distinct asymptotes from a
point p of the set K() to . Then, for a ray T on W which lies over [, there
exist on R two corays 1, and 1, toT, which lie over U; and U, respectively
and the initial points of ﬁl and ﬁ; lie on a limit circle with respect to the
ray \. '

Proor. Let 171 be a point on % which lies over p and 1, and 1T the rays
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issuing from 171 which lie over the rays U, and U, respectively. Then ﬁl and
U; are corays to ra'ysTand? respectively which- lie over the ray‘ . We
denote by? and 7 the initial points of Yand T respectively. The points?

and 7’ lie over the initial point » of I. Hence under & the segment,T(z ;7)
is mapped onto a closed curve C not homotopic to zero. For the curve C
there exists the free homotopy class A containing C for which there exists

on & a motion A such that 7K =7 and K@I) is a covering transformation
of R onto R [2; §12]. The motion A carries I’ onto I and U; onto a ray U,

which is a coray to Y and lies over the ray W,. Thus the first part is proved.
Next we prove the second part.

Let E~‘1 and l;‘: be the interior and the exterior of limit circle L@,B
respectively. It is sufficient to prove that El and Ez do. not contain the
initial point 5, of IAL Suppose now Z, c E~ Then the ray sz intersects L('EI,T)
at a point 57 distinct from 5; The rays fI} and ITZ are corays each other.
Hence it follows from (ii) that for any two points ;and}’ on an asymptote
to 1 the following relation holds.

a@ 1L) — a®, ) = a@® ) — a@, 1) (= =p( 2).
Therefore
a(?c,T) = a(z ) + const. for any point % on K.
From this it is easy to see
L, 1) = L(p, 1L).

Let {g.} be a sequence of points on TI, such that limps+ep(®,, @n) = +0.
Then we have

and hence we see

limn9+w{P(Zz,Es) - P(~P1 ,En)} >0,
since a(;l, ﬁ_,) = a(z?, ﬁ;). From this it follows that there exists a _positive
integer N such that

pDi, @) < p(ps,qn)  for every m = N. ,
Hence the segments T(9., gx) (n = N) do not lie over segments on. R, which
contradicts that 1, lies over the ray W,.

If E c El, then E is contained in the exterior of the limit circle L(Z_.,Tj.
Hence the developments are entirely parallel to the above, i.e., we again
arrive at a contradiction. Thus the second part is proved.

From (3.4) we immediately see that

(3.5) For a ray | there exist m corays W, W,,...., U, from a point p-
to a ray 1, and let W; lie over each U; and be the coray.from a point Eto a
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myTt which lies over 1. Further suppose that the straight line, which contains
each IT, intersects the limit circle L(z:: IT) at a point q~ Then the points E; q~

,(7,,. lie over a point q on R which lies on the geodesic containing | as a
subray.

(3.6) THEOREM. LZLet U be an asymptote to a ray |. Then there does not
exist a ray which contains I as a proper subray.

Proor. Suppose that a ray B contains the asymptote I as a proper
subray. Let @ be the initial point of Il and & a point on B but not on 1.
Since a € K(l), there exists an asymptote I’ from @ to ! which is distinct
from .

By (3.4) there exist on R two corays Wand W to a ray T(T(D =T§ which
lie over I and W respectively. We denote by 2 and @ the initial points of
M and W respectively. Then a lies on the limit circle L(?z—',T). Henc: the
point & which lies on the ray B (%fb = B) containing Uas a subray is con-
tained in the exterior of Z(z?: [). From the proof of (3.4) it is not hard to
show that &8 does not lie over a ray on R, which contradicts the assumption.
Thus the theorem is proved.

From Theorem (3.6) we see that the union of all rays which contains a
coray coincides with an asymptote. That R has non-positive curvature is
essential for Theorem (3.6,. To see this we show the following

ExampPLE 2°. Let (x,5,2) be rectangular ciordinates in a 3-dimensional
Euclidean space. We denote by D’ the convex part of the xy-plane bounded
by the segment :

1/2=<x<3/2, y=0, 2=0

and the half straight lines

x=3/2, 0<y< 4o, z=0and x=1/2, 0<y< 4o, 2=0.
We replace the segments

x=3/2, 0=y=<1/4, z=0and 5/4=x=<3/2, y=0, 2z=0
by an arc C of the algebraic curve expressed by rectangular coordinates
(€,7) as follows :

E—-1/4p+ (n—1/4P + 1/4 =0,

and further by applying the same procedure to the segments

L x= 1/2, 0<y=<1/4, z=0and 1/2=<x<3/4, y=0,2=0,
we smooth: the boundary of D'. Thus we have a convex part D of the xy-plane.
instead of D'

Now cut off D from the xy-plane and join the surface generated by half-
open segments :

x=a =06 0Zz2< A (3/4=A=1/2),
where (a, 8, 0) €the boundary of D, and further join the, part D, of the
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plane z = \:
{(x,9,2)|(x,9,0) € D,z = A}.
Thus we have a surface S’ instead of the xy-plane. To smooth S, we again
use an arc of the algebraic curve. As shown in Fig. 2 we smooth the
section of S by every plane parallel to z-axis and perpendicular to the
boundary of D. The surface S thus obtained is clearly of class C*.
On this surface S let | be the half straight line:

x=0, 0Zy< +0, 2=0
and & be the intersection of the surface S with the plane ¥ =1. We denote
by . a point (1,u,\) (u >1). The part of S:

{x,2)|(xy,2) € S,p=y}
is a surface of curvature zero. From this it is easy to see that for a
sequence {7} (74 = (0, ua, 0)) which diverges to infinity Flas... T(p,rx) coincidas
with the ray
L:x=1 psSy< 400, 2=A

N2xt we consider the point p; ( = (1,u',0), ' < —1). If on S a curve Cx
connecting p, to each 7, passes through a point whose z-coordinate is equal
to A, then the length of C, is greater than [u'| + x + 1. From this it is
easily seen that a coray g, from p, to | does not coincide with a subray of &.

From this the geodesic &, which is a straight line on S, contains a coray
to I but is not an as mptote.

3.7 Let 1 be a ray on R which lies over a ray | and Tf an asymptote to
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1. If under & a subray Eof 0 is mapped onto a ray on R, then ¢ is a coray
to the ray |. Under ® the union of all subrays of U with this propertly is
mapped onto an asymptote.

Proor. We only prove the first part, since the second part is an im-
mediate consequence of the first part.

Suppose that the ray [, the tube U, and a part [70 of | which lies over
U, has been chosen so as described at the end of §1. If we put a = inf,q,
a(x 1), then « is finite, since C, is compact. For the number « there exists
on | a point s, such that

a >afs,l)
for any point s on | which follows s,. Let ‘sT, be the point on T which lies
over the point s, and L(;(,,ﬁ intersects 1 at a point j? By choosing a suitable
subray of ¢ or further a suitable point s,, if necessary, the point p is sup-
posed to be the initial point of the ray .

At first we consider the case where the tube U, is expanding.

Suppose that ? is a ray with the initial point; which lies over a coray
? from p to . If E’ coincides with the ray Z, then there is nothing to prove.
Suppose that E does not coincide with z We prove Z’ is a coray from Z
to the ray T. To do this we prove 5;7 is entirely contained in 50.

This being so, we immediately conclude that 57 is a coray to V. For if
this is not so, ¥ is the coray fromz to a ray T’ which lies over | and is
distinct from | and I'. Then it follows from (1. 3) that there exists a subray
of 1” contained in 50. But this contradicts that, under the contraction (I)II‘IT,
of &, ﬁo is univalently mapped onto the tube U, except points on'{ and Y.

If there exists a subray of Z; which is not contained in 170, then ? in-
tersects the boundary of ﬁ(,. Since ? is disjoint from T and I~’, f intersects
Z‘U at a point Z Then we have

a=agl)
= alg, ) < a®, D),
since ; follows p~ On the other hand we have
alp,1”) = a@,1)
<a, D= a(s, )
=a(s,N=a,
which contradicts the above inequalities. Thus we see ?Cﬁo.

Further we prove

(3.8) - aip, ) = ap, 1).

From the proof of (3.4) it is easy to see a(;: i”) = a(},i}. Suppose a(pf ﬁ <
a(~p,T). By (3.4) there exists a coray ?’ to I which lies over the coray x,~'
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Let I;” be the initial point of g”. Then ;” lies over the point p» and 5 is
contained in the exterior of the limit circle Z(p”, I7). Hence it follows from

the proof of (3.4) that~g does not lie over a ray on R, which contradicts to the
assumption in the theorem. Thus (3.8) is proved.
Let » be the initial point of I and {s.} the sequence of points on ! such

that limns4.p(7,ss) = +oo. Further let {s:} and {;,’,} be the sequences of the
points on Tand T respectively such that SuD =§,;CI> = s, for each n. The
limit circle L(z, 1) does not coincide with sz, I~’) For if thisis not so, the ray

E’ coincides Withzand U and 1 are corays each other, which contradicts
that the tube U, is expanding. From this it follows that there exists a

sequence of points A{Zn}, which converges to ~p, such that each En is commonly
contained in the exterior of L(p~, ?) and the interior of L(z, T) Since

a(p:,T) < a(;n,?) for each #,
it is easily seen that for each #z there exists a positive integer m(n) such
that the segments T(E,, ;;n) (m = m(n)) lie over segments on R. For if we
take a sufficiently large positive integer M, the inequality

D, 5m) < p(Dn, 5,,)
holds for every m = M. Let N be a positive integer such that
S(h.By) >Pn  for each n = N.

Then it is easily seen that, even if for each n( = N)there exists a subse-

quence {S,} of {s»} such that each T(Zn,;;,,,,) docs not lie over a segment on R,
{sm,} consists of points finite in number, since a coray from every point x

of S.p,By) to ! coincides with the image of one of the corays from ;( € S(;,
B,) to Tand U under &. This shows that for each # ( = N) there exists a

positive integer I(n)such that th> segment T(p:, s,(~n)) lie over a segment on R.
Obviously the sequence of positive integers {l(z)} cin be selected so as

to diverge to infinity. Since FlusseT(Pn, Siow) Coincides with the ray r, we

see thatz also lies over a coray from p to I
Next we consider the case where the tube U, is non-expanding.

In this case the rays T and 7 are corays each other. As can easily be
seen from the above proof, if there exists a coray Z' with the initial pointz
which lies over a coray from p to [, then ? is entirely contained in 17(,.
From this it follows that;’ is a coray to 1. Hence the ray E’, ie., ?g lies
over a coray from p to I. Thus we complete the proof.

From (3.7) we have the following

(3.9) THEOREM. On R the relation between ray and coray is symmetric
and transitive.

Suppose that a ray ¢ is a coray to a ray I. Let The a ray which lies
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~

over [. Then there exists a ray ; which lies over ¢ and is a coray to .

In virtue of (1.3) the ray Tis a coray to r. Hence it follows from (1.3),(1.4)
and (3.7).

4. In this paragraph we study the set of asymptotic conjugate points
for a given ray [. We begin by showing the following important theorem.

(4.1) THEOREM. Le! aray | be given and p be any point of the set K(1), and
suppose that there exist m asymptotes U, Uy, ...., W, from p tol. Then

there exists a neighborhood W(p) such that in W(p) the set K(l) is composed
of m arcs My, M,, ...., M, issuing from p and each M; lies between two
consecutive of these asymptotes.

Proor. Let TL, u,...., Tlm be m rays issuing from a point 17 such that
each ll; lies over the asymptote U; and is the coray from ; to a ray E
which lies over the ray I. Suppose that U; and U, are consecutive, and take

on ﬁl a point ;1 which follows z Leat us denote by Z; the arc of the limit
circle IL(q,,!) in S, B,). Since L,NK(l)= ¢, there exists a unique coray
from every point of Z; to I. If we take a sufficiently small subarc Z; of L,
which contains ¢, as an inner point, then the asymptote through every point
of L, is not a straight line. For if this is not so, there exists on L; a
sequence of points {r.}, which converges to q;, such that the asymptote B,
through each point 7, is a straight line. For a positive number «( > p(p, q:))
let 7, be the point on each B, such that « = p(7s,7,). Let t» be the subray
of each B with 7, as its initial point. Then Fl,..ls coincides with a coray
t to | which contains U; as a proper subray. But this contradicts p € K(I).
Let x be any point of Z; and x' the asymptotic conjugate point of the
asymptote through x. Taking into account that the asymptote through every

point x of L, crincides with the image of the coray through R S §(p, By)) to

fl under ® and the set K(¢) is closed, the correspondance x— x' is one-to-
one and bicontinuous. We denote by H the image of L; in this corres-
pondence. Then H is an arc through p and divided by p into two arcs H,
and H,. One of these arcs lies between W, and U,, We assume that H;
lies between !, and U..

Since Hy,<K\l), there exist at least two asy.nptotes from every point of
H, to . Take a positive number 1, so small that H, intersects K(p,y:) at a
point @;. Let a; be the first common point of H; with K(p, ;) and M, the
subarc of H, from p to a;. Further let AZ be the arc issuing from ; which
lies over M,. If further ¢, is sufficiently small, there exist exactly two
asymptotes from every point ¥ of M; to | and these asymptotes coincide
with the images of the corays from ;( [ 11~41) to FI: andT, under . We show
this.

If this is not so, there exists on M; a sequence of points {p.}, which

converges to p, such that an asymptote €, from each p. to | coincidss with
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the image of the coray @,. from 1?;. (GIT/L) to one of the rays E, i R
[,» under ®. Then the sequence of the corays {‘@n} contains a subsequence
{En‘} whose limit coincides with a ray (3 issuing from p~ The ray € lies over
an asymptote from p to [ and coincides with one of the rays 113, 114, e,
11,,,, Hence there exists a positive integer N such that each @nt (n; = N)
intersects either 111 or 11;, which is a contradiction.

In such a way m arcs M, M., .... , M, issuing from p are determined.
From this we see that there exists a neighborhood Wip) of p such that

KONW®) = U .M.
Thus the theorem is proved.

In what follows we suppose that for a point p{€ K(I)) the neighborhood
W(p) is contained in S/p, ;). To make clear the circunstances in the above
we show the following

ExampLEs 3°. Let (x,y,2) be rectangular coordinates in a 3-dimensional

Euclidean space and L the curve composed of the semi-circular arc:
¥+yr=1 —1=<y=<0 z2=0
and two half straight lines:
2=1 0<y< 4o, z=0and x=—1, 0<y< +o, 2=0.

We construct a surface S in accordance with the following steps :

i) Consider the cylindrical surface Z; generated by half straight lines:

xr=a,y=08, 0£22< 4+,

where (a,3,0) € L;

ii) Join the half of the semi-cylinder

Z,: 4+z22=1 0<y< +oo, —1=<2=<0
to the surface Z;;

iii) Further join the half cylinder

Zs: w4+y=1 —oo<z=<0
to the above surface;

iv) Omit the parts of Z, and Z; cut off from the other.

Next we smooth the surface S' thus obtained.

The section of the surface S’ by a half plane x =AA[ < 1), 0=y <
+ oo, consists of the half straight lines

g1: =AM T=N<y< +o0, 2= —a/1T— A2 and

8a: =0 y=VI—N —2/IT-N=<z< -T2
To smooth this section, as shown in Fig. 3, we replace the subsegments
of g; and g¢,:

2= TNy 2/T—A, 2= —A/1T—A* and
=\ y=aT=A —20/T—A2<z2=< —A/1—2AZ

by an arc C of the algebraic curve expressed by rectangular coordinates
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(E,n) as follows:

7 (E—w) +@—w)f=r,
where « = o/T — A% Thus we have a surface S; instead of S'.

Fig. 3

Next cut off from the surface S; the circular disks whose centers are
(1,5,5) and ( —1,5,5) and radii 1, and join the half cylinders

Z,: 1<x< 4o, (y—5) +(z—5r=1 and

Zs: —<x<—-1@—-5¢+(&—5=1
To smooth the joint part, in the same way as in Example 1° we use an arc
of the algebraic curve expressed as 1,
follows :

(E—1/4) + (n —1/4)¢ =1/4,
where (E, ) are rectangular coordinates. ' Y,
We denote by S, the surface thus «
obtained.

As we see from the construction [N 5,
of the surfaces S, and S,, these surfaces i
are of class C! and regarded as G-
spaces defined by H.Busemann [2; §4].

Let | be the half straight line:

2=0, 2Sy< oo, 2= —1, -
and 1) and 9. be the intersections of Fig. 4
S, with the half planes:
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x=0 —o<y<0and —0<y<52=5
respectively. Then ; and ), intersect at the point p( = (0, —1,5)).

At first we consider the surface S;. It is easily seen that the set Ki(l)
of asymptotic conjugate points is identical with the straight line y;,. The set
Ki(1) has no branch point. There exist exactly two asymptotes from every
point of K,(I) to .

Now we consider the surface S,. The set K,(I) of asymptotic conjugate
points is identical with the union of Y, and f),. It is easy to see that there
exists four asymptotes issuing from p to . As shown in Fig. 3, we denote
by U, U,, 113 and U, these aymptotes. Fig.4 shows the behaviors of these
asymptotes at the point p and limit circles Z and L' in a sufficiently small
neighborhood V of p. It is easily seen that in V limit circles not through »
are simple closed curves and the limit circle Z(p,[) consists of only one
point p.

From the above we see thaton S,a limit circle is not necessarily differ-
entiable at an asymptotically conjugate point.

Next we prove by use of (4.1) the second part of Theorem (2.1).

Let p be a point of the set K(I). Suppose that W(p)(1K(l) consists of m
arcs M, M,...., M,, and W(p) is divided by these arcs into m domains
D,D,, ...., D, Then each D, is simply covered by a system of corays.
For convenience’s sake, suppose further that each D; contains a subsegment
of the asymptote U; and has place between M: and M;.,, Where M., =
M,. Then we see

D;N\U; = ¢ for each f % i) and D;NK(I) = ¢ for each i.

On R, a neighborhood W(E) (W(IT)(’D = W(p), W(ECS(Z, ) is similarly
divided by m arcs AZ, ITL, ce, Mm into m domains 5;,52, ceen, Bm, where
each M, lies over the arc M;. We assume that each D lies over D;. The
ray ll; issuing from 5 which lies over each ll; is the coray from p~to a ray
1; which lies over the ray I.

Let {g.} be a sequence of points on ! which diverges to infinity and p; a
point of each D;NV(p), where V(p) is a coordinate neighborhood of p. V(p)
is supposed to be convex [3]. Then there exists a positive integer N’ such

that the end point g, of the segment TPy, ¢») (5. € W(p)), which lies over
each T(E, E,.) (n=N"), is on IT or other rays (finite in number) which lie
over | are corays to YI Hence by choosing one of such rays instead of
E, if necessary, we have a subsequence {g.,} of {g.} such that the end point
Gy Of each T(B:, @u) (TP, @m)® = TPy, qny)) is on the ray I,.

Next we consider the sequence of segments {T(p., @s,)}.

Under the same consideration as in the above, we see that there exists
a subsequence {g.,} of {g,} such that the end point E.z of each T(Z;z, q;)(T(pz,
@u))P = T(D,,qny)) is on the ray t We continue this. Then after m steps we
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have a subsequence {gn,} of {@s,-,} such that for each 7 the end point &:m of
each T(ps,qu,,) (T(Di, @u,)® = T(P:, @s,)) is on the ray I;.

Let & be a topological transformation of the punctured sphere S onto
. To fix the idea, we keep a positive integer #, fixed and put N = »,,. To
shorten the notation, we denote by T each geodesic polygon T(p,p:) + T(p:,
q~). Each of these geodesic polygons is not homotopic to the others. It is
clear that, if one of these geodesic polygons intersects another at a point x,
then x is contained in V(p). Hence we can choose on S m arcs L, L,, ....,
and Z,, which connect p(=pV¥-!) to ¢'(=gs¥~1), such that each L is
homotopic to T:'¥-! and has no common points with the others except p’ and gj,.

Each of the closed curves Z; + Liy;™! (0<i<m, Lns, = L;)is homotopic
to a simple closed curve and not homotopic to zero. The sphere S is divided
by these arcs into m domains E;, E,, .... and E,,. In this case each E; is
supposed to be bounded by the simple closed curve L, + L', ;1. Then

L+ Ly ~Ti V4 Tt
and each E; contains at least one of the holes @y, a, ...., @.. From this we
see m < k + 1, which proves the second part of (2.1).
From the above proof it is easily seen that

(4.2) ap,) = alp, 1) = .... = al, L.
It is also clear that

(4.3) C ag)=a(xl)
for any point; of each 5; and

(4.4) a(x, 1) = a(x,T,) = a&, Tewr)

for any point x of each M..
From (3.6) and (3.7) we have the following

(4.5) THEOREM. On R let ¢ and | be corays each other. Then the set K(I)
coincides with the set K(t).

5. In this paragraph we show in the large some properties of the set
K(l) for a given ray . We prove at first the following

(5.1) For a ray | a continuous curve contained in the set K(l) is unbounded
and if the set K(I) has branch points, then the set of the branch points is
discrete.

Proor. The second part is clear from Theorem (4.1). Hence we prove
only the first part. To do this, for a point p (€ K(I)) let v, be the least
upper bound of those ¢’'s for which the circular neighborhood S(p,v) is
contained in W(p). As we see easily from Theorem (4.1), every arc contained
in the set K(l) is prolongable. Let K be the whole prolongation of an arc
contained in K(I). Then K has no end point. Suppose now that K is con-
tained in a bounded domain D. Then we show at first that, if K has branch
points, the number of these points is finite.
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arc has no other common points with C, and has not a branch point. For
if # is a branch point of K, there exists on B at least three rays issuing
from 2 GE) which lie over asymptotes from # to . But this is impossible,

since any of these raysis a coray to either | or . Hence K is an unbounded
simple arc. It remains to show K({) — K = ¢.
Lot p’ be any point of the set K(I) distinct from p. We show that p’ is

on K. Since the corays from E(e 5) to T and 1 lie over asymptotes from 2’
to [, we have

a@',l) = a(;', Tj = a(Z’,Y").
Let the limit circle L(E’,T) intersects the straight line G at a point s and the
limit circle L(;',T’) the straight line & at apoint s’. Then by (3.5) s and § lie
over a point on &. We denote by M the arc of L(p"‘,—lrfrom s to 17 and by M
the arc of L(E:YS from s to 17’ By the same reason as in the above there

exists on T(;:’) a unique point q~such that ; belongs to the set K(I). Next
we show that qis on K.

Let % be any point on the segment T(r s) Then there exists on T(r s’)
the point x which lies over x. On T(x x) there exists a umque pomt y

such that y belongs to K(I). When x varies on T\r, s) from 7 to s, ¥ varies
on the arc K( = Kb~'\B) from p to ¢. This proves g € K.

Since X is unbounded and has no common points with T(?, ;7) except ;5,
we see from the above that K intersects M or M. Suppose that K intersects
M at a point; distinct from }7 Then we have

a(;:T) = aa), F)
= a@, 1) = a@, D).
Hence » lies on the limit circle K@’,F). Let ﬁ'l be the coray from 5 to [
and ﬁz the coray from 2 to Y. Then IT has no common points with L(;’, 7)
except;. Hence by virtue of (1.3) ﬁ; intersects li? at a point. On the other
hand, the rays TL and ﬁ; lie over asymptotes to . Hence U,d is disjoint
from ;. But this is a contradiction. Similarly K does not intersect M’ at
a point distinct from 5’ Hence 5’ lies on I?, which proves K(I) — K = ¢.

If the tube U, is non-expanding, the rays Tand Y are corays each other.
Let x be any point on R and g~ the ray issuing from the point % (e E)
which lies over a coray ¢ from x to I. Thenz is a coray to I. For if; is a
coray to a ray [ which lies over I, by virtue of (1.3) and (1.4) the rays T

and 17 are corays each other. Hence there exists only one coray from x to
[ which proves K(I) = ¢. Thus we complete the proof.
Let i be a Finsler space of class C"» =4) (or a Riemann space of class

C" (r = 3)). In the above proof it is easily sean that M U M lies over the limit
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If this is not so, then the set of the branch points of K contains a
sequence of points {p,} which converges to a point p. Since K(I) is closed,
the point p belongs to K(I). For the sequence {p.} there exists a positive
integer N such that

S(P, ¥») D Dn for every n = N.

Since K(I)\ W(p) consists of arcs issuing from p which is finite in number,
each pu«(n = N) is identical with the point ». But this is a contradiction.
From the above we see that K contains a half open simple curve K.
Without loss of generality we assume that the initial point @ of K is not a
branch point. By the assumption K’ is contained in the domain D. We show

that this is a contradiction. To do this we put 7y = inf,.x v.,. Then the number

7 is non-negative. If v is infinite, R is simply connected. Hence the set K(I)
is vacuous, and there is nothing to say.

Suppose ¢ = 0. There exists a sequence of points {gs} (¢:€ K’ D) such
that limapsyse 7, = 0. Since D is bounded, the sequence {¢,} contains a
subsequence {¢»} which converges to a point g¢. Then ¢ € K{{) and 7, is
positive. Hence there exists a positive integer N’ such that

S(q, 7vq) > qu, for every mi = N'.

From this it follows that each g., (n; = N’) lies on an arc of W(p)NK(I). If
¢ is a branch point, then K’ contains the branch point ¢ which contradicts

the assumption. If ¢ is not a branch point, it is easy to see ;* 0, which
contradicts to limpssw Ve, = 0. Thus we see; % 0 and hence v is positive.

We denote by 7, the first common point of the curve K with K{a, r;} and
by L, the subarc of K’ from a to »,. Similarly we denote by 7, the first

common point of K’ with K(r,,Ty) which follows 7; and by L, the subarc K’ from
71 to .. We continue this process. Then the sequence of the points {7}
contains a subsequence {rs,} which converges to a point 7. Since r € K(l),
7.+ 0. Hence there exists a positive integer N’ such that
S(z, vy) D 74, for every n; = N".

On the other hand, any two of the arcs L., (n; = N”) are non-overlapping.
But this is a contradiction.

From the above it follows that K’ is not contained in a bounded domain,
and hence K is unbounded. Thus we complete the proof.

(5.2) THEOREM. Suppose that R is homeomorphic to a cylinder. Then for
a ray | the set K() is an unbounded simple arc or vacuous according as the
tube U,, which contains | or a subray of |, is expanding or non-expanding.

Proor. Without loss of generality we assume that | is a subray of a
straight line & whose opposite contains a subray belonging to the other tube
U,. For if | is not such a ray, let {¢.} be a sequence of points on U; which
diverges to infinity and t.a coray from each g. to I. Then each t. intersects
the boundary C, at a point 7.. Let ', be the subray of each r, whose initial
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arc has no other common points with C, and has not a branch point. For
if # is a branch point of K, there exists on B at least three rays issuing
from 2 GE) which lie over asymptotes from # to . But this is impossible,

since any of these raysis a coray to either | or . Hence K is an unbounded
simple arc. It remains to show K({) — K = ¢.
Lot p’ be any point of the set K(I) distinct from p. We show that p’ is

on K. Since the corays from E(e 5) to T and 1 lie over asymptotes from 2’
to [, we have

a@',l) = a(;', Tj = a(Z’,Y").
Let the limit circle L(E’,T) intersects the straight line G at a point s and the
limit circle L(;',T’) the straight line & at apoint s’. Then by (3.5) s and § lie
over a point on &. We denote by M the arc of L(p"‘,—lrfrom s to 17 and by M
the arc of L(E:YS from s to 17’ By the same reason as in the above there

exists on T(;:’) a unique point q~such that ; belongs to the set K(I). Next
we show that qis on K.

Let % be any point on the segment T(r s) Then there exists on T(r s’)
the point x which lies over x. On T(x x) there exists a umque pomt y

such that y belongs to K(I). When x varies on T\r, s) from 7 to s, ¥ varies
on the arc K( = Kb~'\B) from p to ¢. This proves g € K.

Since X is unbounded and has no common points with T(?, ;7) except ;5,
we see from the above that K intersects M or M. Suppose that K intersects
M at a point; distinct from }7 Then we have

a(;:T) = aa), F)
= a@, 1) = a@, D).
Hence » lies on the limit circle K@’,F). Let ﬁ'l be the coray from 5 to [
and ﬁz the coray from 2 to Y. Then IT has no common points with L(;’, 7)
except;. Hence by virtue of (1.3) ﬁ; intersects li? at a point. On the other
hand, the rays TL and ﬁ; lie over asymptotes to . Hence U,d is disjoint
from ;. But this is a contradiction. Similarly K does not intersect M’ at
a point distinct from 5’ Hence 5’ lies on I?, which proves K(I) — K = ¢.

If the tube U, is non-expanding, the rays Tand Y are corays each other.
Let x be any point on R and g~ the ray issuing from the point % (e E)
which lies over a coray ¢ from x to I. Thenz is a coray to I. For if; is a
coray to a ray [ which lies over I, by virtue of (1.3) and (1.4) the rays T

and 17 are corays each other. Hence there exists only one coray from x to
[ which proves K(I) = ¢. Thus we complete the proof.
Let i be a Finsler space of class C"» =4) (or a Riemann space of class

C" (r = 3)). In the above proof it is easily sean that M U M lies over the limit
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circle L(;,T). If the tube U, is expanding, L(;,T) does not crincide with L(s7: F).
From this it follows that, if a limit cicle L with respect to [ contains an
asymptotic conjugate point @, then L does not contain another asympotic
conjugate point and is a simple closed curve of class C' except a. If the tube
U, is non-expanding, every limit circle with respect to [ is a simple closed
curve of class C.

(5.3) THEOREM. If for a ray | the tube U,, which contains | or a subray

of |, is non-expanding, there exists a subtube of (70 disjoint from the set K(I).
But if the tube U, is expanding there does not exist a subtube of U, disjoint
Jrom the set K(l).

Proor. At first we shall consider the case where the tube U, is non-
expanding.
Suppose that the ray [, the tube U, and a part T, of | has been chosen
so as described in §1. Let s be a point on T such that
a = infreqa(%, 1) > a(;, ﬁ
and s’ the point on I which lies over the point s( = :@). Then the limit
circle L(;,T) passes through the point s and under @ the arc M of L(“s“,T)
from s to § is mapped onto the limit circle L(;,T). The exterior of L(;;fj
does not contain the segment T(; s). If we put T(s,s")® = C,, the subtube
U, of U, bounded by C, is disjoint from the set K(I). For let x be any point
of U,. Then we have
a>axl) (e U).
As we see from the proof of (3.7), the coray from every point x of 175 to |

lies over a coray from x to | and there exists only one coray from x to .
From this it follows that K()NU, = ¢.

Next we consider the case where the tube U, is expanding.

Let s and s be any point on [and I respectively such that Sb =5
=s and (:‘:; any geodesic polygon which connects s to . It is sufficient to
prove that there exists on EU the point which lies over a point of the set
K(l). If s € K(1),there is nothing to say. If s ¢ K(I), then the coray from
every point x of S(g Bs)na; tONI lies over a coray from x to . But the coray
from x to another ray, which lies over [ but is not a coray to f does not
lie over acoray from x to !. Similarly the coray from every point % of S(s~’,
Bs)ﬂa; to I’ lies over a coray from ¥ to . But the coray from x to another
ray, which lies over [ but is not a coray to T’, does not lie over a coray
from « to l. From this it follows that there exists on G a point 5 such
that the corays from Z to at least two rays lying over ! lie over corays from
p to . Under &® such a point ; is mapped onto a point of the set K{l).
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Thus the theorem is proved.

(5.4) THEOREM. If | is homeomorphic to a sphere punctured at three
points at least, i.e., B =2, then for any ray | the set K(1) is not vacuous.

Proor. Suppose that the ray [ is a subray of a straight line whose
opposite contains a subray belonging to another tube U, (if this is not so,
in the same way as in the proof of Theorem (5.2) we use another suitable
ray instead of [). To prove the theorem we suppose K(I) = ¢. Then it is
sufficient to show that we arrive at a contradiction.

Let » be a point [ and C, the geodesic one-gon with » as its vertex which
is homotopic to C, (or the closed geodesic through 7 homotopic to C, if it
exists). Then by choosing suitably the boundary C; of the tube U, if neces-
sary, C, is supposed to be disjoint from C;. Let x’ be any point of C;. Then
the asymptote through x' intersects C, at only one point x. By virtue of the
assumption all asymptotes are straight lines. Hence the correspondence: x’
— xis coninuous. Since C; is a simple closed curve, the image of C; coincides
with C,. From this it follows that C, is continuously deformable to C,. This
contradicts £ = 2. Thus the theorem is proved.

At the end we ‘prove the following

(5.5) THEOREM. For a ray | the set K(I) consists of the finite number of
unbounded and continuwous curves. If K() has branch points, the number of
these points is finite.

Proor. As before we assume that | is a subray of a straight line whose
opposite contains a subray belonging to another tube and the boundary C,
of U, is a geodesic one-gon whose vertex coincides with the initial point 7
of I (or the closed geodesic through 7 if it exists). For a part ﬁo of }t which
lies over U, we use the same notation as before.

We prove at first that, if the tube U, contains branch points of the set
K(1), the number of these points is finite. If the tube U, is non-expanding,
the tube U, contains a subtube U, disjoint from the set K(I). Since U, — U,
is bounded, we see from the proof of (5.1) that the number of the branch
points contained in U, — U, is finite, which implies that the tube U, contains
the finite number of branch points.

Now we consider the case where the tube U is expanding

Since the set K(I) ( = K(I)®-1) is closed, the set K(I) n T(r r’) is compact
Hence there exists the finite number of points x,, a@, e, xm of K (I) n

T(';:,?’) such that J ™, W(xT) covers K(I)ﬂT(?,?). By Theorem (4.1) each

k(l')ﬂW(E) consists of arcs issuing from % which are finite in number. We
denote by K each w. x,) ﬂK(I) Suppose further that on T(r P ) eachx precedes
x;ﬂ. Then the curve Kl contains a subarc Kl such that the coray from every
point of K1 to I lies oves over an asymptote to 1.
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Let E be the system of the corays from the points of IZ to | and U the
coray from an end point ;Of IZ tol. Letz be a point on 1 which follows
_;, Then for a positive number B less than 3. Sf;, B)f]i&j) is an arc dis-

joint from the set I?(I). We denote by Z the arc S(ZB)HL/ZT). Let x be
any point of Z and 8 the asymptote through x. Then, under &, 2 is the

image of a ray (or a straight line) gthrough ;( eZ) which is a coray (or an
asympotote) to I. Such ®'s form a system 51 Obviously %y; conta anins
element not belonging to 5& The system &, U3, is considered as an xtension
of the system %,. In such a way we have the largest system %?1 suéh that

every element of 551 is a coray or an asymptote to T and lies over an
asymptote to |.

Let a curve K;(i + 1) contains a subarc I~{'L. such that the coray from
every point of IZ to T lies over an asymptote to [. Then in the same way
as in the above we have the larg:st system E such that every element of
@ is a coray or an asymptote to [ and lies over an asymptote to [. We show
that 5; coincides with the system "&“1

Suppose that %, does not coincide with %1. Let ﬂ& be the system of
corays from the point of Ig to I. Then there exists at least one unbounded
and continuous curves of I?(I) which lies between the systems 8~1 and ﬁ
Let s be a point on T such that

(5.6) infoe, (%,1) > a(s, ) ( = als, 1))
and v the the point at which the arc L(:, ﬁﬂ[;’u intersects a curve of I?(I) at
first s. Then we have

a(@, 1) = als, )
and there exists a ray [ issuing from 2 which lies over an asymptote toT
but is not a coray to I. The ray € is not a coray to I~’ For if G is a coray
to . € intersects the rays of 51 But this is impossible. Hence Cisa coray
to a ray~I" which lies over [ and is distinct frornT and F The ray 1" is not
contained in E’O. Hence © intersects a, at a point #. Then we have

infrecia(x, 1) < a(n, 1) = a(Z T")

< a(zT,F’) = a(zT,ﬁ: als, 1)
which contradicts (5.6). From this we see that & coincides with {i

It is also easy to prove that if two curves E, and KNL (7 % 1) contain
subarc I?, and Iz respectively such that the corays from points of I?j and

7{; to a ray T”"(F”(I) = 1) lie over asymptotes to I, then the largest system in
the above sense which contains the system of the corays from the points of
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}j to I'” contains that of corays from the points of I}; to I and vice versa.

From the above we see that U:: is covered by the finite number of such
system. We denote by ’{\;, %2, cee, ‘i these systems. Then every point of
the set 7(([){]&, is identical with the common initial point of the rays con-
tained in some of these systems.

Let » be a branch point of the set K(I)(\U, Then the st K(I)(W.p)
consists of arcs issuing from p which are finite in numbar. We denote

by Fll, M,,, e, JTJZ these arcs. Suppose that every point of each Mi is
identical with the common initial point of rays of two systems %h and %A,m
where %;M = ?;},, and suppose further that there exists on the prolongation
Pof an arc 11~41 a branch point 3’ contained in 5(,. Then we show that the
systems %,3,%,‘, and 5}, do not contain any of the rays with 17 as their
common initial points. L

To do this, let IEI)D W(p"v) be composed of arcs IE', 1172, AZI;;
issuing from 5; and suppose that every point of an arc KJ{ is identical with

the common initial point of rays of a system %,, (¢ = 3) and another system.
Then we show that this is a contradiction, Let L be the st of the initial

points of the rays of 87‘ Then for the arcs M; and AZ we consider the follow-
ing two cases:

(1) L contains two unbounded and continuous curves Zt and l~;1 such
that L;o>M;, oM, and Li(\L, = ¢.

(2) Z contains an unbounded ani continuous curve L' which contains the
arcs M; and M.

Suppose that the ciase (1) holds. There exists a straight line 5 of i“?,-‘
which separates Z; and L. § lies over an asymptote to [ which is a straight
line. Since P contains an arc C which connects 5 and 5’, the straight line 5

intersects C at a point ; The point ; belongs to the set I‘E(I). But this is a
contradiction.

Suppose that the case (2) holds. There exists an subarc C of L' which
connects p and ;’ and is distinct from C. The arcs Cand C' bound a domain
W. Let w be a point of the boundary of VT’ which lies on E but not on C'

(or on C but not on 6) Then there exists two rays issuing from w which
lie over asymptotes from w to [. One of these asymptotes contains a subseg-

ment belonging to W and again intersects the boundary of W at a point w

distinct from w. The point w belongs to the set I~((I). But this is a contra-
diction.
From the above it is easy to deduce that the number of the branch

points of Fn E’o is finite and hence the number of the branch points of
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KU)NT, is finite.

Since ! — U*_,U: is a bounded open set, if # — U%_, U: contains branch

points of K(I), the number of these points is finite. This is clear from the
proof of Theorem (4.1).

To show that. if another tube U;(i = 0) contains branch points of K(I),
the number of these points is finite, suppose that the opposite of the straight
line & contains a subray ¢ belonging to U;,. Further let C; be the geodesic
one-gon with the initial point x of ¢ as its vertex which is homotopic to C:
(or the closed geodesic through x homotop’c to C; if it exists) and U, the

tube boundzd by C;. Then th=re exists on R a part 5{ bounded by two rays

t and 1’ lying over r and a segment a’ lying over C; such that I~I;(I> =U,.
In the same way as in the above it is easy to show that, if the tube U;
contains branch points of K{(I), then the number of these points is finite.
Hence the tube U; also has this property.

From what we have proved above the proof is complete.
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