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Introduction. The concept of parallelism for Euclidean straight
was extended by E. Cartan [ΓP to that of parallelism for geodesies in a
simply connected Riemannian space with non-positive curvature. A further
extension was given by H. Busemann [2], [3]. He developed in terms of
corays a theory of parallelism for rays in a metric space called by him an
Z£-space (or a G-space) and introduced the concept of asymptotes.

In a Euclidean space a coray from a point p to a ray ϊ is identical with
the half straight line ι parallel to ϊ from p and the asymptote through p
with the straight line which contains j as a subray. In an Zs-space the
union of all corays which contain a coray to a ray ϊ is called an asymptote.
In [3] he defined a G-space with non-positive curvature and showed that, if
such a space is simply connected, the concept of asymptotes is symmetric
and transitive.

The initial point of an asymptote is called an asymptotic conjugate point
if it exists. In the previous paper [7] we showed some properties of the set
of asymptotic conjugate points for a ray. H. Busemann [5] studied a G-surface
which is a 2-dimensional G-space and homeomorphic to the Euclidean sphere
S punctured at finite number of points OQ, au , ak. In the present paper
we deal with asymptotes on such a G-surface 9ΐ which has non-positive
curvature. Throughout this paper we denote by K{\) the set of asymptotic
conjugate points for a ray ϊ. The main results of this paper are summed
up as follows:

1. For a ray ϊ there exist at least two asymptotes from every point of
the set K(l) and the number of these asymptotes does not exceed k + 1 [§2,
§4].

2. If [ft is a Finsler space of class Cr (r > 4) (or a Riemann space of
class C (r>3)) and a point p does not belong to the set K(l), then in a
suitable neighborhood of p the limit circle through p is an arc of class C1

at least [§3].
If any point of p has locally differentiate circles in the sense of H.

Busemann [THE GEOMETRY OF GEODESICS, ACAD. PRESS INC.] we have the
following 3, 4 and 5.

3. The union of all rays which contain a coray as a subray coincides-
with an asymptote [§3].

* We wish to thank Prof. H Busemann fcr his kind advice in the investigation.
1) Numbers in brackets refer to the references cited at the end of the pεper.
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4. The relation between ray and coray is symmetric and transitive [§3J.
5. The set K(l) consists of finite number of unbounded and continuous

curves no two of which has common points. If the set K{\) has branch
points, then the number of these points is finite. At each branch point the
number of branch curves is equal to that of asymptotes issuing from this
point [§4, §5].

1. In this paragraph we explain some preliminary concepts.
In a metric space the distance between two points x and y will be denoted

by p(x,y). The axioms for a metric space 3t to be an Zs-space are follows:
A. 9t is metric with distance p{x,y) not necessarily symmetric.
B. 9ΐ is finitely compact.
C. 3t is convex metric.
D. Every point x has a spherical neighborhood S(x, a{x)) ( = {y\p(x,y)<

Όί{x\ p(y, x) < a{x)}(a(x) > 0)) such that for any two distinct points a, b in S(x,
cέ(x)) and any positive number £ there exist positive numbers B^a, b) (k =
1,2) not greater than £ for which a point aλ with p(a1} a) + p(a, b) = p(aι,b)
and another point bx with p(a, b) + ρ{b, bι) = p{a, bτ) exist and are unique.

If the metric is symmetric, then 9ΐ is said a G-space. If further R has
dimension 2 in the sense of Mehger-Uryson, 3t is said a G-surface and is
topologically a connected manifold.

The axioms A, B and C guarantee the existence of a segment T{p, q)
from p to q (or T(q, p) from q to p) whose length equals the distance p(p, q)
(or p(q,p)). The prolongation of a segment is locally possible and unique
under the axiom D. The whole prologation of a segment is said a geodesic.

A geodesic @ has a parametric representation x{τ), — 00 < r < +00,
such that for any real number τ0 a positive number £(τ0) exists such that
pixirj, x(r2)) = T'2 — τi(τ3 ^ τ2) for \n — τo\ <= £(τ0) (t = 1, 2). If for any two
real numbers τλ and τ2(τ2 ^ τx) pC^Ti), Λ(T2)) = τ2 — TΊ, then we say @ is a
straight line. A half straight line is said a ray.

In [2; §4] the number ηλ(x) and the term "direction" were introduced.
The number ηλ(x) is defined as the least upper bound of those β's for which
any segment with end points in S(x, β) is a cocentral subsegment of length
Xβ. ηκ(x) is positive for any point x and any number λ not less than 2.
The number ηa is defined as min (ηό(x), 1). A segment T(a, b) with the length
ηa is said a direction.

Let Di and D> be two directions. Let a,ι and a2 be the initial points of
Dι and Dt and bι and b2 the end points of Dι and A Following H. Busemann
(2 §7], the distance of A and A is defined as

Ί, A) = -τr(p(tfi> 0*) + P(*i> b-2)\

The set of all directions on 3t is finitely compact under the above metric.
The distance of two half geodesies (or two geodesic subarcs) is defined as
that of their initial directions.

Let x(τ),[0^τ< +00, be a parametric representation of a ray I, and let
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be a sequence of points which converges to a point p and {τn} a sequence
of positive numbers which diverges to infinity. Then the sequence of
segments {T(pn, x(τn))} always contains a subsequence {T(pnι, x(τnι)')} which
converges to a ray £ under the above metric [2 §11]. This limit is equivalent
to the closed limit introduced by Hausdorff [2; §7]. We denote this by
Flnt̂ +co T(pn{, xiτni)) = £. E is said a coray from p to ϊ. The union tt of all
corays which contains £ as a subray is said an asymptote to ϊ. If U is not
a straight line, its initial point exists and is called the asymptotic conjugate
point of U.

From the result of H. Busemann [2 (11. 6)] we deduce:
(1.1) Let a ray ϊ be given. If a point p does not belong to the set K(ΐ),

then there exists only one coray from p to ί.
If .ft is a G-space and every point p has a spherical neighborhood S(p, Sp)

such that a side be of a geodesic triangle abc in S(p, β1}) is at least twice
as long as the segment connecting midpoints b' and c' of the others, i. e.,
p(b, c) ί> 2p(b', cf), then 3ΐ is said to be with non-positive curvature [3]->.

If 9ΐ is a G-space with non-positive curvature and simply connected, then
all geodesies are straight lines. From this and the result of H. Busemann
[2: (11. 9)] we immediately see that

(1.2) Under the above condition for any ΐ the set K(l) is vacuous.

We further see from his results [3; (4.3), (4.4)] that the following (1.3)
and (1,4) hold.

(1.3) Under the same condition let Xι(τ), O^TίS+oo, and X2{T), 0 <Ξ T
< 4-oo be parametric representations of rays & and £2 respectively. The

following two conditions are equivalent and necessary and sufficient for these
rays to be corays each other.

(a) p(#ι(τ), X2(τ)) < + o o f o r 0 ^ τ < 4 - o o .

(b) p(*i(τ), ε<>)3) < +<χ> (or p(χ.Λ{τ), &) < +oo) for 0 ̂  T < -f oo.

(1.4) Under the same condition, the relation between ray and coray is
symmetric and transive.

In what follows we restrict ourselves to the case where 9ΐ is a G-surface
with non-positive curvature which is homeomorphic to the sphere S punctured
at the finite number of points a, ah , ak. Suppose that Co, Q, , Ck are
simple closed geodesic polygons on Oϊ, no two of which have common point,
such that each d bounds a tube Ut homeomorphic to a circular disk punctured
at center. Then 3ϊ — ULo ut is a bounded open set [4]. A tube Ui is said
non-expanding or expanding according as any minimal sequence of closed
curves homotopic to the boundary C< is bounded or not.

Let 91 be a universal covering G-surface of Oί and Φ a covering trans-

2) A Riemann space of class O(r^>4) is with non-positive curvature in the usual
sense, if and only if this condition is fulfilled [3J.

3) The distance between a point p and a set E is defined asJinfreJEj P(P,X) and
denoted by p(ρ,E).
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formation of Sft onto Oϊ. The image A Φ of a set A o n S will be called A
and A is said to lie over A. For every point p on fit there exists a positive
number aP such that under Φ an open circular disk S{p, aP) is isometrically
mapped onto S(p,aP). For a ray ί there exists only one tube which contains
ϊ or a subray of ϊ. To fix the ideas, in what follows this tube will be denoted
by C/o By replacing the ray ϊ by its suitable subray or the boundary Co by
another suitable closed geodesic polygon homotopic to it, if necessary, we
suppose that the initial point r of ί coincides with a vertex of Cυ but ϊ has
no other common point with Co. For a point r there exist only one ray I
and only one simple geodesic polygon Co with the common initial point r
which lie over ί and Co respectively. The other end point r' of Co lies over the
point r. Hence there exists only one ray V with the initial point r' which
lies over ϊ. Under Φ a part UQ of 5ft bounded by ϊ, V and Co are mapped onto
the tube Uo, and the contraction Φ\(U0 — ϊ — Γ) of Φ is univalent. From
(1. 3) it is easy to see that, if and only if the rays ϊ and V are not corays each
other, the tube Uo is expanding.

2. We begin by showing the following important theorem.

(2.1) THEOREM. Let I be a ray on 31. Then the number of corays from
any point p to ϊ is finite and does not exceed k 4- 1.

PROOF. We prove only the first part. The secDnd part will be proved
in [§4].

By choosing suitably the closed polygon Co, if necessary, we further
suppose that the point p does not belong to the tube Uo. Let £ be a positive
number and r the initial point of the ray ϊ. Further let l0 denote the length
of the closed geodesic polygon Co and m01. u. b. Xec0 ρ{p, x). We show at first
that the number of the homotopic classes containing the closed geodesic
polygons

T(p} r) + T(r, q) + T{q, x) -f T{x, p),

where x is any point of Sip, S) and q any point on ί such that p{p, q)>hΛ-
mo + £, is finite.

To do this, suppose that this is false. Since 9ϊ is with non-positive curvature,
there exists a unique geodesic arc L from p to q homotopic to the geodesic
polygon T{x,p)~ι + T(q,x)~ι, and L is continuously deformable to a geodesic
arc M which connects p to r when q varies on ϊ from q to r. Let p be a
point on 9ΐ which lies over the point p and r the end point of the segment
M issuing from p which lies over M. The number of such points r contained
in S(p, U + wh + £) is finite. For if this is not so, in virtue of the finite
compactness of 9t, the set of such points r has an accumulation point. But
this contradicts that 3t is a universal covering G-surface of 9t. From this

we see that there exist in S(p, £) a point r and on ϊ a pcint q(p(p, q) > l0 + m0 +
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£) such that the point T obtained in the above way does not belong to S(p,
k + rn>j + €). Next we show that this contradicts to the above supposition.

On 31 let T be the ray issuing from r which lies over the ray ϊ. Then

the end point q of the geodesic polygon T(x,pYλ + T(q,x)-\ is on the ray

ί. Let *y be the point on the segment T(x,qYι such that ρ(x,y) = m» + £•

Further let the segment T(x, qYι intersect at first the closed geodesic polygon

Co at a point s. Then there exist on T(x,y) the point s which lies over s

and on 3t the geodesic polygon C'ό which lies over Co and contains the point

T. We denote by r' the initial point of C'Q and the subarc C'J of Co from r

to s. Let V be the ray issuing from r' which lies over ί and, suppose that the

subarc C'o' of C'Q from rf to s lies over Co' and q' is the point on V which, lies

over the point q. It is not hard to see that the closed curve C^"1 -f T(r, q) +

T(q, s) is continuously contractible to a point. Hence the segment T(qr, s) lies

over the segment T(q, s) and there exists on the prolongation of T(q', s) the

point xf such that p{q'', x') = ρ(q, x) and T(q', x') lies over T(q, x). Under Φ the

points x and x' are mapped onto the point x.

On the other hand the rays ϊ and Γ are distinct since r' € S{p, k + wk
+ 6) but 7 ζ S(p, k + m0 4- £). Hence the seginents T(s, J)Φ and T& x')Φ

are distinct, but this contradicts that T(q, x)Φ and T(q', x')Φ are segments.

For the segments T(s, x)Φ and T(s, x')Φ are proper subsegments of T(q, x)Φ

and T(q\x')Φ respectively. Thus we end the proof of the above. By use
of this the first part is proved as follows :

Let {pn} be a sequence of points which converges to the point p and {qn}
the sequence of points on ί which diverges to infinity. Without loss of
generality we suppose that each pn is contained in S{p, £) and the distance
from p to each qn is greater than l0 -j- m0 + £. Let us denote by Γo, Γ υ

Γic the homotopy classes which contain the closed geodesic polygons Ln:

T(p, r) + T(r, qn) + T(qn, pn) + T(pn, P) (n = 1,2, . . . . ) .

For each Γt(0 <Ξ z <; ϋΓ) there exists a geodesic arc T«, which connects p to
r, such that the closed geodesic polygon T(p, r) + Tf1 is contained in the
homotopy class IY

Let Ti be the segment issuing from p which lies over each Ti. The
end point rt of each segment Ti lies over the initial pDint r of ί. From the
above proof we see that the points rt (0 <i / <J K) are contained in S(p, l0 +
nto + 6). Let U be the ray issuing from each n which lies over the ray ί.
Then it is easy to see that the end point of the geodesic polygon, which

lies over each T(pn,p)'1 + T{qn,pn)-ι

} is on one of the raysT0,Tlf . . . . and Tκ.
Let {T(J>nt, qni)} be any subsequence of {T(pn, qn)} which converges to a coray
£ from/? to ΐ. From the above it is easy to see that^the ray ι is the image
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of the coray ι( = F l ^ * , T(pnι,qnt)) from p to one of the rays U,Tτ,

and lκ under Φ, which proves the first part.
From the above proof we have the following

(2.2) Suppose that for a ray \ there exist m corays U^ It,, U^

from p, and let U3 be the coray from a point p to a ray \tj (ϊtjφ = ϊ) and lie
over each Vίj. Then there exists a positive number βP(<ccP) such that a coray
from every point x of S(p, βP) to I coincides with the image of the coray from the

point #(€ Sip, βP)) to one of the rays In, ϊi2, , Um under Φ.

If the proposition does not hold, there exists a sequence of points {pn},

which converges to p, such that a coray ιn from each pn to ϊ does not

coincide with the image of the coray from pn to any of the rays U1} h%, ,

hm. Then the sequence of the rays {in} contains a subsequence which converges
to a coray 1 from p to ϊ, since the set of corays to ϊ forms a closed subset
of all half geodesies of sJΐ under the metric ζ [2 §9J. Then the ray 1 issuing

from p which lies over 1 is not a coray from p to any of the rays !<„ ϊ ίa; . . . .

ϊfm. Thus we arrive at a contradiction.

(2. 3) THEOREM. For a ray I there exist at least two asymptotes from
every point p of the set K(ϊ) to ϊ.

PROOF. Let U be an asymptote from p to ϊ and © the geodesic which
contains It as a subray. Let {pn} be a sequence of points, which converges
to p, such that each pn lies on @ but not on U. By virtue of the definition
of asymptotes, a coray ιn from each pn to ϊ is disjoint from U.

Suppose that there exists only one asymptote U from p to ϊ. Then there

exists on 9t a point p and a ray ϊ, which lie over p and ϊ respectively, such

that a coray from every point x ( £Ξ S(p, βP)) to ϊ coincides with the image

of the coray from x (£Ξ S(p,βP)) to ί under Φ. Take a positive integer N so

large that

Sip, βP) 3 pn for every n > N.

Then the ray r̂  which lies over each in and issues from pn (n ^ N) is a coray

to ϊ. Hence each in contains a ray U which lies over U. From this it follows

that each in contains It as a subray, which contradicts to the fact mentioned

above. Thus the theorem is proved.

(2. 4) THEOREM. For a ray \ the set K(l) is closed.

PROOF. Let p be any point which does not belong to the set K(ΐ). Then

there exists on 9Ϊ a point p and a ray ϊ as described in the proof of (2.3).

Let V be any ray which lies over I and is not a coray to ϊ. Then the coray

I from every point x of S(p, βP) to V does not lie over a coray from x to ϊ.

For the coray from every point of i(]Sip, βP) to ϊ lies over a coray to ϊ. From

this we see S(p, βP) Π K(l) = φ. Thus the theorem is proved.
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(2.5) THEOREM. Let I be a rayon 5ft. Then the set K{\) does not contain
an isolated point.

PROOF. Suppose that the set K(l) contains an isolated point p. The
initial point of every asymptote coincides with the point p and the set K(ί)
consists of only one point p [7]. Hence Dt is simply covered by the system
of asymptotes issuing from p. From this it follows that 91 is simply connected
and the set K(\) is vacuous, which contradicts to the asssmption. Thus the
theorem is proved.

As we see in the above, Theorems (2. 3), (2. 4) and (2. 5) follow from the
first part of (2.1) and (2. 2). In this paper Theorem (2.1) and Proposition
(2. 2) play an important role. Next we show by the following example that
the finite connectivity of ϊft is essential for (2.1) and (2. 2).

EXAMPLE 1°. In a 3-dimentional Euclidean space referred to the rectangular
coordinate system (x,y, z), consider the sequence of points {p±n} (n = ±1,
±2, ) where for each n the point p+u and p-n are given by (2W, 1,0) and
( — 2n, 1,0) respectively, and replace the circular disks with the centers P±n

and the radii 1/4 by the half cylinders

Z + n : (x - 2n)3 + (y - If = 1/16, O S ^ + o o , and

Z_» : (x + 2ny + (y - 1)2 = 1/16, 0 ̂  z < +oo (n = 1, 2, . . . . ) .

Then we have a surface S' instead of the ^y-plane. To smooth the joint
parts we use an arc C of the algebraic curve represented by rectangular
coordinate system (ff, η) as follows:

(ξ - 1/4)5 + (η - 1/4)5 + 1/4* = 0.

As shown in Figure [1], for the joint part of each Z+^(or Z_w) we smooth
the section by every plane through the axis. Thus we have the surface S

Fig. 1
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replaced the Circular disks with the centers p±n and the radii 1/2 by the
surfaces of revolution. \

Obviously S is a differentiate surface of the fourth order and with
nonpositive curvature. Let ϊ be the half straight line

0 < : * < +oo, y = 0,z = 0

and g0 and $+n (or g_H) the geodesies which contain the segments .-

— 3/2 <; x<: 3/2, y = 1, z = 0 and

2n + 1/2 ^ x ^ 2n+1 - 1/2, j> = 1, z = 0

( o r - 2 w + I + l / 2 ^ # ^ - 2 w - l / 2 , .? = 1, * = 0) (w = 1,2, . . . . ) .
Further let {#»} be the sequence of the points where each qn is given by
(2W, 0,0). It is easy to see that for n > 3 there exists a unique segment from
p ( = (0,2,0)) to qn which intersects the geodesic Qn-i, Obviously Fln*+oo T(p,
qn) coincides with the half straight line ε :

0^x< +cχ>, y = 2, z = 0.

Let S be a universal covering surface of S and ε a ray which lies over

the ray 1. Next we show that the ray ε is not a coray to any of the rays
which lie over the ray ϊ.

Suppose that ε is a coray to a ray ϊ which lies over the ray L We

denote by p and r the initial points of ε and ϊ respectively. Since all geodesies

on S are straight lines, for any sequence of points fe} on ί which diverges

to infinity F l n++ooT(p, rn) coincids with the ray ε. Under a covering trans-
formation Φ the closed geodesic polygons

Tip, 7) + T(7, 7n) + T(7nJ) (Λ = 1,2, ....)
are mapped onto a system of closed curves any two of which are homotopic.

Under Φ each T(p, rn) is mapped onto a geodesic arc from p to the point

rn. Let Sn be the first common point of each T(p,rn) with the system of the
geodesies Q0 and Q±n(n = 1, 2, . . . . ) . Obviously all points sn lie on one of these
geodesies. For a positive number λ( <; 1) let MW)λ be the geodesic arc where

the length λ is laid off each T(p, rn)Φ from p. Then it follows that FΊn*+o»
Mnt\ coincides with the segment:

0 < # ^ λ , y = 2, 2 = 0.

But this is impossible, since the subarc of Tip, rn)Φ from p to each s™ is a
segment.

3. In this paragraph, we deal with the relation between ray and coray.
To do this, we begin by showing some properties of the limit circles with
respect to a ray ϊ. Let x(τ), 0 S ^ < + M , be a parametric representation
of the ray ϊ. In [2] the function α(/>,ϊ) was defined as follows:

a(p, I) = linv^oo {pip, x(τ)) - T).
This limit exists for every point p, since pip, x(τ)) — T is a bounded and non-
increasing function of T. By making use of this function the limit circle L(p, ϊ)
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through a point p is defined as the set of points x which satisfy the relation

(3.1) a(p,l) = a(x,l).

As can be easily seen from the definition \cc{p, ί) — <x(q, ϊ)| ^p(p,q) holds
for any two points p and q. Hence a(p, ϊ) is a continuous function of a point
p. From this it follows that limit circles are closed sets. The following (i)
and (ii) were proved by H. Busemann [2; §10, §11].

(i) If a limit circle L(p, I) intersects the ray ί at a point x(τ0), then the
closed limit of the circles K(x(τ), T — τ0) ( = {x\ρ(x(r), x) = T — τυ(τ > τ0))
as τ-> + oo coincides with the limit circle L(p, ϊ).

(ii) A half geodesic £ is a coray to the ray ϊ, if and only if its parametric
representation y(τ),0 <Ξ T < +oo? fulfills the following relation :

Λ(y(τi), 0 - a((y)(τ2), ϊ) = τ2 - T ι for τlt τ2 > 0.
From (iϊ) we see that, if II is an asymptote to the ray I and a point a is on
It but not the initial point of U, then any point z of It is the unique foot of
a on L(z, I). We further see from (2. 3) that if a is the initial point of U then
any point z of It — a is a foot of a on L(z, ϊ) but not unique. For a limit
circle L{p,\) the set Ex{ = {x\cc(p, ϊ) > α(tf, I)}) is said the interior of L{p, ί)
and the set E, ( = {x\a(p,l) < a(x,\)}) the exterior of L{p,\) [2; §10].

Generally in an is-space the limit spheres with respect to a ray simply
cover the whole spaca. If a G-space with non-positive curvature is simply
connected, all geodesies are straight lines and the interior of any sphere is
convex. Hence the interior of a limit sphere L(p, I) is convex. For if x(τ),

— oo < T < -f oo, represents the geodesic carrying ϊ, say p = x(τQ), then the
interior of L{p, \) is the union of the spheres S(x(τv), τv — τ0) where τ0 < τx

<T>< < Tn -> + OO.

If a G-space with negative curvature is simply connected and of finite
dimension, then the interior of a limit sphere L(p, ϊ) is strictly convex. For
suppose that a segment T(a, b) lies on L(p, ϊ), and xf on the asymptote to ϊ
through a variable point x ( € T(a, b)) lay off from x in the interior of L(p, ϊ)
a fixed distance a > 0 obtaining a curve w(#f). If the space is two dimensional,
the curve w{x') is strictly convex turning its concave side toward T(a,b).
On the other hand w[x') € L{w(a'), I) because L{p, ί) and L(w(af), ϊ) is equidistant
at distance a. But L(w(a'), I) is convex and turns its CDncavity away from
the segment T(a,b) which is impossible [3; §4]. This can be extended to
higher dimensions.

(3.2) THEOREM. If %t is a Finsler space of class Cr (r > 4) (or a Riemann
space of class Cr (r |> 3) and simply connected, then any limit circle is an arc of
•class CL at least.

PROOF. Let x(τ), — oo < T < +oo, represents the geDdesic @ carrying
a ray I. A limit circle L(x(τ0), I) is a convex curve turning its concavity
toward with τ( > τ0). As such, it has one sided geodesic tangent. Consider
any point s € £(*(T0), ί) and on the asymptote U through s a point x in the
interior of the limit circle L(x(τ0), I). The circle K(x, p(x} s)) is convex. If it
has a unique supporting line or tangent at s, then L{x{τo\ ϊ) can have only
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one supporting line at s (because it touches K(x, p(x, s))) and K(x, ρ(x, s)) lies
on the side of L(x(τo), Ϊ) toward which it is concave. On Sft small circles are
differentiate both in the sense of the local coordinates and geodesically.
Hence Kix, ρ(x, s)) has for small p(x, s) a unique supporting line at x. In virtue
of the concavity of L(x(τ0), I), we can see that the limit circle ZWτ0), ί) is of
class C1 at least.

The above argument can clearly be extended to higher dimensions.

(3. 3) THEOREM. Let I be a Finsler space of class Cr (r > 4) (or a Riemann
space of class Cr (r ^ 3)). Let a ray I be given and p any point on Sft which
does not belong to the set K(l). In S(p, βP) the limit circle L(p, ϊ) is an arc of
class C1 at least.

PROOF. Let t) be a coray from p to ϊ and t) a ray on 3t which lies over

t). Then t; is a coray to a ray ϊ which lies over ϊ. We denote by p and r

the initial points of t) and I respectively. By (2.3) a coray from every point

x of S{p, βp) to ϊ coincides with the image of the coray from the point x of

S{p,βP) toT under Φ.

Let {qn} be a sequence of points on ϊ such that \\mn^+ooρ{r,qn) = +00.

Then for a point x of S(j>, βP) and a sequence of segment {T(x, qn)}, there

exists a positive integer N such that the end points qn of the segments T(x,

Qn) (x € Sip, βP)), which lie over the segments T(x, qn) (n Ξ> N), are on the

ray ί or other rays (finite in number) which are corays to ϊ and lie over ϊ.

The closed limit of the sequence of the segments {T(x,qn)} coincides with

the coray \) from x to ϊ, and t) lies over a coray 5 from x to ϊ. Obviously

p(x, qn) = p(x, QΛ) for each n.

Hence, by virtue of the definition of the function a(x, I), we have

a(x, I) = a(x, 0
for every point x of S(p, β1}). From this it follows that under Φ the subarc

of the limit circle L(p,l) in S(p,βP) is isometrically mapped onto S{p,βP)[]

L[p,\). By (3.2) the arc S(p,βP)(]L{pT) is of class C1, and hence S(β,βp)(]

Up, ϊ) is also of class C1. Thus the theorem is proved.
In the rest of the paper we assume that every point p of 9ί has locally

differentiate circles K(p, r) with p as center (0 < T < min(^2,, £„);, i. e., the
c'rcles K{p,τ) have unique supporting direction at every point.

(3. 4) Let a ray \ be given and Ux and U2 two distinct asymptotes from a

point p of the set K(ί) to ί. Then, for a ray \ on 9Ϊ which lies over ϊ, there

exist on 9t two corays Ui and U2 to I, which He over Viλ and U2 respectively

and the initial points of Hi and U2 lie on a limit circle with respect to the

ray ϊ.

PROOF. Let pi be a point on 9t which lies over p and Hi and IU the rays
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issuing from px which lie over the rays Ux and,U2 respectively. Then Ui and

U2 are corays to rays ϊ and I' respectively which lie over the ray ϊ. We

denote by r and r' the initial points of ΐ and irrespectively. The points r

and r' lie over the initial point r of ΐ. Hence under Φ the segment T(r,r')
is mapped onto a closed curve C not homotopic to zero. For the curve C
there exists the free homotopy class Λ containing C for which there exists

on 3t a motion Λ such that r'A = r and ΛΦ is a covering transformation

of 3t onto 3t [2; §12]. The motion Λ carries V onto T and W2 onto a ray U2

which is a coray to ϊ and lies over the ray 1L. Thus the first part is proved.
Next we prove the second part.

Let Eι and E2 be the interior and the exterior of limit circle L(pι, I)

respectively. It is sufficient to prove that Eλ and E>> do not contain the

initial point p2 of U2. Suppose now p>, € Ez. Then the ray U2 intersects L(p1} ϊ)

at a point p' distinct from p2. The rays Ui and U2 are corays each other.

Hence it follows from (ii) that for any two points x and xf on an asymptote

to ί the following relation holds.

α(*, ffa) - a&X) = a(7,T) - a(^T) ( = ±p&Ά
Therefore

a(x, I) = a(x, U2) + const, for any point x on 9ϊ.
From this it is easy to see

Let {qn} be a sequence of points on U2 such that limw->+oo/>(/>2, qn) = +00.
Then we have

cdp\ ίζ) ~ a(p2, %) = -p^j?) < 0,
and hence we see

since a{p1,\X2) = Λ^,11 2 ) . From this it follows that there exists a positive
integer JV such that

p'J>u Qn) < pip*, Qn) for every n^N.
Hence the segments T(p*,qn) (n>N) do not lie over segments on 9t, which
contradicts that U2 lies over the ray U2.

If p2^ Eι, then pi is contained in the exterior of the limit circle Up.,, ί).
Hence the developments are entirely parallel to the above, i. e., we again
arrive at a contradiction. Thus the second part is proved.

From (3.4) we immediately see that

(3.5) For a ray ϊ there exist m corays tli,U2, , Um from a point p

to a ray ϊ, and let U* lie over emhVa and be the coray from a point p^to a
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ray U which lies over ϊ. Further suppose that the straight line, which contains

each ίt, intersects the limit circle L(p,h) at a point qt. Then the points QI,Q2,

. . . . , qm lie over a point q on 9t which lies on the geodesic containing I as a
subray.

(3.6) THEOREM. Let U be an asymptote to a ray ΐ. Then there does not
exist a ray which contains U as a proper subray.

PROOF. Suppose that a ray 33 contains the asymptote U as a proper
subray. Let a be the initial point of tt and b a point on 33 but not on U.
Since a £ K(l), there exists an asymptote IV from a to ϊ which is distinct
from U.

By (3. 4) there exist on 9t two corays U and IT to a ray ί (ίΦ = ϊ) which

lie over II and U' respectively. We denote by a and a' the initial points of

U and IV respectively. Then a lies on the limit circle L(a\ ϊ) Henc^ the

point b which lies on the ray 33 (33Φ = 33) containing U as a subray is con-

tained in the exterior of L(af, ϊ). From the proof of (3.4) it is not hard to

show that SB does not lie over a ray on 9t, which CDntradicts the assumption.
Thus the theorem is proved.

From Theorem (3. 6) we see that the union of all rays which contains a
coray coincides with an asymptote. That SR has non-positive curvature is
essential for Theorem (3. 6). To see this we show the following

EXAMPLE 2°. Let (x,y,z) be rectangular CDordinates in a 3-dimensional
Euclidean space. We denote by Ό' the convex part of the #y-plane bounded
by the segment:

1/2^ΛΓS3/2, y = 0, 2 = 0

and the half straight lines

*=3/2, 0 ^ ^ < + o o , z = 0 and x= 1/2, 0 ̂ y < +oo, z = 0.

We replace the segments

x = 3/2, 0 ̂ y ^ 1/4, 2 = 0 and 5/4 S ^ 3 / 2 , y = 0, 2 = 0

by an arc C of the algebraic curve expressed by rectangular coordinates
(ξ, η) as follows: ' . ,

(f - 1/4)5 + {η __ 1 / 4)5 + 1 / 45 = o,

and further by applying the same procedure to the segments
. * = l / 2 , 0 S:VS 1/4, 2 = 0 and 1/2^ * < 3/4, jy = 0,2 = 0,

we smooth the boundary of D'. Thus we have a convex part D of the xy-plane
instead of D\

Now cut off D from the ary-plane and join the surf ace generated by half
open segments :

x = a, y = β, 0 ^ 2 < λ (3/4 ̂ Λ > 1/2),

where (α,β, 0) € the boundary of D, and further join the part Dκ of the
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-c- -

Fig. 2

plane 2 = λ:

Thus we have a surface S' instead of the #y-plane. To smooth S', we again
use an arc of the algebraic curve. As shown in Fig. 2 we smooth the
section of S by every plane parallel to z-axis and perpendicular to the
boundary of D. The surface S thus obtained is clearly of class C4.

On this surface S let ϊ be the half straight line:

and © be the intersection of the surface S with the plane x = 1. We denote
by p! a point (l,/χ,λ) (μ > 1). The part of S:

{(x,y,z)\(x,y,z)€S,μ<y}

is a surface of curvature zero. From this it is easy to see that for a
sequence {rn} {rn = Φ,μn, 0)) which diverges to infinity FU^+βo Tip, rn) coincides
with the ray

z = λ.

Next we consider the point £2 ( = (l,/z',0), /x' < —1). If on S a curve Cn

connecting p2 to each rn passes through a point whose z-coordinate is equal
to λ, then the length of Cn is greater than \μ\ + ^ + 1. From this it is
easily seen that a coray & from p2 to ϊ does not coincide with a subray of ©.

From this the geodesic (3, which is a straight line on S, contains a coray
to ϊ but is not an as mptote.

(3. 7) Let I be a ray on 5ft which lies over a ray I and U an asymptote to
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ί. If under Φ a subray ι of U is mapped onto a ray on 3ΐ, then £ is ά coray
to the ray ί. Under Φ the union of all subrays of U with this property is
mapped onto an asymptote.

PROOF. We only prove the first part, since the second part is an im-
mediate consequence of the first part.

Suppose that the ray ϊ, the tube Uo and a part Uo of 3ΐ which lies over
Uo has been chosen so as described at the end of §1. If we put oc = inf^o
a(x, ϊ), then a is finite, since Co is compact. For the number a there exists
on ϊ a point s0 such that

a > a(s,\)

for any point s on ϊ which follows s0. Let s0 be the point on ϊ which lies

over the point s0 and L(s(), ϊ) intersects U at a point p. By choosing a suitable
subray of r. or further a suitable point s0, if necessary, the point p is sup-
posed to be the initial point of the ray £.

At first we consider the case where the tube Uo is expanding.

Suppose that £ is a ray with the initial point p which lies over a coray

£ from p to ϊ. If £ coincides with the ray E, then there is nothing to prove.

Suppose that £ does not coincide with £. We prove £ is a coray from p

to the ray Γ. To do this we prove £ is entirely contained in Uo.

This being so, we immediately conclude that £ is a coray to Γ. For if

this is not so, £ is the coray from p to a ray I" which lies over ϊ and is

distinct from ϊ and Γ. Then it follows from (1. 3) that there exists a subray

of I" contained in £70 But this contradicts that, under the contraction Φ\UQ

of Φ, Uo is univalently mapped onto the tube Uo except points on ϊ and Γ.

If there exists a subray of £ which is not contained in f/0, then £ in-

tersects the boundary of Uo. Since £ is disjoint from I and Γ, £ intersects

Co at a point q. Then we have

a ^ a(q, I)

since q follows p. On the other hand we have

a(p, I) = α(s0, ϊ)

which contradicts the above inequalities. Thus we see £aU0.
Further we prove

(3.8) αfΛ I) = ΛfίΓ Π _ "

From the proof of (3.4) it is easy to see a(p, V) <i a(p, ϊ). Suppose a(fi, V) <

a(J),l). By (3.4) there exists a coray £' to I which lies over the coray £.
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Let £" be the initial point of P . Then />" lies over the point p and £ is

contained in the exterior of the limit circle Lip", I"). Hence it follows from

the proof of (3. 4) that ι does not lie over a ray on 3t, which contradicts to the

assumption in the theorem. Thus (3. 8) is proved.

Let r be the initial point of ϊ and {sn} the sequence of points on I such

that limn^+oop(r,sn) = +°o. Further let {sn} and {s'n} be the sequences of the

points on ϊ and V respectively such that snΦ = snφ = sn for each n. The

limit circle Lip, I) does not coincide with Up, V). For if this is not so, the ray

l' coincides with ι and V and V are corays each other, which contradicts

that the tube Uo is expanding. From this it follows that there exists a

sequence of points {pn}, which converges to p, such that each pn is commonly

contained in the exterior of Lip, V) and the interior of Up, \). Since

aipn, ϊ) < a(pn, V) for each n,
it is easily seen that for each n there exists a positive integer min) such

that the segments T(pn, sm) (m ^ min)) lie over segments on 9ΐ. For if we
take a sufficiently large positive integer M, the inequality

pipa, Sm) < pipn, S'J

holds for every m > M. Let N be a positive integer such that

Sφ,βP) zίpn for each n ^ N.

Then it is easily seen that, even if for each n( £^Λ0 there exists a subse-

quence {smi} of {sm} such that each Tipn, smi) does not lie over a segment on SR,

{sm{} consists of points finite in number, since a coray fron every point x

of SJ>, β2y) to I coincides with the image of one of the corays from x (€ Sip,

βP)) to ϊ and V under Φ. This shows that for each n(ϊ>N) there exists a

positive integer l(ή) such that th? segment Tipn, sz{n)) lie over a segment on SR.

Obviously the sequence of positive integers {lin)} cin be selected so as

to diverge to infinity. Since Fln^^Tipn, stW) coincides with the ray ε, we

see that r, also lies over a coray from p to ϊ.
Next we consider the case where the tube UQ is non-expanding.

In this case the rays ϊ and V are corays each other. As can easily be

seen from the above proof, if there exists a coray ιf with the initial point p

which lies over a coray from p to I, then g is entirely contained in ί/0.

From this it follows that r/ is a coray to ϊ. Hence the ray r/, i. e., ι lies

over a coray from p to L Thus we complete the proof.

From (3.7) we have the following

(3. 9) THEOREM. On SR the relation between ray and coray is symmetric
and transitive.

Suppose that a ray ι is a coray to a ray ϊ. Let ϊ be a ray which lies
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over ϊ. Then there exists a ray £ which lies over £ and is a coray to ϊ.

In virtue of (1.3) the ray I is a coray to £. Hence it follows from (1.3), (1.4)
and (3. 7).

4. In this paragraph we study the set of asymptotic conjugate points
for a given ray ϊ. We begin by showing the following important theorem.

(4.1) THEOREM. Let a ray I be given and p be any point of the set K(ΐ), and
suppose that there exist m asymptotes ll^lla, , IL from p to I. Then

there exists a neighborhood W(p) such that in W(p) the set K{\) is composed
ofm arcs Mi, M2, . . . . , Mm issuing from p and each Mi lies between two
consecutive of these asymptotes.

PROOF. Let lti,lt, , Hm be m rays issuing from a point p such that

each lΐf lies over the asymptote U* and is the coray from p to a ray ί*
which lies over the ray ϊ. Suppose that Ux and U2 are consecutive, and take
on Hi a point qλ which follows p. Let us denote by L\ the arc of the limit
circle L{qλ,\) m S(qι,βq). Since Lιf\K(ί)= φ, there exists a unique coray
from every point of Lγ to ϊ. If we take a sufficiently small subarc L[ of Lγ
which contains q± as an inner point, then the asymptote through every point
of L[ is not a straight line. For if this is not so, there exists on L[ a
sequence of points {rn}, which converges to q1} such that the asymptote S3W

through each point rn is a straight line. For a positive number κ{ > pip, qι))
let r'n be the point on each 33W such that K = p(rn, rn). Let in be the subray
of each 35 with r'n as its initial point. Then Fln^+odn coincides with a coray
I to I which contains Ux as a proper subray. But this contradicts p € ϋΓ(I).

Let x be any point of L[ and x* the asymptotic conjugate point of the
asymptote through x. Taking into account that the asymptote through every

point x of L[ coincides with the image of the cαray through x( € S(p,βP)) to

£1 under Φ and the set K(ι) is closed, the correspondence #->#' is one-to-
one and bicontinuous. We denote by H the image of L[ in this CDrres-
pondence. Then H is an arc through p and divided by p into two arcs Hi
and H£. One of these arcs lies between Ui and U,. We assume that Hi
lies between Ux and It,.

Since Hi£iK\\), there exist at least two asymptotes from every point of
Hi to ί. Take a positive number 71 so small that Hi intersects K(p, 71) at a
point cti. Let aγ be the first common point of Hi with K(p, 7O and Mi the
subarc of Hi from p to aλ. Further let Mi be the arc issuing from p which
lies over Mi. If further 71 is sufficiently small, there exist exactly two
asymptotes from every point x of Mi to ϊ and these asymptotes coincide

with the images of the corays from #(6Mi) to ίx and l:i under Φ. We show
this.

If this is not so, there ex'sts on Mi a sequence of points {pn}, which

converges to p, such that an asymptote Sw from each pn to ί coincides with
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the image of the coray (£* from pn (€Λfi) to one of the rays l3, lit — ,

lm under Φ. Then the sequence of the corays {$n} contains a subsequence

{@n(} whose limit coincides with a ray & issuing from p. The ray & lies over

an asymptote from p to ί and coincides with one of the rays U3, ΐt4, — ,

U,Λ. Hence there exists a positive integer N such that each S»t (m ;> AD

intersects either Hi or U2, which is a contradiction.
In such a way m arcs Mι,M >, , Mm issuing from p are determined.

From this we see that there exists a neighborhood Wφ) of p such that

= U ?mlMt.

Thus the theorem is proved.

In what follows we suppose that for a point j>(6 K(ί)) the neighborhood
W(p) is contained in S'J>, ap). To make clear the circumstances in the above
we show the following

EXAMPLES 3°. Let (x,y,z) be rectangular coordinates in a 3-dimensional
Euclidean space and L the curve composed of the semi-circular arc:

& + y* = l, - 1 ̂ y ^ 0, z = 0

and two half straight lines:

x = 1, 0 ̂ y < +oo, z = 0 and # = - 1 , 0 ̂ 3> < +oo, 2 = 0.

We construct a surface Sr in accordance with the following steps:
i) Consider the cylindrical surface Zγ generated by half straight lines:

x=ά,y = β, 0<:Z< +oo,

where (a, β, 0) € L
ii) Join the half of the semi-cylinder

Z>: X2 + Z2 = 1, 0 ^ ^ < +oo, - 1 < Z ^ O
to the surface Zx

iii) Further join the half cylinder

Z3: ^ + y » = l, - o o < 2 ^ 0

to the above surface;
iv) Omit the parts of Z2 and Z3 cut off from the other.
Next we smooth the surface S' thus obtained.
The section of the surface S' by a half plane * = λ(|λ| < 1),

+ oo, consists of the half straight lines

Qi: X = λ , -

9,;: X = λ, ̂  = v/ l^ r ^,

To smooth this section, as shown in Fig. 3, we replace the subsegrnents
of & and g2:

x = λ, v/Γ^^V ^ ^ 2v

/l~ : rV, ^ = - A / Γ 3 7 ^ 2 and

by an arc C of the algebraic curve expressed by rectangular coordinates
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(ζ, V) as follows :

(f ~ ιc)
where Λ; = ^ Γ ^ T 2 . Thus we have a surface Si instead of S'.

\

X

tJ*.

/

z.* 9

Fig. 3

Next cut off from the surface Sx the circular disks whose centers are
(1,5,5) and ( - 1, 5,5; and radii 1, and join the half cylinders

7 . Ί <c x ^ -f* oo (v — 5y ~\~ (% — Ό) -=" Λ. anci

To smooth the joint part, in the same way as in Example 1° we use an arc
of the algebraic curve expressed as ϋ,
follows:

(ξ — 1/4)4 + (η — I/Ay = 1/4*,
where (f, η) are rectangular coordinates.
We denote by S2 the surface thus
obtained.

As we see from the construction
of the surfaces Si and S2, these surfaces
are of class C1 and regarded as G- ^
spaces defined by H. Busemann [2 §4].

Let ϊ be the half straight line:
# = 0 , 2<;jy<+oo, z = - 1 ,

and t)i and g2 be the intersections of
S2 with the half planes:

Fig. 4
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χ= 0, — oo < j ; <; 0 and — o

respectively. Then t)i and \)2 intersect at the point p( = (0, — 1,5)).
At first we consider the surface Si. It is easily seen that the set Kid)

of asymptotic conjugate points is identical with the straight line t)i. The set
Kid) has no branch point. There exist exactly two asymptotes from every
point of Kid) to ϊ.

Now we consider the surface S2. The set K2{1) of asymptotic conjugate
points is identical with the union of t)} and t)2. It is easy to see that there
exists four asymptotes issuing from p to I. As shown in Fig. 3, We denote
by U^lla,!^ and U4 these aymptotes. Fig. 4 shows the behaviors of these
asymptotes at the point p and limit circles L and Lr in a sufficiently small
neighborhood V of p. It is easily seen that in V limit circles not through p
are simple closed curves and the limit circle L(p,l) consists of only one
point p.

From the above we see that on S, a limit circle is not necessarily differ-
entiable at an asymptotically conjugate point.

Next we prove by use of (4.1) the second part of Theorem (2.1).

Let p be a point of the set Kd). Suppose that Wjp)(]Kd) consists of m
arcs Λfi,M2...., Mm and W(p) is divided by these arcs into m domains
D1}D2, , Dm. Then each D* is simply covered by a system of corays.

For convenience's sake, suppose further that each Di contains a subsegment
of the asymptote U* and has place between Mt and Mt+i, where Mm+ι =
Mi. Then we see

Di ftVLj = Φ for each /(=*= i) and Di[)K(l) = φ for each i.

On SR, a neighborhood W(p) (W(p)Φ = W(p), W(p)aSίp, aP)) is similarly

divided by m arcs Mi, M2, , Mm into m domains DuDλ) , Dm, where

each Mi lies over the arc Mi. We assume that each Dt lies over Di. The

ray lit issuing from p which lies over each Ut is the coray from p to a ray

\i which lies over the ray ί.

Let {qn} be a sequence of points on ΐ which diverges to infinity and pi a
point of each Di f] V(j>), where Vip) is a coordinate neighborhood of p. V(p)
is supposed to be convex [3]. Then there exists a positive integer Nf such

that the end point qn of the segment T(pu qn) {pi € W(p)), which lies over

each T(fii, qn) (n > N'), is on ϊj or other rays (finite in number) which lie

over ϊ are corays to I1# Hence by choosing one of such rays instead of

ίi, if necessary, we have a subsequence {qni} of {qn} such that the end point

ϊ i of each T{pu q^ni) {T(puqnχ)Φ = T(pι,qnJ) is on the ray d.

Next we consider the sequence of segments {T(p2,qm)}.

Under the same consideration as in the above, we see that there exists

a subsequence {q^} of {qnι} such that the end point #W2 of each T{pZj qn%XT(p.λi

q^)Φ = T{pt, qni)) is on the ray ϊ2. We continue this. Then after m steps we
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have a subsequence {QnJ- of {Qnm-Ί} such that for each i the end point qHm of

each T(j>i,qnJ (Tipi^JΦ = Ί\pt,QnJ) is on the rayT£.
Let Ψ be a topological transformation of the punctured sphere S onto

3ΐ. To fix the idea, we keep a positive integer nm fixed and put N = nm. To
shorten the notation, we denote by Tι each geodesic polygon T(p,pi) + T(fii,
QN). Each of these geodesic polygons is not homotopic to the others. It is
clear that, if one of these geodesic polygons intersects another at a point x,
then x is contained in V(p). Hence we can choose on S m arcs L[, L'2, ,

and L'm) which connect p{=pΨ'1) to q\ = QNΨ'1\ such that each L{ is
homotopic to TiΨ'1 and has no common points with the others except/)' and q'N.

Each of the closed curves L\ + L'i+r1 (0<Li^ m, L'm+1 = L[) is homotopic
to a simple closed curve and not homotopic to zero. The sphere Sis divided
by these arcs into m domains E'v E'λ, and E'm. In this case each E[ is
supposed to be bounded by the simple closed curve L\ + L'ί+ι~

ι. Then

L\ + £;+ 1-! - Ti Ψ" 1 + Ti+Γ1 Ψ-1,

and each Et contains at least one of the holes #0, au . . . . , ak. From this we

see m <Ξ k + 1, which proves the second part of (2.1).

From the above proof it is easily seen that

(4.2) a(p, ϊ) = a(pX) = . . . . = a(p,U.

It is also clear that

(4.3) ^ .

for any point x of each Di and

(4.4) a(x, I) =

for any point x of each Mi.
From (3.6) and (3. 7) we have the following

(4. 5) THEOREM. On 3Ϊ let 1 and I be cor ays each other. Then the set K(\)
coincides with the set K&).

5. In this paragraph we show in the large some properties of the set
K{\) for a given ray ί. We prove at first the following

(5.1) For a ray \ a continuous curve contained in the set K(l) is unbounded
and if the set K(l) has branch points, then the set of the branch points is
discrete.

PROOF. The second part is clear from Theorem (4.1). Hence we prove
only the first part. To do this, for a point p (€ K{\)) let yp be the least
upper bound of those 7's for which the circular neighborhood S(£,γ) is
contained in Wφ). As we see easily from Theorem (4.1), every arc contained
in the set K(l) is prolongable. Let K be the whole prolongation of an arc
contained in K(l). Then K has no end point. Suppose now that K is con-
tained in a bounded domain D. Then we show at first that, if K has branch
points, the number of these points is finite.
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arc has no other common points With Co and has not a branch point. For
if u is a branch point of K, there exists on B at least three rays issuing
from u( € B) which lie over asymptotes from u to ϊ. But this is impossible,
since any of these rays is a cαray to either ί or V. Hence K is an unbounded
simple arc. It remains to show K{1) — K = φ.

Let p' be any point of the set K(\) distinct from p. We show that p' is
on K. Since the corays from p'iζ B) to ϊ and ΐ' lie over asymptotes from p'
to I, we have

a(jy, I) = a(p', I) = α(?',7).

Let the limit circle Ztf>', ί) intersects the straight line © at a point s and the
limit circle Up', Γ) the straight line & at apoint s'. Then by (3.5) s and s' lie
over a point on @. We denote by M the arc of IXp\ V) from s to p' and by M

the arc of L(p\ ϊ) from s' to />'. By the same reason as in the above there
exists on T(s, s') a unique point q such that q belongs to the set K(ί). Next
we show that q is on K.

Let x be any point on the segment T(r, s). Then there exists on T(r', s')

the point x' which lies over x. On T(x, x') there exists a unique point y

such that y belongs to K(l). When x varies on T(r, s) from r to s, y varies
on the arc K{ = KΦ'1 f| ί?) from ]> to .̂ This proves q ^ K.

Since i£ is unbounded and has no common points with T(r, rr) except p,

we see from the above that K intersects M or M, Suppose that K intersects

M a t a point v distinct from p'. Then we have

a(pX) = «(?,?)

Hence v lies on the limit circle K{p\ V). Let Hi be the coray from p' to I

and U2 the coray from v to P. Then Π3 has no common points with Lip', V)

except v. Hence by virtue of (1.3) U2 intersects Ux at a point. On the other

hand, the rays Ui and tt2 lie over asymptotes to ϊ. Hence U2Φ is disjoint

from UiΦ. But this is a contradiction. Similarly K does not intersect M' at

a point distinct from p'. Hence p' lies on K, which proves K{1) — K = φ.

If the tube UQ is non-expanding, the rays ί and V are corays each other.

Let x be any point on ίft and £ the ray issuing from the point x (€ B)
which lies over a coray ι from x to ϊ. Then £ is a CDray to I. For if ^ is a

coray to a ray \" which lies over ϊ, by virtue of (1. 3) and (1. 4) the rays ί

and V are corays each other. Hence there exists only one coray from x to
ϊ which proves K{\) = φ. Thus we complete the proof.

Let 31 be a Finsler space of class Cr{r >: 4) (or a Riemann space of class

Cr (r > 3)). In the above proof it is easily seen that M\)M lies over the limit
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If this is not so, then the set of the branch points of K contains a
sequence of points {pn} which converges to a point p. Since K(ϊ) is closed,
the point p belongs to K(l). For the sequence {pn} there exists a positive
integer N such that

S(P, jp) ^ pn for every n ;> N.

Since K(l)(]W(p) consists of arcs issuing from p which is finite in number,
each pn(n ^ N) is identical with the point p. But this is a contradiction.

From the above we see that K contains a half open simple curve K.
Without loss of generality we assume that the initial point a of K is not a
branch point. By the assumption K is contained in the domain D. We show
that this is a contradiction. To do this we put 0^= inf^' 7*. Then the number
7 is non-negative. If 7 is infinite, $t is simply connected. Hence the setϋΓ(ϊ)
is vacuous, and there is nothing to say.

Suppose 7 = 0. There exists a sequence of points {qn} (#w€ K'' (\D) such
that limn̂ +ββ yQn = 0. Since D is bounded, the sequence {qn} contains a
subsequence {qni} which converges to a point q. Then q € K{\) and yq is
positive. Hence there exists a positive integer N' such that

S(tf, ΎQ) 3 Qnt for every m J> i\F.

From this it follows that each qni (wι £: ΛΓ) lies on an arc of W(£) Π K(ΐ). If
</ is a branch point, then K contains the branch point q which contradicts
the assumption. If q is not a branch point, it is easy to see 7 Φ 0, which
contradicts to limn->+oo yQn = 0. Thus we see 7 Φ 0 and hence 7 is positive.

We denote by rx the first common point of the curve K with K(a, 7) and
by Li the subarc of K from a to rτ. Similarly we denote by r2 the first
common point of K with K(r1} 7) which follows rx and by Lλ the subarc -if' from
t\ to r2. We continue this process. Then the sequence, of the points {rn}
contains a subsequence {rni} which converges to a point r. Since r € K(l),
yr Φ 0. Hence there exists a positive integer N" such that

S(r, 7,.) 3 ^ for every m ^ iV/;.
On the other hand, any two of the arcs Lnt (m ^ N") are non-overlapping.
But this is a contradiction.

From the above it follows that K is not contained in a bounded domain,
and hence K is unbounded. Thus we complete the proof.

(5.2) THEOREM. Suppose that 3t is homeomorphic to a cylinder. Then for
a ray \ the set K(l) is an unbounded simple arc or vacuous according as the
tube Uϋ} which contains ϊ or a subray of I, is expanding or non-expanding.

PROOF, Without loss of generality we assume that ϊ is a subray of a
straight line © whose opposite contains a subray belonging to the other tube
Uι. For if ϊ is not such a ray, let {qn} be a sequence of points on £Λ which
diverges to infinity and in a coray from each qn to ϊ. Then each in intersects
the boundary Co at a point rn. Let ιr

n be the subray of each in whose initial
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arc has no other common points With Co and has not a branch point. For
if u is a branch point of K, there exists on B at least three rays issuing
from u( € B) which lie over asymptotes from u to ϊ. But this is impossible,
since any of these rays is a cαray to either ί or V. Hence K is an unbounded
simple arc. It remains to show K{1) — K = φ.

Let p' be any point of the set K(\) distinct from p. We show that p' is
on K. Since the corays from p'iζ B) to ϊ and ΐ' lie over asymptotes from p'
to I, we have

a(jy, I) = a(p', I) = α(?',7).

Let the limit circle Ztf>', ί) intersects the straight line © at a point s and the
limit circle Up', Γ) the straight line & at apoint s'. Then by (3.5) s and s' lie
over a point on @. We denote by M the arc of IXp\ V) from s to p' and by M

the arc of L(p\ ϊ) from s' to />'. By the same reason as in the above there
exists on T(s, s') a unique point q such that q belongs to the set K(ί). Next
we show that q is on K.

Let x be any point on the segment T(r, s). Then there exists on T(r', s')

the point x' which lies over x. On T(x, x') there exists a unique point y

such that y belongs to K(l). When x varies on T(r, s) from r to s, y varies
on the arc K{ = KΦ'1 f| ί?) from ]> to .̂ This proves q ^ K.

Since i£ is unbounded and has no common points with T(r, rr) except p,

we see from the above that K intersects M or M, Suppose that K intersects

M a t a point v distinct from p'. Then we have

a(pX) = «(?,?)

Hence v lies on the limit circle K{p\ V). Let Hi be the coray from p' to I

and U2 the coray from v to P. Then Π3 has no common points with Lip', V)

except v. Hence by virtue of (1.3) U2 intersects Ux at a point. On the other

hand, the rays Ui and tt2 lie over asymptotes to ϊ. Hence U2Φ is disjoint

from UiΦ. But this is a contradiction. Similarly K does not intersect M' at

a point distinct from p'. Hence p' lies on K, which proves K{1) — K = φ.

If the tube UQ is non-expanding, the rays ί and V are corays each other.

Let x be any point on ίft and £ the ray issuing from the point x (€ B)
which lies over a coray ι from x to ϊ. Then £ is a CDray to I. For if ^ is a

coray to a ray \" which lies over ϊ, by virtue of (1. 3) and (1. 4) the rays ί

and V are corays each other. Hence there exists only one coray from x to
ϊ which proves K{\) = φ. Thus we complete the proof.

Let 31 be a Finsler space of class Cr{r >: 4) (or a Riemann space of class

Cr (r > 3)). In the above proof it is easily seen that M\)M lies over the limit
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circle L(s, ϊ). If the tube Uo is expanding, L(s, ϊ) does not coincide with Z(sr, I').
From this it follows that, if a limit ci cle L with respect to ί contains an
asymptotic conjugate point a, then L does not contain another asympotic
conjugate point and is a simple closed curve of class C1 except a. If the tube
UQ is non-expanding, every limit circle with respect to 1 is a simple closed
curve of class C1.

(5. 3) THEOREM. If for a ray \ the tube U{), which contains I or a subray

of ϊ, is non-expanding, there exists a subtube of Uo disjoint from the set K{\).
But if the tube Uo is expanding there does not exist a subtube of £/n disjoint
from the set K{\).

PROOF. At first we shall consider the case where the tuba £7Ό is non-
expanding.

Suppose that the ray ϊ, the tube Uo and a part Uo of %t has been chosen

so as described in §1. Let s be a point on ϊ such that

a = mίxec0oc(x, ϊ) > <x(s, ΐ)

and s' the point on V which lies over the point s ( = sΦ). Then the limit
circle L(s, I) passes through the point s' and under Φ the arc M of L(s, ΐ)
from s to s' is mapped onto the limit circle L(s, I). The exterior of L(s, ϊ)
does not contain the segment T(s, s') If we put T(s, s')Φ = C'Q, the subtube
UQ of Uo bounded by C'o is disjoint from the set K(l). For let x be any point
of U'o. Then we have

a>a(xΛ) Cxe U'o).

As we see from the proof of (3.7), the coray from every point x of UQ to ϊ
lies over a coray from x to ΐ and there exists only one coray from x to ί.
From this it follows that K(\)[\U'O = φ.

Next we consider the case where the tube Uo is expanding.

Let s and sf be any point on ϊ and V respectively such that sΦ = s'Φ

= s and CQ any geodesic polygon which connects s to s'. It is sufficient to

prove that there exists on CQ the point which lies over a point of the set

K{1). Use K(l), there is nothing to say. If s $ K(l), then the coray from

every point x of S(s, βs){]C'o to ϊ lies over a coray from x to ϊ. But the coray

from x to another ray, which lies over ϊ but is not a coray to ΐ, does not

lie over acoray from x to ϊ. Similarly the coray from every point x' of S{s',

βs) Π CO to Γ lies over a coray from Λ? to T. But the coray from xf to another

ray, which lies over ϊ but is not a coray to Γ, does not lie over a coray

from xf to ϊ. From this it follows that there exists on Cj a point p such

that the corays from p to at least two rays lying over ΐ lie over corays from

p to ϊ. Under Φ such a point p is mapped onto a point of the set K{ί).
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Thus the theorem is proved.

(5. 4) THEOREM. If \ is homeomorphic to a sphere punctured at three
points at least, i. e., k^2, then for any ray I the set K(l) is not vacuous.

PROOF. Suppose that the ray ϊ is a subray of a straight line whose
opposite contains a subray belonging to another tube Ui (if this is not so,
in the same way as in the proof of Theorem (5.2) we use another suitable
ray instead of ί). To prove the theorem we suppose K(ί) = φ. Then it is
sufficient to show that we arrive at a contradiction.

Let r be a point ί and C'o the geodesic one-gon with r as its vertex which
is homotopic to Co (or the closed geodesic through r homotopic to Co if it
exists). Then by choosing suitably the boundary Ci of the tube Uι, if neces-
sary, Co is supposed to be disjoint from CΊ. Let xf be any point of d . Then
the asymptote through xf intersects Co' at only one point x. By virtue of the
assumption all asymptotes are straight lines. Hence the correspondence: xf
—>• x is coninuous. Since C'Q is a simple closed curve, the image of d coincides
with C'o. From this it follows that Cι is continuously deformable to Co. This
contradicts k ^ 2. Thus the theorem is proved.

At the end we prove the following

(5.5) THEOREM. For a ray \ the set K(\) consists of the finite number of
unbounded and continuous curves. If K{\) has branch points, the number of
these points is finite.

PROOF. AS before we assume that ϊ is a subray of a straight line whose
opposite contains a subray belonging to another tube and the boundary Co

of UQ is a geodesic one-gon whose vertex coincides with the initial point r

of ϊ (or the closed geodesic through r if it exists). For a part Uo of sJt which
lies over Uo we use the same notation as before.

We prove at first that, if the tube Uo contains branch points of the set
K(l), the number of these points is finite. If the tube Uo is non-expanding,
the tube Uo contains a subtube U'o disjoint from the set K(\). Since Uo — U'o
is bounded, we see from the proof of (5.1) that the number of the branch
points contained in f/Ό — U'Q is finite, which implies that the tube Uo contains
the finite number of branch points.

Now we consider the case where the tube Uo is expanding.

Since the set K{\) { = ^(OΦ"1) is closed, the set K(l)(]T(7,7') is compact.

Hence there exists the finite number of points xu x2, , xm of K(ί) f]

T(r,7') such that U ?-i W(xί) covers K(\)f]T(r,7f). By Theorem (4.1) each

K(l)[\W(Xi) consists of arcs issuing from Xι which are finite in number. We

denote by Kx each W\xί) Π K{\). Suppose further that on T(r, r') each xk precedes

Xi+ι. Then the curve Kλ contains a subarc K[ such that the coray from every

point of K[ to f lies oves over an asymptote to ί.
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Let %{ be the system of the corays from the points of K[ to ϊ and U the

coray from an end point y of K[ to ί. Let z be a point on U which follows

y. Then for a positive number β less than βz S[z, β)f\L(z, I) is an arc dis-

joint from the set K(l). We denote by L the arc siz[β)[]Lr7X). Let x be

any point of L and $ the asymptote through x. Then, under Φ, $ is the

image of a ray (or a straight line) 93 through x (€£) which is a coray (or an

asympotote) to ϊ. Such 93's form a system $". Obviously %[' conta anins

element not belonging to3?ί. The system δ^UδΓ is considered as an xtension

of the system $[. In such a way we have the largest system ^ such that

every element of $λ is a coray or an asymptote to ΐ and lies over an
asymptote to ϊ.

Let a curve Kt{i Φ 1) contains a subarc K\ such that the coray from

every point of K\ to ϊ lies over an asymptote to ί. Then la the same way

as in the above we have the largest system $t such that every element of

$i is a coray or an asymptote to ϊ and lies over an asymptote to ΐ. We show

that §* coincides with the system $1.

Suppose that & does not coincide with $1. Let $• be the system of

corays from the point of K\ to ϊ. Then there exists at least one unbounded

and continuous curves of K(\) which lies between the systems $[ and §'t.

Let 5 be a point on ϊ such that

(5.6) inf C€c0 (x, I) > «(s, I) ( = α(s, I))

and v the the point at which the arc L(s, I) (] Uo intersects a curve of K(ί) at

first s. Then we have

a(v, I) = a{s, ϊ)

and there exists a ray (£ issuing from υ which lies over an asymptote to I

but is not a coray to ί. The ray (£ is not a coray to V. For if (S is a coray

to ΐ'. (£ intersects the rays of $[. But this is impossible. Hence δ is a coray

to a ray I" which lies over ϊ and is distinct from ί and V. The ray \" is not

contained in Z70. Hence 6 intersects Co at a point u. Then we have

infxscoa(x, ϊ) ̂  tf 0*, I) = αtfw, ϊ")
< a(v,V) = α(ί^ϊ) = αCs, ϊ)

which contradicts (5. βj. From this we see that $* coincides with δv

It is also easy to prove that if two curves Ks and Kι (j Φ /) contain

subarc K) and K[ respectively such that the corays from points of K] and

K[ to a ray Ϊ'"(Ϊ///Φ = ϊ) lie over asymptotes to ϊ, then the largest system in
the above sense which contains the system of the corays from the points of
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Kj to Γ" contains that of corays from the points of K[ to V" and vice versa.

From the above we see that Uo is covered by the finite number of such

system. We denote by $L, t?3, , 8v these systems. Then every point of

the set K(l)f]Uo is identical with the common initial point of the rays con-
tained in some of these systems.

Let ί be a branch point of the set ~K(l)[YU0. Then the sit K(l)f]W,pj
consists of arcs issuing fro.n p which are finite in number. We denote

by Mi, M"a, . ., Mi these arcs. Suppose that every point of each Mi is

identical with the common initial point of rays of two systems $jt and §Jt+ι

where g ^ = 8vi, and suppose further that there exists on the prolongation

Pof an arc Mλ a branch point p' contained in Uo. Then we show that the

systems $js, $j4, and ^-jι do not contain any of the rays with p' as their

common initial points.

To do this, let K\t){\Wψ) be composed of arcs M[, M ,̂ . . . . , Mh

issuing from p' and suppose that every point of an arc M[ is identical with

the common initial point of rays of a system $Jt (i > 3) and another system.
Then we show that this is a contradiction. Let L be the set of the initial

points of the rays of %jr Then for the arcs M% and M[ we consider the follow-
ing two cases:

(1) L contains two unbounded and continuous curves Li and L[ such

that LiZDMi}ΐ[z^M[, and Lif]L[ = φ.

(2) L contains an unbounded and continuous curve L' which contains the

arcs Mt and M[.

Suppose that the case (1) holds. There exists a straight line ξ> of <^ji

which separates Li and L[. © lies over an asymptote to I which is a straight

line. Since P CDntains an arc C which connects p and p\ the straight line ξ>

intersects C at a point q. The point q belongs to the set K(l). But this is a
contradiction.

Suppose that the case (2) holds. There exists an subarc C of L' which

connects p and p' and is distinct from C. The arcs C and C bound a domain

W. Let w be a point of the boundary of W which lies on C but not on C

(or on C but not on C). Then there exists two rays issuing from w which
lie over asymptotes from w to ϊ. One of these asymptotes contains a subseg-

ment belonging to W and again intersects the boundary of W at a point w'

distinct from w. The point w' belongs to the set K(\). But this is a contra-
diction.

From the above it is easy to deduce that the number of the branch

points of P[)Uo is finite and hence the number of the branch points of
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K(l)(]Uo is finite.

Since 3ft — U L o ^ * s a bounded open set, if M — U*=ϋ Ut contains branch

points of K(l), the number of these points is finite. This is clear from the
proof of Theorem (4.1).

To show that, if another tube Uί(i Φ 0) contains branch points of K{\),
the number of these points is finite, suppose that the opposite of the straight
line (S contains a subray 1 belonging to Uλ. Further let C[ be the geodesic
one-gon with the initial point x of r. as its vertex Which is homotopic to C«
(or the closed geodesic through x homotop;c to C« if it exists) and U\ the

tube bounded by C\. Then th^re exists on sJt a part U[ bounded by two rays

r, and r/ lying over r. and a segment C lying over C such that Z7 Φ = U\.
In the same way as in the above it is easy to show that, if the tube U[
contains branch points of K(l), then the number of these points is finite.
Hence the tube Ut also has this property.

From what we have proved above the proof is complete.
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