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1. Introduction. E. Hopf [6J has established a pointwise ergodic theorem

which asserts the convergence almost everywhere of averages — 2 T5f
n j-o

where T is an operator defined by a Markov process with an invariant
distribution and where / is an integrable function. Recently this theorem
has been extended to one for more general operator by N. Dunford and
J. T. Schwartz [4]. We shall here observe the convergence almost everywhere

W - l , W - l

of averages 2 T}f j 2 T'g where T is a linear positive operator with some
j=o ' j=o

restrictions and where / and g are integrable and g is positive almost
everywhere.

2. Notations and preliminaries. Let (X, $, μ) be a finite measure
space such that X is a set and $ a cr-field consisting of subsets of X and μ a
non-negative countably additive set function defined on S and μ{X) < -t-oo.

Throughout this paper, "measurable", "almost all (almost everywhere)"
and "integrable" mean "^-measurable", "/^-almost all (/x-almost everywhere)"
and "μ,-integrable", respectively, and every function under consideration is
real-valued.

We denote by Li(A) the Lebesgue space of measurable integrable funct-
ions / defined on A ζ δ, the norm being

I/I! = J \/(X)\μ(dx),

and by Loo{A) the Lebesgue space of measurable essentially bounded functions
/ defined on A € δ, the norm being

l/leo = ess sup \f(x)\.
XeA

If A = X, we drop "X" in Lι{X) and L^X) and write Li and L .
Let / and g be measurable and A € $. If fix) ^ g(x) for almost all x € A,

we write "/;> g in A". Further, "f>g in A" and " /= g in A" are defined
in like manner. If A = X, we drop the term "in X31.

Let Γ be a linear operator of LP into itself where ί = 1 or oo. If T is a
continuous operator, the operator norm of T is defined as usual and denoted
by \T\P. The operator T is called positive provided that Tf^O for every
/ € Lp with / ^ 0. A set A € 8? is called T-invariant provided that

T(f ej) = Tf in A
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for every / £ LP, where eA denotes the charactaristic function of A.
For a set A we consider now the contraction of T related to A. The

contraction TA is defined by
TAf= eA T(f eA)

f o r / € LP. Then, for every T-invariant set A, it is a simple matter to show
that

7V/= Tf in A

for every /*€£*> and for j = 0,1,2, This means that every T-invariant
set can be considered as a new whole space as far as the operator T is
concerned.

We denote by Tf(x) a value of Tf at a place x £ X and by Tn the sum

of operators 2 τ > t h a t ίs>
rc-i

Tnf= 2 TV

for every / 6 £ p.
We shall then state the maximal ergodic theorem which plays a fun-

damental role to prove the ergodic theorem.

THEOREM 2.1. Let T be a linear positive operator of Lλ into itself with
\T\ι <; 1. For any functions f€Lλ and g 6 Li with g > 0 and for any real
numbers a and β, let

*(a) = ί x; sup JVΦ- > α l

Then

a\ fj(x)μ(dx)^j

(2.1)

> ί Ax)μidx).

If a set A is T-invariant, the sets A*(a) and A*(β) in (2.1) are replaced by
the sets A()A*{a) and A(\A±{β), respectively.

The assumption for T in Theorem 2.1 is somewhat weaker than that in
the maximal ergodic theorem in [6]. The first part of Theorem 2.1 is im-
mediately deduced from Lemma 3.2 in [4] which is a slight generalisation of
Theorem 7.1 in [6]ι>. The secDnd part is easily seen from the fact that every

1) See Appendix.
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TMnvariant set can be considered as a whole space as far as T is concerned.
We shall next state the decomposition theorem.

LEMMA 2.2. Let T be a linear positive operator of Lx into itself with
|Γ | i <Ξ 1. Then the space X splits into two disjoint measurable sets C and D
with the properties:

00

(2.2) 2 TJf= +00 in C for every f € Lι withf>0;
j=o

(2. 3) 2 τf< + ^ in D f°r eυeγy f^ Lι toithf>0.
.7=0

Further the set D is T-invariant.

The sets C and D are called the conservative and dissipative part of X,
respectively. The assumption for T in Lemma 2.2 is somewhat weaker than
that in [6]. The decomposition of X into C and D is proved from Theorem
2.1 by the same way as in the proof of Theorem 8.1 in [6]. Further we can
prove, by the same way as in the proof of Lemma 8.2 in [6], that Tf= 0 in
D for every / € £1 such that / = 0 in D. Hence T(f-f eD) = 0 in D for
every/C LL where en denotes the characteristic function of D, so that D is
a T-invariant set.

3. Ergodio theorem. Let T be an operator with the properties:

(i) T is a linear positive operator of Li into itself;

(ϋ) ITU ^ 1 ;

(iii) ΊΊ > 0.

If we set here

for every/€ Llt then U is a linear positive operator such that U maps the
functions in Lλ to the measurable functions and maps L^ into itself and
£71 = 1.

Further, assume that U satisfies the properties:

(iv) Uf = f for every fe Loo such that Uf>f;

(v) U(f-Vl) = Uf UVl for every / € £~ and j = 0,1, 2, . . . .
The assumptions (iv) and (v) for T are artificial in view of operator

theory, but they are of some significance in connection to a Markov process
and to a measurable point transformation. Hopf [6J formulated the ergodic
theorem for a Markov process with an invariant distribution μ in terms of
the operator T with the properties:

(3.1) T is a linear positive operator of Lλ into itself;

(3.2) f Tf(x) μidx) = Jf(x) μkdx) for every f € Lι
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(3. 3) 7Ί = 1.

Then (i), (ii) and (iii) follow from (3.1), (3. 2) and (3. 3), respectively. Further,
U = T by virtue of (3.3), so that (iv) and (v) are shown by (3. 2) and (3.3),
respectively.

We shall next consider the case of a measurable incompressible point
transformation. Let φ be a single-valued point transformation of X into itself.
The transformation φ is called measurable if ψ and its inverse φ'1 send the
sets in $ to the sets in $ and the sets of measure zero to the sets of measure
zero. Then the set function μ(φA') of a variable A' is a measure as long
as A'^φ'1^ = {φ~ιA; A € S}, and μ{φA') is absolutely continuous with respect
to μ on φ'1^ and conversely. Hence by the Radon-Nikodym theorem there
exists a φ~^-measurable function w > 0 such that

μ(φA') = J IW{x)μ (dx)

for every A' €ί <̂ >""1 .̂ Then it is a simple matter to show that

(3. 4) ff(φx)w(x) μ(dx) =
X X

for every f^L}. Now we define the operator T induced by φ upon setting

TAX) = AφX)w{x)

for every / € Lλ. Then Tl = ^ > 0, and Uf(x) =/{<px) for every / 6 £i, and
further U(f g) = Uf Ug for every / € -̂=o and every g € Li. From this and
(3. 4) it is shown that T satisfies (i), (ii), (iii) and (v). Further, let φ be now
incompressible, that is, if A ^ % and ^ " M IDA then μ{φ~ιA — A) = 0 or,
equivalents, if A € $ and A f] T"A = 0 for w = ± 1, ± 2, . . . . then /x(A) = 0.
Then we shall prove that (iv) holds. Suppose now that U/^f. Then, for
every real a, it holds that φ~ι{x] f{x) > a} = {x; Uf(x) > a} ZD {X; f{x) > a}.
Hence, by the incompressibility of φ, it follows that {x; Uf{x) > a} = {x; f(x)
> a} execept a set of measure zero. From this we can easily show that

Uf = f. Thus T satisfies (iv).
Under these considerations we state an ergodic theorem which contains

the Hopf ergodic theorem for a Marfeov process with an invariant distribution
and the Hurewicz ergodic theorem without invariant measure [2] (cf. [7], [5],
Γ9])

THEOREM 3.1. Let T be an operator with the properties (i)~(v). Then,
for every f' ^ Lγ and every g € L\ with g > 0, the sequence of averages

Tng(χ)

converges for almost all x G X. For the limit function h it holds that

(3.5) J h(x)g(x) μ(dx) = ff(x) μ(dx)
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for every T-invariant subset A of C where C denotes the conservative part of
X with respect to T.2)

4. Proof of Theorem 3.1. Throughout this section let T be an
operator with the properties in Theorem 3.1, that is, T satisfies (i) ~ (v).

From the definition (in Lemma 2.2) of the dissipative part D of X it

follows that 2 TJ\f\ < + 00 in D for every feLi and that 2 TJg < +00 in

D for every g £ Lλ with g > 0. Hence the sequence of averages Tnf/Tng
converges almost everywhere in D. The conservative part C is the vital part
as far as the ergodic theory is concerned, and the essential part of the
proof of Theorem 3.1 is to prove the convergence in C of averages TnflTng
and to prove (3.5).

We note a fact which will be used often in the sequel without references.
"If a sequence of functions fn €ί Lλ is monotone increasing or decreasing

and tends to a function f ^Lλ almost everywhere, then lim Tfn(x) = Tf(x)

almost everywhere and, a fortiori, lim Ufn{x) = Uf(x) abnost everywhere. "
n

LEMMA 4.1. A set A is T-invariant if and only if UeA = eA.

PROOF. Assume that UeA = eA. In order to show the T-invariance of A
it suffices to prove that Tf =• T(feA) in A for every / with O S / S l Since
0^f—f'eA^eAc where Ac denotes the complement of A, 0 <Ξ £/(/—f eA) S
UeAc = £71 — £7^ = 1 - eΛ = eA°, so that U!f-f-eA) = 0 in A. Hence 7/ =
T(f-eA) in A.

Next assume that A is T-invariant. Then TeA = Tl in A. Hence f/£4

= 1 in A, so that £7e,i ̂  eA. Thus, by the property (iv) of T, UeA = eA.
q. e. d.

It is easily seen, directly from the definition of T-invariance or by use
of Lemma 4.1, that the intersection, the union, the complement and the limit
of T-invariant sets are all T-invariant. This result will be used in the sequel
without references.

LEMMA 4. 2. The conservative part C of X is a T-invariant set.

PROOF. By Lemma 2. 2, the dissipative part D is a T-invariant set.

Since C is the complement of D, C is T-invariant. q. e. d.

Hence the conservative part C can be considered as a whole space.
Especially we note here that the properties (i) ^ (v) remain true even if X,
T, U, A and £«, in the descriptions of the properties are replaced by C, Tc,
Uc, Lι(C) and LOO(C)} respectively. Then such properties contracted to C will

2) It will be shown in Lemma 4.2 that C is a T-invariant set. We note here
that if T is the operator induced by a measurable, incompressible, one-to-one point
transformation then C=X except a set of meaure zero [7], [5], but in general it is
not true [10].
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be referred by the same numbers (i) ~ (v), and T and U will be used instead
of Tc and Uc without confusion.

A function / € L^C) is called {/-invariant provided that Uf = / in C.
Then we may state the analogue to Theorem 9.1 in [6].

LEMMA 4.3. If a function h € Loo(C) is U-invariant, then, for every real
a, {x € C; h(x) > a} is T-invariant.3)

PROOF. If fζL^C) is ^-invariant, \f\ = \Uf\^U\f\ in C. Then, by
(iv), I/I = U\f\ in C and hence/+ = Uf+ in C4>.

Suppose now that h € LUC) is {/-invariant. Let A = {#€ C; /&(#)
!>(/& — α)]+ and [w(/ί — a) — 1]+ are {/-invariant, and the sequence {
— cc)]+ — [n(h(x) — a) — 1]+} is monotone increasing and tends Then the

functions to eA{x) for almost all x € C as n -> + oo, so that Z7^ = eA in C.
Hence, by Lemma 4.1, the set A is T-invariant. q. e. d.

LEMMA 4.4 For every f € £oo(C) and for every real a and β, the sets

[x € C; lim sup ~4rτ > <* \<*nd [ x € C lim inf ̂ ~~: < β]are T-invariant.
( n Tnl(X) ) I n Tnl(X) J

PROOF. If we set

Λ(*) = Πmsupp^, fc^)=suppg^ Λ = 1, 2, ....

for / 6 Zoo(C), then heL^C) and fe 6 ^-(O, so that f/ft and ί/fe's are well
defined. By repeated uses of (v) and by (iii) we have

TThUhn

inC.

J \ Ί

n-ι

2

V
\i

τ\

τ\

) L

-UTf

•um

TTnf

T j -

Tn

~ Tn

2,

Σ

+ 1 / " - .

+ i l -

ί/τy

C7T1

/*
1

Since hn(x) is monotone decreasing and tends to h(x) for almost all x € C

and 2 ^ * = +00 in C, it follows that
j=o

Uh{x) = lim Uhn{x) ^ lim sup Tl+lf(?L /

w n -L n+i L{X) —

inC.

3) The converse of Lemma 4.3 is also valid, that is, if every {xζC; h(x)>*}
is T învariant, h is a £/-invariant function. However this fact is not used in this paper.

4) The symbol/+ denotes the positive part of/, that is, /+=max (/, 0).
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Hence, by the property (iv), h is a {/-invariant function, so that, for every
real a, {xζ C; h(x) > a} is T-invariant by virtue of Lemma 4.3.

Since {*€C; liminf g g <^} = {«€C; limsup ̂ M > ( _ / 9 ) } f

the T-invariance of {* € C; liminf j . ^ M < β} follows from the fact proved

above. q. e. d.

It is convenient in the sequel to prove here Theorem 3.1 assuming the

T-invariance of sets I x £ C; limsup γ\(x\ > cί \ and I xζ C; lim inf

LEMMA 4. 5. Let f€ Lι(C), g € £i(O and g > 0 in C. Assume that, for

every real a and β, the sets \x £Ξ C; lim sup -^rK\ > cc \ and \ x ζ C; lim inf

Jr f K < β\ are T-invariant. Then the sequence of averages Tnf(x)/Tng(x)
1 ng\X) )

converges for almost all x € C. For the limit function h it holds that

(4.1) fh(x)g(x) μ(dx) = jf(x) μ{dx)
A A

for every T-invariant subset A of C.

PROOF. For every real a and β with a > β we set

C; limsup ™j*>a>β> liminf

then every Aαj3 is T-invariant. Hence we can take Aaβ as a T-invariant set
in Theorem 2.1 and AΛ,3ΠA*(α) = AΛβ, Aaβ(}A*(β) = Aαβ, so that by Theo-
rem 2.1 we obtain that

a ί g(x) μ(dx) ̂  ί f{x) μ(dx) ̂ βj g{x)μ{dx).
Aaβ Accβ Λaβ

Since a > β, I g(x) μidx) = 0, and then since g > 0, μ(A«β) = 0.

On the other hand we set

Then, for every positive a, A( + c»)cz CflA*(α), so that by Theorem 2.1

we obtain that

f g{x)μ{dx) ̂  fg(x)μ(dx) ̂  ±fAx)μ(dx) ^ ^ J
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Hence we have I g(x)μ(dx) = 0 upon letting tend to +00, and hence

μ(A( + 00)) = 0. Similarly we obtain μ(A( — 00)) = 0 where

A( - 00) = {# € C Jnf ψfφ = -°oj.

Now let B denote the set where {Tnf(x)/Tng(x)} diverges. Then

- 0 0 ) .

ί»,/3:rational

Since Aaβ, A( + 00) and A( — 00) are all of measure zero, we have μ(B) = 0,
so that the sequence {Tnfix)/Tng(x)} converges for almost all x 6 C.

Let h be the limit function of the sequence {Tnf(x)/Tng(x)} and A a T-
invariant subset of C. If we set

k
fe Ά ' n =

then every Ak is a T-invariant set and Ak Π ̂ - * ( ^ ) = A*>

= At . Thus by Theorem 2.1 we have that

2 f~ g(*)μ(dχ)S 2 (Λχ)μ(dx)^ 2

n 2 - l

Since Afc

3s are mutually disjoint and \^y At —> A as w —>• +00,

fc«- wa

I f ACΛ?)fif(Λ) x ( ^ ) - [ /(X)μ(dx) \ S — Γ g(x)μ(dx)^ ^ fg(x)μ(dx).
\ J J \ n J n J

A Λ ' A C

\
\JAk UΛk ' \jAk

Ίc 7c 7c

Thus we get (4.1) upon letting n tend to + 00. q. e. d.

Let M(A) denote the space consisting of all measurable functions / defined
on the set A € δ, the quasi-norm being

LEMMA 4.6. Let every Sn (n = 1, 2, ) be a linear continuous operator

of Lι{A) into M(A). Assume that

(4.2) sup \Snf{x)\ < +cχ> in A for every f€ Lλ(A)

(4.3) for every f in a dense set of Lλ{A), the sequence {Snf(x)} converges for
almost all x € A.
Then, for every / € Lλ{A), the sequence {Snf(x)} converges for almost all x € A.

This lemma is due to S. Banach [1] (cf. [8], [3]).
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LEMMA 4.7. For every f € L^C) the sequence of averages Tnf(x)/Tnl(x)
converges for almost all x € C. Iff^L^C), the limit function h satisfies
that

Jh(x)μ(dx) = Jf(x)μ(dx).
C G

Iff € Lι(C) and f > 0 in C, the limit function is also > 0 in C.

PROOF. If/^ LJjC), it follows from Lemma 4.4 that, for every real a

and β, the sets j x e C; lim sup J ^ > αf and ίxζC; lim inf ^ ^ < β \

are T-invariant. Hence, by Lemma 4.5, the sequence {Tnf(x)/Tnl(x)} con-
verges for almost all x ^ C and the limit function h satisfies that

j h(x)μ(dX) = JΛx)μ(dX).
0 a

Let SraO = 1, 2, . . . . J be an operator defined by

for / € £i(C). Since |Snf\M^ \Snf\1^n\f\ι for every / e A(C), S« is a linear
continuous operator of LY{C) into MfC). It was already proved that, for
every / € LUC), {Snfx)} converges for almost all x € C. Here we note that
LUC) is dense in Lλ(C). Further, as was shown in the proof of Lemma 4. 5,
it holds that, for every /€ Lλ(C), sup \Snf(x)\ < +00 in C. Thus Sn's satisfy

]^/l<oo

(4. 2) and (4. 3) in Lemma 4. 6. Hence by Lemma 4. 6 we conclude that, for
every/€ Lι(C), the sequence of averages SnAx) ( = Ttf(x)/Tnl(x)) converges
for almost all x € C.

It remains to prove that if fζL^C) a n d / > 0 in C, the limit function h
of {Tnf(x)/Tnl(x)} is > 0 in C. If we set

A(0) = {x^C; h(x) = 0},
then by Theorem 2.1 we have that

J fix) μ{dx) ^ Jf(χ) μ(dX) <,0 μ(Cf] A JO)) = 0.
c ^ ( )

Since / > 0 in C, μ(A(0)) = 0, as was to be proved. q. e. d.

From Lemma 4.7 it follows that, for every / ' € -Ei(C
</ > 0 in C, the sequence of averages Tnf(x)/Tng(x) converges for almost

all x€C In fact, lim ΐ?9-~~\ > 0 in C and hence the limit
n 1 ni-\X)

lim

f»g{x)
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exists and is finite for almost all x € C.
Thus for the proof of Theorem 3.1 it remains only to prove (3.5).

LEMMA 4. 8. Let S be the operator defined by

Sf(X) ~li

for every f € LJC). Then S is a linear positive continuous operator of LJC)
into itself

PROOF. It is clear that S maps LJC) and LJC) into LJC) and M(C)>
respectively, and is linear and positive. By Lemma 4. 7 it holds that | Sf\ i

= |/ | i for every / €Ξ LJC). Hence S, considered as an operator defined on

LJC), has an unique extension to Li(C), denoted by S, such that Sf = Sf in

C for / € LJC) and S is a linear positive operator of LJC) into itself with

|S|i = 1. Thus, for the proof of Lemma 4.8 it suffices to prove that S/ =

Sf in C for every /€ Lι(C).
We define Sn(n = 1, 2, ....) by

for / € Lι(C). Then every Sn is a linear continuous operator of Lι(C) into
itself with \Sn\i^n. We note here that, a fortiori, each one of Sn (n =

1,2, ....) and S is a linear continuous operator of Lι(C) into M(C).
Let 6 be an arbitrary positive number. We set

β* = {f€Li(Q; \Sif-Sjf\M^S for all /^Λ and all y ̂  k}, k = 1,2,

Since, for every / C L\(C), {Snfix)} converges almost everywhere in C and

hence \Stf — S/U->0 as f,i-> + CXD, it follows that LJC) = \̂ /-Bfc Further,
fc = l

since every Sn is a continuous operator, every Bh is closed in LJC). Hence,
by the Baire category theorem, there exists a Bko of the second category
which contains a closed sphere whose center is /„ £ LJC) and radius is r >0,
that is, {/€ Zi(Cj; | / - / 0 | i ^ r } . Thus it follows that

for ij^ko and for/€Zi(C) with \f—fo\ι^r, so that

for /,y^^0 and for f e LJC) with | / | i ^ r . I f /€Zi(C)and [/ΊiSr/2, we
can choose ^ ̂  Zoo(Cj such that

On the other hand,

Sf\*^ l(Sj-St0)f\*+ \SkQ(f-g)\M

4- \(SΊeo-Si)g\M+ \Sιg -Sg\M+ \S(g -f)\x, ί =- 1, 2,
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Since Sg = Sg in C and hence \Stg — Sg\M = \Sfg — Sg\M^0 as **-> + oo and,
by (4.4), I (Sj - Sfc0)/| * ̂  2£, | (SX;o - Sθ<7 \M S 2£ for ι, j > &0, we have

for / € A(C; with |/li S *72. For every / 6 £i(C) we can choose # € £~(C)
such that \f—g\i <^r/2. Since S# = Sg in C, we obtain that

\Sf-Sf\M<; \S(f-g)-S(f-g)\M+ \Sg-Sg\M^66
for every f 6 ACC). Since S is arbitrary,

s/"=sr in c
for every / 6 A(C), as was to be proved.

LEMMA 4.9. For every f € £*(C) and every g € LX(C) with g >0in C and

for every real a and β, the sets \x£ C; Km ̂ ~t~{ > a\ and ! x ζ C; lim
v. n I ng{X) ) ' n

< β) are T-invariant.

PROOF. We use the notation S defined in Lemma 4. 8. Since

and

; S(f - ag) (x) > θ

it suffices to prove that, for every / € Li(C), the set {x e C; Sf(x) > 0} is
T-invariant.

L e t / € AίC). If we set /„(*) =/ΓΛ;) for \f(x)\ ̂ n and/w(Λ:) = 0 for \f(x)\
> n, then fn^LJ^C) and /n(Λ) tends to fix) for almost all x € C as w -> + oo.

Since, by Lemma 4.8, S is a linear positive continuous operator of Lι(C)
into itself, it is easily seen that lim Sfn(x) = S/(Λ;) for almost all x € C.

Thus

{ # € C ; S/w(tf)>0}->{#€C; S/(ΛΓ) > 0}

a s w ^ + α ) , while every {x € C; S/«(AΓ) > 0} fw = 1, 2, ....) is T-invariant by
virtue of Lemma 4.4. Hence {# € C S/(Λ:J > 0} is T-invariant. q. e. d.

Then (3. 5) follows directly from Lemmas 4. 9 and 4. 5. Thus Theorem
3.1 is completely proved.

Appendix. We note the proof of the maximal ergodic theorem in [6].
Although the theorem is properly true, his proof contains a minor mistake.
His proof used that, in our notations,

as N-+ + oo, but it does not necessarily hold. In this connection we sketch
the proof of Theorem 2.1. Lemma 3. 2 in [4] is slightly modified as follows,
as their proof shows.



12 S. TSURUM1

LEMMA. Let T be a linear positive operator ofLx into itself with |ΓU < 1.
For every f €ί Lλ and for every positive integer N, let

E = |#;jup^7V(tf)>0[.

Then

!>]fiχ)μ(dx)>0.
E

PROOF OF THEOREM 2.1. For every real y we set

y) = \x; sup ??ξg > y\ = ίx; s u p T # - yg)(x) > θi

= {*•• sup

Then, by the lemma stated above,

(*) Jfx) μ(dx) S 7 J g(x) μ(dx).

Since Ax(y) ->• AJy) as N-> + oo and A=o(7) -> A*(α) as 7 increases and tends
to a, we obtain the first inequality of (2.1) fro.n (*). The second inequality
of (2.1) is deduced from the first inequality up^n replacing / and a by —/
and — β, respectively.
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