ON GENERAL ERGODIC THEOREMS II

SHIGERU TSURUMI

(Received September 5, 1956)

1. Introduction. E. Hopf [6] has established a pointwise ergodic theorem which asserts the convergence almost everywhere of averages $\frac{1}{n} \sum_{j=0}^{n-1} T^{j} f^{j}$ where T is an operator defined by a Markov process with an invariant distribution and where f is an integrable function. Recently this theorem has been extended to one for more general operator by N. Dunford and J. T. Schwartz [4]. We shall here observe the convergence almost everywhere of averages $\sum_{j=0}^{n-1} T^{j} f \Big/ \sum_{j=0}^{n-1} T^{j} g$ where T is a linear positive operator with some restrictions and where f and g are integrable and g is positive almost everywhere.

2. Notations and preliminaries. Let (X, \mathfrak{F}, μ) be a finite measure space such that X is a set and \mathfrak{F} a σ -field consisting of subsets of X and μ a non-negative countably additive set function defined on \mathfrak{F} and $\mu(X) < +\infty$.

Throughout this paper, "measurable", "almost all (almost everywhere)" and "integrable" mean " ϑ -measurable", " μ -almost all (μ -almost everywhere)" and " μ -integrable", respectively, and every function under consideration is real-valued.

We denote by $L_1(A)$ the Lebesgue space of measurable integrable functions f defined on $A \in \mathfrak{F}$, the norm being

$$|f|_1 = \int_A |f(x)| \mu(dx),$$

and by $L_{\infty}(A)$ the Lebesgue space of measurable essentially bounded functions f defined on $A \in \mathfrak{F}$, the norm being

$$|f|_{\infty} = \operatorname{ess\,sup}_{x\,\epsilon\,A} |f(x)|.$$

If A = X, we drop "X" in $L_1(X)$ and $L_{\infty}(X)$ and write L_1 and L_{∞} .

Let f and g be measurable and $A \in \mathfrak{F}$. If $f(x) \ge g(x)$ for almost all $x \in A$, we write " $f \ge g$ in A". Further, "f > g in A" and "f = g in A" are defined in like manner. If A = X, we drop the term "in X".

Let T be a linear operator of L_p into itself where p = 1 or ∞ . If T is a continuous operator, the operator norm of T is defined as usual and denoted by $|T|_p$. The operator T is called positive provided that $Tf \ge 0$ for every $f \in L_p$ with $f \ge 0$. A set $A \in \mathfrak{F}$ is called T-invariant provided that

$$T(f \cdot e_A) = Tf$$
 in A

for every $f \in L_p$, where e_A denotes the characteristic function of A.

For a set A we consider now the contraction of T related to A. The contraction T_A is defined by

$$T_A f = e_A \cdot T(f \cdot e_A)$$

for $f \in L_p$. Then, for every *T*-invariant set *A*, it is a simple matter to show that

$$T^{j}_{A}f = T^{j}f$$
 in A

for every $f \in L_p$ and for j = 0, 1, 2, ... This means that every *T*-invariant set can be considered as a new whole space as far as the operator *T* is concerned.

We denote by Tf(x) a value of Tf at a place $x \in X$ and by T_n the sum of operators $\sum_{j=0}^{n-1} T^j$, that is,

$$T_n f = \sum_{j=0}^{n-1} T^j f$$

for every $f \in L_p$.

We shall then state the maximal ergodic theorem which plays a fundamental rôle to prove the ergodic theorem.

THEOREM 2.1. Let T be a linear positive operator of L_1 into itself with $|T|_1 \leq 1$. For any functions $f \in L_1$ and $g \in L_1$ with g > 0 and for any real numbers α and β , let

$$A^{*}(\alpha) = \left\{ \begin{array}{l} x; \sup_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} \geq \alpha \right\}, \\ A_{*}(\beta) = \left\{ x; \inf_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} \leq \beta \right\}. \end{array}$$

Then

$$\alpha \int_{A^*(\alpha)} g(x) \, \mu(dx) \leq \int_{A^*(\alpha)} f(x) \, \mu(dx),$$

(2.1)

$$\beta \int_{A_{*}(\beta)} g(x) \, \mu(dx) \geq \int_{A_{*}(\beta)} f(x) \, \mu(dx).$$

If a set A is T-invariant, the sets $A^*(\alpha)$ and $A_*(\beta)$ in (2.1) are replaced by the sets $A \cap A^*(\alpha)$ and $A \cap A_*(\beta)$, respectively.

The assumption for T in Theorem 2.1 is somewhat weaker than that in the maximal ergodic theorem in [6]. The first part of Theorem 2.1 is immediately deduced from Lemma 3.2 in [4] which is a slight generalisation of Theorem 7.1 in [6]¹⁾. The second part is easily seen from the fact that every

¹⁾ See Appendix.

T-invariant set can be considered as a whole space as far as T is concerned. We shall next state the decomposition theorem.

LEMMA 2.2. Let T be a linear positive operator of L_1 into itself with $|T|_1 \leq 1$. Then the space X splits into two disjoint measurable sets C and D with the properties:

(2.2)
$$\sum_{\substack{j=0\\\infty}} T^j f = +\infty \text{ in } C \quad \text{for every } f \in L_1 \text{ with } f > 0;$$

(2.3)
$$\sum_{j=0} T^j f < +\infty \text{ in } D \quad \text{for every } f \in L_1 \text{ with } f \ge 0.$$

Further the set D is T-invariant.

The sets C and D are called the conservative and dissipative part of X, respectively. The assumption for T in Lemma 2.2 is somewhat weaker than that in [6]. The decomposition of X into C and D is proved from Theorem 2.1 by the same way as in the proof of Theorem 8.1 in [6]. Further we can prove, by the same way as in the proof of Lemma 8.2 in [6], that Tf = 0 in D for every $f \in L_1$ such that f = 0 in D. Hence $T(f - f \cdot e_D) = 0$ in D for every $f \in L_1$ where e_D denotes the characteristic function of D, so that D is a T-invariant set.

3. Ergodic theorem. Let T be an operator with the properties :

- (i) T is a linear positive operator of L_1 into itself;
- $|T|_1 \leq 1;$
- (iii) T1 > 0.

If we set here

$$Uf = \frac{Tf}{T1}$$

for every $f \in L_1$, then U is a linear positive operator such that U maps the functions in L_1 to the measurable functions and maps L_{∞} into itself and U1 = 1.

Further, assume that U satisfies the properties:

(iv)
$$Uf = f$$
 for every $f \in L_{\infty}$ such that $Uf \ge f$;

(v)
$$U(f \cdot T^{\eta} 1) = Uf \cdot UT^{\eta} 1$$
 for every $f \in L_{\infty}$ and $j = 0, 1, 2, ...$

The assumptions (iv) and (v) for T are artificial in view of operator theory, but they are of some significance in connection to a Markov process and to a measurable point transformation. Hopf [6] formulated the ergodic theorem for a Markov process with an invariant distribution μ in terms of the operator T with the properties:

(3.1) T is a linear positive operator of L_1 into itself;

(3.2)
$$\int_{x} Tf(x) \mu(dx) = \int_{x} f(x) \mu(dx) \quad \text{for every } f \in L_{1};$$

S. TSURUMI

(3.3) T1 = 1.

Then (i), (ii) and (iii) follow from (3.1), (3.2) and (3.3), respectively. Further, U = T by virtue of (3.3), so that (iv) and (v) are shown by (3.2) and (3.3), respectively.

We shall next consider the case of a measurable incompressible point transformation. Let φ be a single-valued point transformation of X into itself. The transformation φ is called measurable if φ and its inverse φ^{-1} send the sets in \mathfrak{F} to the sets in \mathfrak{F} and the sets of measure zero to the sets of measure zero. Then the set function $\mu(\varphi A')$ of a variable A' is a measure as long as $A' \in \varphi^{-1}\mathfrak{F} = \{\varphi^{-1}A; A \in \mathfrak{F}\}$, and $\mu(\varphi A')$ is absolutely continuous with respect to μ on $\varphi^{-1}\mathfrak{F}$ and conversely. Hence by the Radon-Nikodym theorem there exists a $\varphi^{-1}\mathfrak{F}$ -measurable function w > 0 such that

$$\mu(\varphi A') = \int_{A'} w(x) \mu(dx)$$

for every $A' \in \varphi^{-1} \widetilde{\vartheta}$. Then it is a simple matter to show that

(3.4)
$$\int_{X} f(\varphi x) w(x) \mu(dx) = \int_{X} f(x) \mu(dx)$$

for every $f \in L_1$. Now we define the operator T induced by φ upon setting $Tf(x) = f(\varphi x)w(x)$

for every $f \in L_1$. Then T1 = w > 0, and $Uf(x) = f(\varphi x)$ for every $f \in L_1$, and further $U(f \cdot g) = Uf \cdot Ug$ for every $f \in L_\infty$ and every $g \in L_1$. From this and (3.4) it is shown that T satisfies (i), (ii), (iii) and (v). Further, let φ be now incompressible, that is, if $A \in \tilde{\mathfrak{F}}$ and $\varphi^{-1}A \supset A$ then $\mu(\varphi^{-1}A - A) = 0$ or, equivalently, if $A \in \tilde{\mathfrak{F}}$ and $A \cap T^n A = 0$ for $n = \pm 1, \pm 2, \ldots$ then $\mu(A) = 0$. Then we shall prove that (iv) holds. Suppose now that $Uf \ge f$. Then, for every real α , it holds that $\varphi^{-1}\{x; f(x) > \alpha\} = \{x; Uf(x) > \alpha\} \supset \{x; f(x) > \alpha\}$. Hence, by the incompressibility of φ , it follows that $\{x; Uf(x) > \alpha\} = \{x; f(x) > \alpha\}$ except a set of measure zero. From this we can easily show that Uf = f. Thus T satisfies (iv).

Under these considerations we state an ergodic theorem which contains the Hopf ergodic theorem for a Markov process with an invariant distribution and the Hurewicz ergodic theorem without invariant measure [2] (cf. [7], [5], [9]).

THEOREM 3.1. Let T be an operator with the properties (i) \sim (v). Then, for every $f \in L_1$ and every $g \in L_1$ with g > 0, the sequence of averages

$$\frac{T_n f(x)}{T_n g(x)}$$

converges for almost all $x \in X$. For the limit function h it holds that

(3.5)
$$\int_{A} h(x)g(x)\,\mu(dx) = \int_{A} f(x)\,\mu(dx)$$

for every T-invariant subset A of C where C denotes the conservative part of X with respect to $T^{(2)}$

4. Proof of Theorem 3.1. Throughout this section let T be an operator with the properties in Theorem 3.1, that is, T satisfies (i) \sim (v). From the definition (in Lemma 2.2) of the dissipative part D of X it

follows that $\sum_{j=0}^{\infty} T^j |f| < +\infty$ in D for every $f \in L_1$ and that $\sum_{j=0}^{\infty} T^j g < +\infty$ in D for every $g \in L_1$ with g > 0. Hence the sequence of averages $T_n f/T_n g$ converges almost everywhere in D. The conservative part C is the vital part as far as the ergodic theory is concerned, and the essential part of the proof of Theorem 3.1 is to prove the convergence in C of averages $T_n f/T_n g$ and to prove (3.5).

We note a fact which will be used often in the sequel without references.

"If a sequence of functions $f_n \in L_1$ is monotone increasing or decreasing and tends to a function $f \in L_1$ almost everywhere, then $\lim_n Tf_n(x) = Tf(x)$ almost everywhere and, a fortiori, $\lim_n Uf_n(x) = Uf(x)$ almost everywhere."

LEMMA 4.1. A set A is T-invariant if and only if $Ue_A = e_A$.

PROOF. Assume that $Ue_A = e_A$. In order to show the *T*-invariance of *A* it suffices to prove that $Tf = T(f \cdot e_A)$ in *A* for every *f* with $0 \le f \le 1$. Since $0 \le f - f \cdot e_A \le e_{A^c}$ where A^c denotes the complement of *A*, $0 \le U(f - f \cdot e_A) \le Ue_{A^c} = U1 - Ue_A = 1 - e_A = e_{A^c}$, so that $U(f - f \cdot e_A) = 0$ in *A*. Hence $Tf = T(f \cdot e_A)$ in *A*.

Next assume that A is T-invariant. Then $Te_A = T1$ in A. Hence $Ue_A = 1$ in A, so that $Ue_A \ge e_A$. Thus, by the property (iv) of T, $Ue_A = e_A$. q. e. d.

It is easily seen, directly from the definition of *T*-invariance or by use of Lemma 4.1, that *the intersection*, *the union*, *the complement and the limit* of *T*-invariant sets are all *T*-invariant. This result will be used in the sequel without references.

LEMMA 4.2. The conservative part C of X is a T-invariant set.

PROOF. By Lemma 2.2, the dissipative part D is a T-invariant set.

Since C is the complement of D, C is T-invariant.

q. e. d.

Hence the conservative part C can be considered as a whole space. Especially we note here that the properties (i) \sim (v) remain true even if X, T, U, L_1 and L_{∞} in the descriptions of the properties are replaced by C, T_c , U_c , $L_1(C)$ and $L_{\infty}(C)$, respectively. Then such properties contracted to C will

²⁾ It will be shown in Lemma 4.2 that C is a T-invariant set. We note here that if T is the operator induced by a measurable, incompressible, one-to-one point transformation then C=X except a set of meaure zero [7], [5], but in general it is not true [10].

S. TSURUMI

be referred by the same numbers (i) \sim (v), and T and U will be used instead of T_c and U_c without confusion.

A function $f \in L_{\infty}(C)$ is called *U*-invariant provided that Uf = f in C. Then we may state the analogue to Theorem 9.1 in [6].

LEMMA 4.3. If a function $h \in L_{\infty}(C)$ is U-invariant, then, for every real α , $\{x \in C; h(x) > \alpha\}$ is T-invariant.³⁾

PROOF. If $f \in L_{\infty}(C)$ is U-invariant, $|f| = |Uf| \leq U|f|$ in C. Then, by (iv), |f| = U|f| in C and hence $f^+ = Uf^+$ in C^{4} .

Suppose now that $h \in L_{\infty}(C)$ is U-invariant. Let $A = \{x \in C; h(x) > \alpha\}$. $[n(h-\alpha)]^+$ and $[n(h-\alpha)-1]^+$ are U-invariant, and the sequence $\{[n(h(x) - \alpha)]^+ - [n(h(x) - \alpha) - 1]^+\}$ is monotone increasing and tends Then the functions to $e_A(x)$ for almost all $x \in C$ as $n \to +\infty$, so that $Ue_A = e_A$ in C. Hence, by Lemma 4.1, the set A is T-invariant. q. e. d.

LEMMA 4.4 For every $f \in L_{\infty}(C)$ and for every real α and β , the sets $\left\{x \in C; \limsup_{n} \frac{T_n f(x)}{T_n 1(x)} > \alpha\right\}$ and $\left\{x \in C; \liminf_{n} \frac{T_n f(x)}{T_n 1(x)} < \beta\right\}$ are T-invariant.

PROOF. If we set

$$h(x) = \limsup_{n} \sup_{x \to 1} \frac{T_n f(x)}{T_n 1(x)}, \quad h_n(x) = \sup_{k \ge n} \frac{T_k f(x)}{T_k 1(x)}, \quad n = 1, 2, \ldots$$

for $f \in L_{\infty}(C)$, then $h \in L_{\infty}(C)$ and $h_n \in L_{\infty}(C)$, so that Uh and Uh_n's are well defined. By repeated uses of (v) and by (iii) we have

$$Uh_{n} \ge U\left(\frac{T_{n}f}{T_{n}1}\right) = \frac{UT_{n}f}{UT_{n}1} = \frac{\sum_{j=0}^{n-1} UT^{j}f}{\sum_{j=0}^{n-1} UT^{j}1}$$
$$= \frac{\sum_{j=0}^{n-1} T1 \cdot UT^{j}f}{\sum_{j=0}^{n-1} T1 \cdot UT^{j}1} = \frac{T_{n+1}f - f}{T_{n+1}1 - 1} \quad \text{in } C$$

Since $h_n(x)$ is monotone decreasing and tends to h(x) for almost all $x \in C$ and $\sum_{j=0}^{\infty} T^j 1 = +\infty$ in C, it follows that

$$Uh(x) = \lim_{n} Uh_n(x) \ge \limsup_{n} \frac{T_{n+1}f(x) - f(x)}{T_{n+1}I(x) - 1}$$
$$= \limsup_{n} \frac{T_nf(x)}{T_nI(x)} = h(x) \quad \text{in } C.$$

³⁾ The converse of Lemma 4.3 is also valid, that is, if every $\{x \in C; h(x) > e\}$ is *T*-invariant, *h* is a *U*-invariant function. However this fact is not used in this paper.

⁴⁾ The symbol f^+ denotes the positive part of f, that is, $f^+ = \max(f, 0)$.

Hence, by the property (iv), h is a U-invariant function, so that, for every real α , $\{x \in C; h(x) > \alpha\}$ is T-invariant by virtue of Lemma 4.3.

Since $\left\{x \in C; \lim_{n} \inf \frac{T_n f(x)}{T_n I(x)} < \beta\right\} = \left\{x \in C; \limsup_{n} \inf \frac{T_n (-f)(x)}{T_n I(x)} > (-\beta)\right\},\$ the *T*-invariance of $\left\{x \in C; \liminf_{n} \frac{T_n f(x)}{T_n I(x)} < \beta\right\}$ follows from the fact proved above. q. e. d.

It is convenient in the sequel to prove here Theorem 3.1 assuming the *T*-invariance of sets $\left\{x \in C; \limsup_{n} \sup_{n} \frac{T_n f(x)}{T_n g(x)} > \alpha\right\}$ and $\left\{x \in C; \liminf_{n} \frac{T_n f(x)}{T_n g(x)} < \beta\right\}$.

LEMMA 4.5. Let $f \in L_1(C)$, $g \in L_1(C)$ and g > 0 in C. Assume that, for every real α and β , the sets $\left\{x \in C; \limsup_n \frac{T_n f(x)}{T_n g(x)} > \alpha\right\}$ and $\left\{x \in C; \liminf_n \frac{T_n f(x)}{T_n g(x)} < \beta\right\}$ are T-invariant. Then the sequence of averages $T_n f(x)/T_n g(x)$ converges for almost all $x \in C$. For the limit function h it holds that

(4.1)
$$\int_{\mathbf{A}} h(\mathbf{x})g(\mathbf{x})\,\mu(d\mathbf{x}) = \int_{\mathbf{A}} f(\mathbf{x})\,\mu(d\mathbf{x})$$

for every T-invariant subset A of C.

PROOF. For every real α and β with $\alpha > \beta$ we set

$$A_{\alpha\beta} = \Big\{ x \in C \, ; \, \limsup_{n} \frac{T_n f(x)}{T_n g(x)} > \alpha > \beta > \liminf_{n} \frac{T_n f(x)}{T_n g(x)} \Big\},$$

then every $A_{\alpha\beta}$ is *T*-invariant. Hence we can take $A_{\alpha\beta}$ as a *T*-invariant set in Theorem 2.1 and $A_{\alpha\beta} \cap A^*(\alpha) = A_{\alpha\beta}$, $A_{\alpha\beta} \cap A_*(\beta) = A_{\alpha\beta}$, so that by Theorem 2.1 we obtain that

$$\alpha \int_{A_{\alpha\beta}} g(\mathbf{x}) \ \mu(d\mathbf{x}) \leq \int_{A_{\alpha\beta}} f(\mathbf{x}) \ \mu(d\mathbf{x}) \leq \beta \int_{A_{\alpha\beta}} g(\mathbf{x}) \ \mu(d\mathbf{x}).$$

Since $\alpha > \beta$, $\int_{A_{\alpha\beta}} g(x) \mu(dx) = 0$, and then since g > 0, $\mu(A_{\alpha\beta}) = 0$.

On the other hand we set

$$A(+\infty) = \Big\{ x \in C; \sup_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} = +\infty \Big\}.$$

Then, for every positive α , $A(+\infty) \subset C \cap A^*(\alpha)$, so that by Theorem 2.1 we obtain that

$$\int_{A(+\infty)} g(x) \, \mu(dx) \leq \int_{C \cap A^*(\alpha)} g(x) \, \mu(dx) \leq \frac{1}{\alpha} \int_{C \cap A^*(\alpha)} f(x) \, \mu(dx) \leq \frac{1}{\alpha} \int_{C} |f(x)| \, \mu(dx).$$

Hence we have $\int_{A(+\infty)} g(x) \mu(dx) = 0$ upon letting tend to $+\infty$, and hence

 $\mu(A(+\infty)) = 0$. Similarly we obtain $\mu(A(-\infty)) = 0$ where

$$A(-\infty) = \Big\{ x \in C; \inf_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} = -\infty \Big\}.$$

Now let B denote the set where $\{T_n f(x)/T_n g(x)\}$ diverges. Then

$$B \subset \bigcup_{\substack{\alpha > \beta \\ \alpha, \beta: \text{rational}}} A_{\alpha\beta} \cup A(+\infty) \cup A(-\infty).$$

Since $A_{\alpha\beta}$, $A(+\infty)$ and $A(-\infty)$ are all of measure zero, we have $\mu(B) = 0$, so that the sequence $\{T_n f(x)/T_n g(x)\}$ converges for almost all $x \in C$.

Let *h* be the limit function of the sequence $\{T_nf(x)/T_ng(x)\}$ and *A* a *T*-invariant subset of *C*. If we set

$$A_k = \left\{ x \in A ; \frac{k}{n} \leq h(x) < \frac{k+1}{n} \right\}, \qquad -n^2 \leq k < n^2$$

then every A_k is a *T*-invariant set and $A_k \cap A^*\left(\frac{k}{n}\right) = A_k$, $A_k \cap A_*\left(\frac{k+1}{n}\right) = A_k$. Thus by Theorem 2.1 we have that

$$\sum_{k=-n^2}^{n^2-1} \int_{A_k} \frac{k}{n} \cdot g(x) \, \mu(dx) \leq \sum_{k=-n^2}^{n^2-1} \int_{A_k} f(x) \, \mu(dx) \leq \sum_{k=-n^2}^{n^2-1} \int_{A_k} \frac{k+1}{n} \cdot g(x) \, \mu(dx).$$

Since A_k 's are mutually disjoint and $\bigcup_{k=-n^2}^{n^2-1} A_k \to A$ as $n \to +\infty$,

$$\left|\int_{\substack{\bigcup A_k \\ k}} h(x)g(x) \ \iota(dx) - \int_{\substack{\bigcup A_k \\ k}} f(x) \ \mu(dx)\right| \leq \frac{1}{n} \int_{\substack{\bigcup A_k \\ k}} g(x) \ \mu(dx) \leq \frac{1}{n} \int_{C} g(x) \ \mu(dx).$$

Thus we get (4.1) upon letting n tend to $+\infty$.

Let M(A) denote the space consisting of all measurable functions f defined on the set $A \in \mathfrak{F}$, the quasi-norm being

$$|f|_{\mathcal{M}} = \int_{\mathcal{A}} \frac{|f(x)|}{1+|f(x)|} \, \mu(dx).$$

LEMMA 4.6. Let every S_n (n = 1, 2, ...) be a linear continuous operator of $L_1(A)$ into M(A). Assume that

(4.2) $\sup_{1 \leq n < \infty} |S_n f(x)| < +\infty \text{ in } A \text{ for every } f \in L_1(A);$

(4.3) for every f in a dense set of $L_1(A)$, the sequence $\{S_nf(x)\}$ converges for almost all $x \in A$.

Then, for every $f \in L_1(A)$, the sequence $\{S_n f(x)\}$ converges for almost all $x \in A$.

This lemma is due to S. Banach [1] (cf. [8], [3]).

LEMMA 4.7. For every $f \in L_1(C)$ the sequence of averages $T_n f(x)/T_n 1(x)$ converges for almost all $x \in C$. If $f \in L_{\infty}(C)$, the limit function h satisfies that

$$\int_{C} h(x) \mu(dx) = \int_{C} f(x) \mu(dx).$$

If $f \in L_1(C)$ and f > 0 in C, the limit function is also > 0 in C.

PROOF. If $f \in L_{\infty}(C)$, it follows from Lemma 4.4 that, for every real α and β , the sets $\left\{x \in C; \limsup_{n} \frac{T_n f(x)}{T_n 1(x)} > \alpha\right\}$ and $\left\{x \in C; \liminf_{n} \frac{T_n f(x)}{T_n 1(x)} < \beta\right\}$ are *T*-invariant. Hence, by Lemma 4.5, the sequence $\{T_n f(x)/T_n 1(x)\}$ converges for almost all $x \in C$ and the limit function h satisfies that

$$\int_{\sigma} h(x) \, \mu(dx) = \int_{\sigma} f(x) \, \mu(dx).$$

Let $S_n(n = 1, 2, ...)$ be an operator defined by

$$\mathbf{S}_n f = \frac{T_n f}{T_n \mathbf{1}}$$

for $f \in L_1(C)$. Since $|S_n f|_M \leq |S_n f|_1 \leq n |f|_1$ for every $f \in L_1(C)$, S_n is a linear continuous operator of $L_1(C)$ into M(C). It was already proved that, for every $f \in L_{\infty}(C)$, $\{S_n f(x)\}$ converges for almost all $x \in C$. Here we note that $L_{\infty}(C)$ is dense in $L_1(C)$. Further, as was shown in the proof of Lemma 4.5, it holds that, for every $f \in L_1(C)$, $\sup_{1 \leq n < \infty} |S_n f(x)| < +\infty$ in C. Thus S_n 's satisfy (4.2) and (4.3) in Lemma 4.6. Hence by Lemma 4.6 we conclude that, for every $f \in L_1(C)$, the sequence of averages $S_n f(x) (= T_n f(x)/T_n \mathbf{1}(x))$ converges for almost all $x \in C$.

It remains to prove that if $f \in L_1(C)$ and f > 0 in C, the limit function h of $\{T_n f(x)/T_n 1(x)\}$ is > 0 in C. If we set

$$A(0) = \{ x \in C; \ h(x) = 0 \},\$$

then by Theorem 2.1 we have that

$$\int_{A(0)} f(x) \, \mu(dx) \leq \int_{C \cap A_{*}(0)} f(x) \, \mu(dx) \leq 0 \cdot \mu(C \cap A_{*}(0)) = 0.$$

Since f > 0 in C, $\mu(A(0)) = 0$, as was to be proved.

From Lemma 4.7 it follows that, for every $f \in L_1(C)$ and every $g \in L_1(C)$ with g > 0 in C, the sequence of averages $T_nf(x)/T_ng(x)$ converges for almost all $x \in C$. In fact, $\lim_n \frac{T_ng(x)}{T_nI(x)} > 0$ in C and hence the limit

$$\lim_{n} \frac{T_n f(x)}{T_n g(x)} = \frac{\lim_{n} \frac{T_n f(x)}{T_n \mathbb{I}(x)}}{\lim_{n} \frac{T_n g(x)}{T_n \mathbb{I}(x)}}$$

q. e. d.

exists and is finite for almost all $x \in C$.

Thus for the proof of Theorem 3.1 it remains only to prove (3.5).

LEMMA 4.8. Let S be the operator defined by

$$Sf(x) = \lim_{n} \frac{T_n f(x)}{T_n 1(x)}$$

for every $f \in L_1(C)$. Then S is a linear positive continuous operator of $L_1(C)$ into itself.

PROOF. It is clear that S maps $L_{\infty}(C)$ and $L_1(C)$ into $L_{\infty}(C)$ and M(C), respectively, and is linear and positive. By Lemma 4.7 it holds that $|Sf|_1 = |f|_1$ for every $f \in L_{\infty}(C)$. Hence S, considered as an operator defined on $L_{\infty}(C)$, has an unique extension to $L_1(C)$, denoted by \widetilde{S} , such that $\widetilde{S}f = Sf$ in C for $f \in L_{\infty}(C)$ and \widetilde{S} is a linear positive operator of $L_1(C)$ into itself with $|\widetilde{S}|_1 = 1$. Thus, for the proof of Lemma 4.8 it suffices to prove that $Sf = \widetilde{S}f$ in C for every $f \in L_1(C)$.

We define $S_n(n = 1, 2, \ldots)$ by

$$S_{n}f=\frac{T_{n}f}{T_{n}1}$$

for $f \in L_1(C)$. Then every S_n is a linear continuous operator of $L_1(C)$ into itself with $|S_n|_1 \leq n$. We note here that, a fortiori, each one of S_n (n = 1, 2, ...) and \widetilde{S} is a linear continuous operator of $L_1(C)$ into M(C).

Let \mathcal{E} be an arbitrary positive number. We set

 $B_{k} = \{f \in L_{1}(C); |S_{i}f - S_{j}f|_{M} \leq \varepsilon \text{ for all } i \geq k \text{ and all } j \geq k\}, k = 1, 2, \dots$ Since, for every $f \in L_{1}(C), \{S_{n}f(x)\}$ converges almost everywhere in C and hence $|S_{i}f - S_{j}f|_{M} \rightarrow 0$ as $i, j \rightarrow +\infty$, it follows that $L_{1}(C) = \bigcup_{k=1}^{\infty} B_{k}$. Further, since every S_{n} is a continuous operator, every B_{k} is closed in $L_{1}(C)$. Hence, by the Baire category theorem, there exists a $B_{k_{0}}$ of the second category which contains a closed sphere whose center is $f_{0} \in L_{1}(C)$ and radius is r > 0, that is, $\{f \in L_{1}(C); |f - f_{0}|_{1} \leq r\}$. Thus it follows that

 $|(S_i - S_j)f|_{\mathbf{M}} \leq \varepsilon$

for $i, j \ge k_0$ and for $f \in L_1(C)$ with $|f - f_0|_1 \le r$, so that

$$(4.4) \qquad |(S_i - S_j)f|_M \le |(S_i - S_j)(f + f_0)|_M + |(S_i - S_j)f_0|_M \le 2\varepsilon$$

for $i, j \ge k_0$ and for $f \in L_1(C)$ with $|f|_1 \le r$. If $f \in L_1(C)$ and $|f|_1 \le r/2$, we can choose $g \in L_{\infty}(C)$ such that

$$|g|_1 \leq r, \qquad |S_{k_0}(f-g)|_{\mathcal{M}} \leq \varepsilon, \qquad |\widetilde{S}(f-g)|_{\mathcal{M}} \leq \varepsilon.$$

other hand,

$$|S_{f} - \widetilde{S}_{f}|_{M} \leq |(S_{f} - S_{k_{0}})f|_{M} + |S_{k_{0}}(f - g)|_{M} + |(S_{k_{0}} - S_{i})g|_{M} + |S_{i}g - \widetilde{S}_{g}|_{M} + |\widetilde{S}(g - f)|_{M}, \quad i = 1, 2,$$

10

On the

Since $\widetilde{S}g = Sg$ in C and hence $|S_{ig} - \widetilde{S}g|_{M} = |S_{ig} - Sg|_{M} \to 0$ as $i \to +\infty$ and, by (4.4), $|(S_{j} - S_{k_{0}})f|_{M} \leq 2\varepsilon$, $|(S_{k_{0}} - S_{i})g|_{M} \leq 2\varepsilon$ for $i, j \geq k_{0}$, we have $|Sf - \widetilde{S}f|_{M} \leq 6\varepsilon$

for $f \in L_1(C)$ with $|f|_1 \leq r/2$. For every $f \in L_1(C)$ we can choose $g \in L_{\infty}(C)$ such that $|f - g|_1 \leq r/2$. Since Sg = Sg in C, we obtain that

$$|Sf - \widetilde{Sf}|_{M} \leq |S(f - g) - \widetilde{S(f - g)}|_{M} + |Sg - \widetilde{Sg}|_{M} \leq 6\delta$$

for every $f \in L_1(C)$. Since ε is arbitrary,

$$Sf = Sf$$
 in C

for every $f \in L_1(C)$, as was to be proved.

LEMMA 4.9. For every $f \in L_1(C)$ and every $g \in L_1(C)$ with g > 0 in C and for every real α and β , the sets $\left\{x \in C; \lim_n \frac{T_n f(x)}{T_n g(x)} > \alpha\right\}$ and $\frac{1}{n} x \in C; \lim_n \frac{T_n f(x)}{T_n g(x)} < \beta\right\}$ are T-invariant.

PROOF. We use the notation S defined in Lemma 4.8. Since

$$\left\{x \in C; \lim_{n} \frac{T_n f(x)}{T_n g(x)} < \beta\right\} = \left\{x \in C; \lim_{n} \frac{T_n (-f)(x)}{T_n g(x)} > (-\beta)\right\}$$

and

$$\left\{x \in C; \lim_{n} \frac{T_n f(x)}{T_n g(x)} > \alpha\right\} = \left\{x \in C; S(f - \alpha g)(x) > 0\right\},$$

it suffices to prove that, for every $f \in L_1(C)$, the set $\{x \in C : Sf(x) > 0\}$ is *T*-invariant.

Let $f \in L_1(C)$. If we set $f_n(x) = f(x)$ for $|f(x)| \leq n$ and $f_n(x) = 0$ for |f(x)| > n, then $f_n \in L_{\infty}(C)$ and $f_n(x)$ tends to f(x) for almost all $x \in C$ as $n \to +\infty$. Since, by Lemma 4.8, S is a linear positive continuous operator of $L_1(C)$ into itself, it is easily seen that $\lim_n Sf_n(x) = Sf(x)$ for almost all $x \in C$. Thus

$$\{x \in C; Sf_n(x) > 0\} \rightarrow \{x \in C; Sf(x) > 0\}$$

as $n \to +\infty$, while every $\{x \in C; Sf_n(x) > 0\}$ (n = 1, 2, ...) is *T*-invariant by virtue of Lemma 4.4. Hence $\{x \in C; Sf(x) > 0\}$ is *T*-invariant. q.e.d.

Then (3.5) follows directly from Lemmas 4.9 and 4.5. Thus Theorem 3.1 is completely proved.

Appendix. We note the proof of the maximal ergodic theorem in [6]. Although the theorem is properly true, his proof contains a minor mistake. His proof used that, in our notations,

$$\left\{x: \sup_{1 \leq n \leq N} \frac{T_n f(x)}{T_n g(x)} \geq 0\right\} \to \left\{x: \sup_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} \geq 0\right\}$$

as $N \rightarrow +\infty$, but it does not necessarily hold. In this connection we sketch the proof of Theorem 2.1. Lemma 3.2 in [4] is slightly modified as follows, as their proof shows.

LEMMA. Let T be a linear positive operator of L_1 into itself with $|T|_1 \leq 1$. For every $f \in L_1$ and for every positive integer N, let

$$E = \Big\{ x; \sup_{1 \leq n \leq N} T_n f(x) > 0 \Big\}.$$

Then

$$\int_E f(x)\,\mu(dx) \ge 0.$$

PROOF OF THEOREM 2.1. For every real γ we set

$$A_{\mathcal{N}}(\gamma) = \left\{x; \sup_{1 \leq n \leq N} \frac{T_n f(x)}{T_n g(x)} > \gamma\right\} = \left\{x; \sup_{1 \leq n \leq N} T_n (f - \gamma g)(x) > 0\right\},\$$
$$A_{\infty}(\gamma) = \left\{x; \sup_{1 \leq n < \infty} \frac{T_n f(x)}{T_n g(x)} > \gamma\right\}.$$

Then, by the lemma stated above,

(*)
$$\int_{A_N(Y)} f(x) \, \mu(dx) \ge \gamma \cdot \int_{A_N(Y)} g(x) \, \mu(dx).$$

Since $A_{\mathcal{N}}(\gamma) \to A_{\infty}(\gamma)$ as $N \to +\infty$ and $A_{\infty}(\gamma) \to A^*(\alpha)$ as γ increases and tends to α , we obtain the first inequality of (2.1) from (*). The second inequality of (2.1) is deduced from the first inequality upon replacing f and α by -f and $-\beta$, respectively.

References

- S. BANACH, Sur la convergence presque partout des fonctionelles linéaires, Bull. Sci. Math., 50(1926), 36-43.
- [2] Y. N. DOWKER, A new proof of the general ergodic theorem, Acta Sci. Math. Szeged, 12(1952), 162–166.
- [3] N. DUNFORD AND D. S. MILLER, On the ergodic theorem, Trans. Amer. Math. Soc., 60(1946), 538-549.
- [4] N. DUNFORD AND J. T. SCHWARTZ, Convergence almost everywhere of operator averages, Journ. of Rat. Mech. and Analys., 5(1956), 129-178.
- [5] P. R. HALMOS, An ergodic theorem, Proc. Nat. Acad. Sci. U. S. A., 32(1946), 156– 161.
- [6] E. HOPF, The general temporally discrete Markoff process, Journ. of Rat. Mech. and Analys., 3(1954), 13-45.
- [7] W. HUREWICZ, Ergodic theorem without invariant measure, Ann. of Math., 45 (1944), 192-206.
- [8] S. MAZUR AND W. ORLICZ, Über Folgen linearen Operatoren, Studia Math., 4 (1933), 152-177.
- [9] J.C.OXTOBY, On the ergodic theorem of Hurewicz, Ann. of Math., 49(1948), 872-884.
- [10] S. TSURUMI, Note on an ergodic theorem, Proc. of Japan Acad., 30(1954),419-423.

MATHEMATICAL INSTITUTE, TOKYO METROPOLITAN UNIVERSITY.