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1. Introduction. In the previous paper [3], we defined Riemann-Cesaro
method of summability which includes well-known Riemann methods of
summability (R, p) and (Rp). In this paper, we shall consider some Tauberian
theorems for this summability.

In terms of standard notations used by Zygmund [10 p. 42] and others,
Cesaro transform of order a of 2 an is defined by σ% = s%\Aa

n where s% and
A% are given by the relations

Λnx - {i x) ^ s w * _ _ ^ ^ .
n=ϋ wf»o v-L — -V ^ 1 — X)

It is well-known that A% ~ na/Γ(cc + 1), Λ Φ — 1, — 2, , as w ->• CXD. A
series is said to be evaluable (C, a) to 5 if σ* -> s as w ->-oo. In the following,
let α be a real number, not necessarily an integer, for which a > — 1 and

let ^ ba a positive integer. A series 2 an ^s s a ^ t o ^ e evaluable to zero
n = l

by Riemann-Cesaro method of order/) and index a, or briefly, to be evaluable
(R,p,a) to zero, if the series

converges in some interval 0 < t < t0 and its sum tends to zero as t -> 0.
Under these definitions, summability (i?, £, — 1) and (R, p, 0) is reduced to
summability (R,p) and (RP), respectively. It is known [3] that summability
(R,p, a), when —l<La<p — l and p > 2, is regular, or more precisely,
summability (C, p — 1 — δ), 0 < δ < 1, implies summability (R,p,a) when
— l < ; α < / > — 1 — δ, while summability (R, 1,Λ) is not regular when
- 1 ̂  a ^ 0.

Concerning summability (/?,/>), Kanno [5] proved the following

THEOREM K. Let p be a positive integer. Suppose that

(1.1) sg = cW\

when 0 < y < β, and

(1.2) J£^-=O(n-«s>),

*) This paper is a continuation of the previous paper [3]. Cf. R. P. Agnew, Properties
of generalized definitions of limit, Bull. Amer. Math. Soα, 45 (1939), 689-730.
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when 0 < ό < I and 8 = p{β - j)/(β +l-p). Then, the series 2 a» is

n = ι

eυaluable (R,p) to^zero.

Concerning summability (R,p,a), we shall prove the following

THEOREM 1. Let p be a positive odd integer. If the conditions (1.1) and
oo

(1.2) are satisfied, then the series 2 Λ w *s ^valuable (R,p,a) to zero when

- l S α ^ O .

In this Theorem, we may replace the condition (1.1) by

n

2 Is?I = o(n^).

The proof of this result runs similarly to the one of Theorem 1 in section
3. But a slight modification will be needed therein. Now, using Lemma 3
in section 2, we see that we may replace, in Theorem 1, the condition (1. 2)
by

•in

(1.3) Σ ( l « , l - «„) = O(wδ).

Thus, Theorem 1 in this form is a generalized form of Sunouchi's theorem
[8; Corollaries 1 and 2].

In our Theorem 1, if we put a = 0, then we have
oo

COROLLARY 1. If p is a positive odd integer, then the series 2 a» is evaluable
W = l

(Rp) to zero under the conditions (1.1) and (1. 2).

This Corollary when p = 1 was proved by Hirokawa and Sunouchi [4].
On the other hand, this was already proved by K. Kanno when he completed
the proof of Theorem K, but it was not published.

In Theorem 1, we have only the case β>p — l. If β<p — 1, then

the series 2 an * s ^valuable (C,β) under the condition (1.1); hence it is also
n = i

evaluable (R,p,a). Therefore, we need a consideration for the critical case
β = p — 1. In this case, we get the following

THEOREM 2. Let p be a positive odd integer. Suppose that
n

(1.4) 2 I*?"11 = <K«'/log»)

and
Ίn

(1.5) 2 Λ<*.\ - * ) = θ;«"-δ),



RIEMANN-CESARO METHODS OF SUMMABίLITY II 15

00

when 0 < δ < 1. Then the series 2 a*> is evaluable (R, p, a) when —l<^

This Theorem is a generalized form of Theorem 5 in [3], which is a
generalization of Szasz's Theorem [9 Theorem 7']. On the other hand, even
if p is a positive even integer, we may prove, by the methods analogous
to the one of the proof of Theorem 2 in section 4, that

00

(i) the seires 2 an *s evaluable (R,p) to zero under the conditions (1.4)

and (1.5),
and

00

(ii) the seires 2 an * s evaluable (Rp) to zero provided that the condition

2n

(1.4) holds and^(\sv\ -sv) = O(n*>-8).
v=n

THEOREM 3. Let p be a positive integer. If

(1. 6) si'1 = φ * * - 1 /(log w)1+δ),

when δ > 0, //tew £&£ s^rtes 2 an is evaluable (R,p, a) when —
n=i

or a = 0,p = 1.

In this Theorem, we may replace the condition (1.6) by

where λw > 0 and χ\n/n converges. The proof of this result runs similarly
to the one of Theorem 3 in section 5.

THEOREM 4. Let p be a positive integer and let a be an integer such

that — l^a<p — 1 or a = 0, p = 1. Then, there exists a series 2 °™ which
W = l

is not evaluable (R, p, a), but it satisfies the condition

(1.7) sζ-1 = o{np~ιl\og n).

Since the condition (1. 7) implies summability (C,p — l)of Σ an, we have

COROLLARY 2. Let p be a positive integer and let a be an integer such
that — l<a<p — 1 or a = 0, p = 1. Then, summability (C,p — 1) does not
necessarily imply summability (R,p}a).

Paticular case in Corollary 2 shows that summability (C,p — 1) does not
necessarily imply summability (R,p) and (Rp\ respectively.

On the other hand, Rajchman and Zygmund [7] proved that summability
(C,p — 1) implies approximate summability {R,p) and (RP), respectively. As
Rajchman and Zygmund defined approximate summability (R, p) in relation
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to summability (R,p), so we may define approximate summability (R,p,a)
CO

in relation to summability (R,p,cc). We shall say that a series ^anis ap-

proximately evaluable (R,p,a) to zero if there is a set E of points having
unit density at the origin such that the series

nt )
71 = ί

converges at all points of E, and such that its sum tends to zero as t ~> 0
through point of E. Let p be a posive integer and let a be an integer such
that —l^a<p — 1 or α = 0,/> = 1. Then, by the method analogous to
one of the proof of Rajchman and Zygmund's theorem, we see that sum-
mability (C,p — 1) implies approximate summability (R,p,a).

2. Preliminary Lemmas.

LEMMA 1. Let p be a positive odd integer. Then, we have
n

and
CO

(2. 2) V (sin vty>]v» =
v=n

Proof is obvious from the identity
P-l JP-ΐ

( - 1 ) 2 2*-1(sin *)* = sinpt - (fy sin (p - 2) ί + . . . . + ( - 1 ) 2 ( φ J μ / 2 ) s i n *•

LEMMA 2. Z^ί p be a positive integer and let Δmφ(nt) denote the m-th
difference of φ{nt) with respect to n! Then, we have

Δmφ(nt) = 0{n~nm-p\

where m is a non-negative integer and φ{t) = (sint/t)p.

This Lemma is due to Obreschkoff [6].

LEMMA 3. Let p > 1 and let s? = o(n^) when β > 0. Then
In

(2.3) 2 Λ
v

when 0 < δ < 1, implies

(2.4) "Σ\
v=n

and conversely.

This is a generalization of Szasz's Lemma [9; Lemma 1].
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PROOF. Let 0 < / < n and let (2.3) hold. Then, we have
n+ϊ n+l in

sn+ι -Sn = 2 «" ̂  - 2 (1*1 - * > £ - 2 ( 1 * 1 - *) ^ -CM""8.

Then, by the method analogous to one of the proof of Bosanquet's
convexity theorem [2 Theorem 6], we have sn = O(wp-δ)*) hence, by (2. 3),

(2. 5) 2 1̂ 1 = 2 0«Λ - α.) + ŝ n
j/ = W Γ = W

Consequently

v = n Tc=ΰ v = 2Kn

CO

which is the desired inequality (2. 4). The converse part is obvious. Let
(2. 4) hold. Then we have (2. 5) and further (2. 3).

LEMMA 4. If p is a positive integer and — 1 ̂  a <Ξ 0, ί/tew we have

Proof of Lemma is analogous to the proof of Lemma 7 in [3], which
asserts that Lemma 4 is true when p = 1.

LEMMA 5. Z#£ p be a positive integer. Then we have

ΔmHμ(t) = Q(V-*T»-*+i)

— 1 S α: g 0 awJ AmHp(t) is the m-th difference of Hv(t) with respect to v.

Proof is analogous to the proof of Lemma 8 in [3J.

LEMMA 6. Let p be a positive odd integer and let - 1 < Λ £ 0 . Then
oo

nJt) s 2 Hv(t) = (Knr.»t->).
v-m

Proof is also similar to the proof of Lemma 9 in [3j.

*) The Author learned this result from Mr. Kenji Yano, whom the Author expresses
his hearty thanks.



[8 H. H1ROKAWA

LEMMA 7. Let p be a positive integer and let — 1 ̂  α: ̂  0. If sv

n — o(np),
then we have

PROOF. If a = — 1 or α: = 0, then Lemma is obvious. Hence we shall

consider the case — 1 < a < 0. Since

we have

Here, we shall prove that this rearrangement is permissible. For this purpose,
it is sufficient to prove that, for fixed t > 0,

Since

B 2 χ A:.-2_, ( ^ )* = oί

we have, using Abel's transformation and sfτ = oίw17),

/ \
= oί ^kvN'p(N -k + I) 0 5 ' 1 ) + o(Np-N'p)

= oil).
Thus, the rearrangement is permissible and Lemma is proved.

LEMMA 8. Let us put

where p and q are positive integers such that Q^p. Then, for all large enough
positive integer k, there exists a positive integer m0 such that

q, mk, 2τr/k) ^ (2mk)-p,
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when

PROOF. Let us put

r=0

Then, we have φ(p, 1) = 1 and φ(q,q) = q\. If we suppose that φ(p,q)>q\
and φ(p, q + 1) ί> (q -f 1)! when p > q + 1, then we may prove that
φ(p -f 1, q -f- 1) ^ (# -f 1)!. Hence, by the mathematical induction, we see
that ψ(p,g)>ql for all p and q such that p^>q>l. Thus we get

— \r /

Therefore we have
q

lim lim (mk)pψ(q, mk, 2irjk) = Σ < ~ 1 ) r ( r ) r*

Thus we have the Lemma.

3. Proof of Theorem 1. Let us put rn = 2 Γ = w l α Ί / ^ t n en we have

\an\ = n(rn-rn+i). Hence, by (1.2),

(3.1) 5W = θ ( 2 j β l 1^ l) = °(Σ?-i r" - w^n+i) = 0(Σ! . i ^"1+δ) + ° ^ = °^δ

Therefore, from (1.1), using Dixson-Ferrer's convexity theorem [1], we have

(3.2) s; =

In particular, if β > p, then

On ithe other hand, if β^p, then we have easily sζ = o(np). Hence, by
Lemma 7, for the proof it is sufficient to prove that the series

is convergent in some interval 0 < t < t0 and its sum tends to zero as t -> 0.
Let us write k = [β] -1-1 and let

M+lC 00M+lC 00

2 **«.(*) = ( Σ + Σ ) =
where M = [(€/)"p], 6 being an arbitrarily fixed positive number, and

Using AbeΓs transformation, we have, from Lemma 6 and (1. 2),

v = 2
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CO OO OO

= 01

Next, we shall prove, using the method of the proof of Theorem K,
that £7 = o(l). By repeated use of AbeΓs transformation k-times, we have

Jf+fc

ί/=2
Jf

-2

v = l

say, where

FF,/ = 0(M8(£-l')+YlW • Λf"p ίI/~ p)

= oΠ> v = 1,2, . . . ., A - l ,

by Lemma 5 and (3. 2), and, since s* = o(nk+y-P),

Since

we write Uo in the form
31 M

M-N-1 M μ

= 2 2 + 2 2 - 2 2

say, where iV = P" 1]. Since

^ ΛJc-β-l = y}Λ*-β-l _ Λk-β Nl~^
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we have, by Lemma 5,

V μ = l n = μ,

= o(tβ-p+1 Mvp+1)

On the other hand, using Abel's transformation in the inner sum, we have,
since Al't-1 - A*:?"1 = AJ:?"2,

Jf-JV-l 3/

M-N-l M-l

= Σ sd - { Σ

= -ί/: + c/;',

say, £where
M-N-lMNl M-Nl

μ=l

— u\ΐ j — u[l.j.

Since
M-l

A * — β — 2 ^\fc — 1 VΓ ( f \

•tΛ γi— n—1 ^"^ •*-*W\ί'/

= Of tk-p 2 ^ - μf-*-*n-» )

-p+i

 μ-η,
weihave, by (1.1),

= o(tP-p+1 My~p+1) =

and then we have U2 = 0(1). Lastly we have
M μ+N

^3 - £* *μ j£έ Ά n - μ

31 μ+N

-o( Σ K\ Σ AΪ
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M~p

Thus, summing up the above estimations, we have

lim sup

Since £ is an arbitrary positive number, we have
CO

lim Y

and Theorem is completely proved.

4. Proof of Theorem 2. From (1. 4), we have s% = o(np) hence, by
Lemma 3, we may replace (1.5) by (2.4), and, by Lemma 7, for the proof

of Theorem it is sufficient to prove that the series ^snHn(t) is convergent

in some interval 0 < t < U and its sum tend to zero as t -* 0. Convergence
of the series follows from the estimation of V below. Let us write

where M = [t~r] and rS >p. Since xp — {x— l)p = OC^"1), we have, using
(2. 4), sw = O(np~8) by the method analogous to one which we obtained (3.1).
Furthermore, by Dixon and Ferrer's convexity theorem [1], using (1.4), we
get
(4 .1 ) sv

n = o(wo>β-θci>-,)>/p)

when 0 < v^p. Then we have, by (2. 4) and Lemma 6,
CO

CO CO CO

= - 2 α»+i 2 Hv{t) + sx+1 2

Now, using Abel's transformation (^ — l)-times, we have
M

u = 2
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M-p+l p_!

= 2 s" Δ*
n - l

p-l

κ - 1

say, where, by (4.1),

o[t'-*M "^-

Putting ΛΓ = Γί-ij; we write

( 2 + 2 )=£Γo+^o'

Then we have

'X 3-1 Ha(t)

J

and putting sn = 2 f c «i I s *" 1 ! ,

= 0( 2 sή ύ»~p " CΛ + I*"') + Syikf"p — s^(iV+ I)"1 9 )

and the proof of Theorem is complete.

5. Proof of Theorem 3. From (1.6), we have, for — 1 ̂  a <Ξ p — 1,

Hence the series

converges (absolutely) for t > 0. Now, let us write
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where M = [exp(t~r)] and rS >p. Then we have

F = o(t"-p+1 2 n-Hlogn)-1'8

= o(ta'p+1 (log M)"δ) = o(trδ+cύ-

On the other hand, we shall prove that U = oil). We suppose that a is not

an integer. The case that a is an integer may be easily deduced by the

following argument. Since

n

S n, ' j^g n—v v '

we have

Z7= t«+1 2 (

7 1 = 1

say, where ΛV= f^"1]. Now, we see that, by the method analogous to one
which we obtained Lemma 7 and 8 in [3],

and

Then, we have easily £7i = o(l) and

Thus Theorem is completely proved.

6. Proof of Theorem 4. By the repeated Abel transformation (p
a — l)-times, we have

where, using Lemma 2 and (1. 7), for fixed t,

- S « 1 Π I1ΦI i i l l Γ \

f 4
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as m~>oo. Therefore the series

and * Λ + 1 2
ra = l

are equiconvergent for fixed t. Thus, for the proof, it is sufficient to prove
that (1. 7) does not necessarily imply the convergence of the second series in
(6.1) in some interval 0 < t < t0. Let us write

/fi 9ι /α+lV(>P-lΛί)-α-i

71 = 1

where βn = sζ-1 log njn*-1 and cn(t) = t«+1 ^ — Δ^'05"1 (SJ^LY w hen n > 2.Λ y logw V nt ) —

Then we have by (1.7), £w = o(l) as w-^oo. In order that the sequence-to-
function transformation (6.2) is convergence-preserving, by the Kojima-Schur

Theorem0, 2 \c^)\ must be uniformly bounded in 0 < t < tQ. But, this series

is ̂ divergent at some point in an arbitrary neighbourhood of origin. Let t =
2iτ\k and let k be an arbitrarily fixed positive integer, but large enough.
Then we have, using Lemma 8,

Cn(t)\ = t

> / -

n = 2

oo

1

I'ψ'ίί ~ Λ —

1
' (kv)log(kv

-1,

= +oo.

This shows that 2Γ=2 ICί*^)l ^ s divergent at ί = 27r/& and the transforma-
tion (6.2) is not convergence-preserving. Therefore (1.7) does not necessarily
imply the convergence of the first series in (6.1). Thus, Theorem is com-
pletely proved.
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