AN ELEMENTARY PROOF OF BROUWER'S FIXED POINT THEOREM

Takejiro Seki

(Received December 25, 1956)

The well-known classical Brouwer's fixed point theorem reads :
If f maps continuously an n dimensional sphere $\|X\| \leqq 1$ into itself, there exists a fixed point X such that $f(X)=X$.

Here in this brief note an alternative proof of the theorem will be presented: this will be carried out by appealing to some elementary results on analytic functions rather than to a combinatoric lemma regarding a simplex on which the customary proof is based.

In § 2 the proof for the general case will be offered. We should like to point out, however, that the case for $n=2$ allows us to obtain an extremely simple proof, which will be first described in § 1.

1. Case $n=2$. We designate a point by a complex number $z=x+y i$ in a Gaussian plane. Without loss of generality we assume that f maps continuously a square $K:|x| \leqq 1,|y| \leqq 1$ into itself.

We assume f has no fixed point. Then $w=z-f(z)$ is continuous on K and does not vanish, and therefore $\operatorname{Amp} w$ is defined everywhere in K.

Take an arbitrary square M in K. If z runs around the boundary of M once in positive direction, the increment of Amp w is evidently a multiple of 2π, which we denote by $\rho(M)$.

On the boundary of K

$$
-\pi<\operatorname{Amp} w-\operatorname{Amp} z<\pi
$$

holds, as is easily shown by graphical consideration; and so, if z runs around the boundary of K, the increment of $\operatorname{Amp} w-\operatorname{Amp} z$ is zero. Since $\operatorname{Amp} z$ is increased by 2π when z runs around the boundary of K, the corresponding increment of $\operatorname{Amp} w$ is also 2π. Therefore we have $\rho(K)=2 \pi$.

Now, if we subdivide K into m^{2} squares $K_{1}, \ldots, K_{m^{2}}$, each with edge of length $2 / m$, the following relation holds as is easily seen :

$$
\begin{equation*}
\rho(K)=\rho\left(K_{1}\right)+\ldots+\rho\left(K_{m^{2}}\right) \tag{1}
\end{equation*}
$$

Since $c=\operatorname{Min}|w|$ is positive by our assumption, there is, by the uniform continuity of w, a positive number ε such that

$$
\left|z_{1}-z_{2}\right|<\varepsilon \text { implies }\left|w_{1}-w_{2}\right|<c / 2
$$

where $w_{i}=z_{i}-f\left(z_{i}\right)(i=1,2)$.
If we take in such a way $m>2 \sqrt{ } 2 / \varepsilon$, then for any z and z^{\prime} in K_{i} we have $\left|w-w^{\prime}\right|<c / 2$; therefore w lies in the circle with center w^{\prime} and radius $c / 2$, which does not involve the origin. Therefore for such a number m we have $\rho\left(K_{i}\right)=0\left(i=1,2, \ldots, m^{2}\right)$. Accordingly $\rho(K)=0$ by (1). This con-
tradicts the above consequence $\rho(K)=2 \pi$. Hence there exists a fixed point.
2. Case $n \geqq 3$. We denote a point in a real Euclidian n space by $X=$ $\left(x_{1}, \ldots, x_{n}\right)$ and define $\|X\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. The sum of any two points $X=\left(x_{i}\right)$ and $Y=\left(y_{i}\right)$ is defined as $X+Y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.

We assume f maps continuously a sphere $\|X\| \leqq 1$ into itself.
It is easily seen that if a certain extension \bar{f} of f which is defined by the following formulas has a fixed point, this point is also fixed under the original f, and vice versa:

$$
\bar{f}(X)= \begin{cases}f(X) & \text { if }\|X\| \leqq 1 \\ f(X /\|X\|) & \text { if }\|X\| \geqq 1\end{cases}
$$

To see the existence of a fixed point for \vec{f}, we consider the regularisation \bar{f}_{δ} of \bar{f} defined by

$$
\overline{f_{\delta}}(X)=\int_{\mid \forall Y \backslash \leqq \delta} \bar{f}(X+Y) d V \mid \int_{|,| \leqq \delta} 1 d V, d V=d y_{1} \ldots d y_{n}, \quad 0<\delta<1 .
$$

$f_{\delta}(X)$ tends uniformly to $\overline{f(X)}$ when δ tends to 0 . Furthermore we have $\left\|\overline{f_{\delta}}(X)\right\| \leqq 1$ for any allowable δ.

Now assume that $\overline{f_{\delta}}$ has a fixed point $X(\delta)$ for every δ, then, the compactness of the unit sphere gives rise to the existence of a positive decreasing sequence $\left\{\delta_{n}\right\}$ such that $\lim _{n \rightarrow \infty} X\left(\delta_{n}\right)$ exists. Next, in view of the uniform convergence of $\left\{f_{\delta_{n}}(X)\right\}$ together with the continuity of $f(X)$, it follows that $X_{0}=$ $\lim \boldsymbol{X}\left(\delta_{n}\right)$ is a fixed point of \bar{f}.

Hence, the problem is reduced to show that $\overline{f_{\delta}}$ has a fixed point. Noting that every coordinate of \bar{f}_{δ}, the regularisation of \bar{f}, has partial derivatives of the n-th order and replacing $\overline{f_{\delta}}$ by f for simplicity of notation, we may assume, without loss of generality, that
f is a continuous mapping from an n space R^{n} into the unit sphere $\|X\|$ $\leqq 1$, and every coordinate y_{i} of $f(X)$ has partial derivatives of the n-th order, consequently $\frac{\partial^{«} y_{i}}{\partial x_{j} \partial x_{k}}=\frac{\partial^{2} y_{i}}{\partial x_{k} \partial x_{j}}$ holds.

We proceed to the next step of our proof. For every \boldsymbol{X} such that $\boldsymbol{X} \neq$ $\varepsilon f(X)$ where $|\varepsilon|<1.5$, we define $f(X \mid \varepsilon)$ by

$$
\begin{equation*}
f(X \mid \varepsilon)=\frac{X-\varepsilon f(X)}{\|X-\varepsilon f(X)\|} \tag{1}
\end{equation*}
$$

The function $f(X \mid \varepsilon)$ has evidently derivatives of the n-th order and is continuous with respect to (X, ε) whenever it is defined. Moreover it is a regular function of ε.

Since $X-\varepsilon f(X)$ does not vanish on the surface of the cube $K:\left|x_{1}\right| \leqq 2$, $\ldots .,\left|x_{n}\right| \leqq 2, f(X \mid \varepsilon)$ is continuous there. Take a point $X_{i}=\left(x_{1}, \ldots, x_{n}\right)$ and consecutive $n-1$ points

$$
X_{j}=\left(x_{1}, \ldots, x_{j}+d x_{j}, \ldots, x_{n}\right) \quad(j=1, \ldots, i-1, i+1, \ldots, n)
$$

lying on the surface S_{i} of K defined by $x_{i}=2$. We calculate the limit of the ratio of the volume of a tetrahedron with vertices $f\left(X_{1} \mid \varepsilon\right), \ldots, f\left(X_{n} \mid \varepsilon\right)$ and 0 , to that of another tetrahedron with vertices X_{1}, \ldots, X_{n} and 0 . If we put $f(X \mid \varepsilon)=\left(y_{1}, \ldots, y_{n}\right)$ and $D\left(y_{j} / x_{k}\right)=\partial y_{j} / \partial x_{k}$, this limit is given by

$$
\begin{aligned}
& \frac{1}{n!}\left|\begin{array}{ccccc}
y_{1}+D\left(y_{1} / x_{1}\right) d x_{1} & \vdots & y_{1} \\
\vdots & \vdots & \vdots & y_{1}+D\left(y_{1} / x_{n}\right) d x_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
y_{n}+D\left(y_{n} / x_{1}\right) d x_{1} & \vdots & y_{n} & \vdots & y_{n}+D\left(y_{n} \mid x_{n}\right) d x_{n}
\end{array}\right|: \frac{1}{n!}\left|\begin{array}{cccc}
x_{1}+d x_{1} & \vdots & x_{1} & \vdots \\
\vdots & \vdots & \vdots & x_{1} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n} & \vdots & x_{n} & x_{n}+d x_{n}
\end{array}\right| \\
& =\frac{1}{2} \left\lvert\, \begin{array}{ccccc}
\boldsymbol{D}\left(y_{1} / x_{1}\right) & \vdots & \bar{y}_{1} & \vdots \\
\vdots & \vdots & \vdots & \vdots & \left.y_{1} / x_{n}\right) \\
\vdots & \vdots & \vdots & \vdots
\end{array} \quad\left(x_{i}=2\right) .\right.
\end{aligned}
$$

We define for every X such that $X \neq \varepsilon f(X)$

$$
\boldsymbol{F}^{v}(X \mid \varepsilon)=\left|\begin{array}{ccccc}
\boldsymbol{D}\left(y_{1} / x_{1}\right) & \vdots & y_{1} & & \tag{2}\\
\vdots & \vdots & \vdots & \vdots & \boldsymbol{D}\left(y_{1} / x_{n}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\boldsymbol{D}\left(y_{n} / x_{1}\right) & \vdots & y_{n} & \vdots & \boldsymbol{D}\left(y_{n} / x_{n}\right)
\end{array}\right| .
$$

As the height of the latter tetrahedron is $2, F^{y}(X \mid \varepsilon)_{x_{i}=2}$ is just the ratio by which the area element at X_{i} on S_{i} is magnified under the mapping $f(X \mid \varepsilon), f(X \mid \varepsilon)$ being regarded as a mapping from S_{i} on the surface of the unit sphere. In a similar manner, $-F^{v}(X \mid \varepsilon)_{x_{1}=-2}$ is the corresponding magnifing ratio for area elements under the mapping $f(X \mid \varepsilon)$ from S_{i}^{\prime} defined by $x_{i}=-2$ on the surface of the unit sphere.

Since $f(X \mid 0)=X /\|X\|$ maps homeomorphically the surface of K on that of unit sphere and, as is easily shown, $F^{r}(X \mid 0)_{x_{i}=2} \geqq 2 /(2 \sqrt{n})^{n}$ and $-F^{i}(X \mid$ $0)_{x_{i}=-2} \geqq 2 /(2 \sqrt{n})^{n}$ hold, $F^{t}(X \mid \varepsilon)_{x_{i}=2}$ and $-F^{i}(X \mid \varepsilon)_{x_{i}=-2}$ are also positive for ε sufficiently near 0 , and consequently for such a small $\varepsilon, f(X \mid \varepsilon)$ is a homeomorphism from the surface of K on that of the unit sphere. For every image point is an inner point and the set of all image points must be closed as the image of a compact set, and therefore the image of the surface of K is the surface of the unit sphere. Therefore we have for small ε

$$
\begin{equation*}
\sum_{i=1}^{n} \int \ldots \int\left\{F^{\psi}(X \mid \varepsilon)_{x_{i}=2}-F^{v}(X \mid \varepsilon)_{x_{i}=-2}\right\} d x_{1} \ldots . d x_{i-1} d x_{i+1} \ldots . d x_{n}=\text { const. } \tag{3}
\end{equation*}
$$

where the constant equals to the area of the surface of the unit sphere.
If we use a complex number ξ instead of real number $\varepsilon, f(X \mid \xi)$ can be defined by the same formula as (1) whenever $X \neq \xi f(X)$, where $\|X-\xi f(X)\|$
denotes a complex number $\left\{\sum\left(x_{i}-\xi f_{i}(X)\right)^{2}\right\}^{1 / 2}$. Though we must determine, in a precise consideration, which value $\left\{\sum\left(x_{i}-\xi f_{i}(X)\right)^{2}\right\}^{1 / 2}$ represents, we define the value only for X and ξ such that $\|X\|>1.8$ and $|\xi|<1.7$, because we use X near the surface of K. For any X such that $\|X\|>1$. 8, we define $\left\{\sum\left(x_{i}-\xi f_{i}(X)\right)^{2}\right\}^{1 / 2}$ in such a way that it represents a regular function which takes a positive number at $\xi=0$. Thus if $\|X\|>1.8$ holds, coordinates $y_{j}=y_{j}(X \mid \xi)$ of $f(X \mid \xi)$ are, as is easily seen, regular in a circle $|\xi|<1.7$ and continuous with respect to (X, ξ) in this region. Moreover $y_{j}(X \mid \xi)$ has, as is easily shown by our assumption, partial derivatives $D\left(y_{j} / x_{k} \mid \xi\right)=\frac{\partial y_{j}(X \mid \xi)}{\partial x_{k}}$ continuous with respect to ($\boldsymbol{X}, \boldsymbol{\xi}$) in the same region.

Now, we will show that $D\left(y_{j} / x_{k} \mid \xi\right)$ is analytic. Denoting $X=\left(x_{1}, \ldots\right.$, x_{n}) and $Y=\left(x_{1}, \ldots, x_{k}+\Delta x_{k}, \ldots x_{n}\right)$, the Cauchy's integral formula gives us, for every ξ such that $|\xi|<1.6$,

$$
\frac{y_{j}(Y \mid \xi)-y_{j}(X \mid \xi)}{\Delta x_{k}}=\frac{1}{2 \pi i} \int_{C} \frac{1}{\zeta-\xi} \frac{y_{j}(Y \mid \zeta)-y_{j}(X \mid \zeta)}{\Delta x_{k}} d \zeta
$$

where C denotes a circle with a center 0 and radius 1.6. When Δx_{k} tends to zero, the integrand of the right side tends to $\frac{D\left(y_{j} / x_{i n} \mid \zeta\right)}{\zeta-\xi}$ uniformly with respect to ζ on C. Therefore we have

$$
D\left(y_{j} / x_{k} \mid \xi\right)=\frac{1}{2 \pi i} \int_{C} \frac{D\left(y_{j}\left|x_{k}\right| \zeta\right)}{\zeta-\xi} d \zeta
$$

Hence $D\left(y_{j} / x_{k} \mid \xi\right)$ is a regular function of $\xi(|\xi|<1.6)$, as was to be shown.
Thus $D\left(y_{j}\left|x_{k}\right| \xi\right)$ is continuous with respect to (X, ξ) and regular with respect to ξ. Replacing $D\left(y_{j} \mid x_{k}\right)$ by $D\left(y_{j}\left|x_{k}\right| \xi\right)$ in (2), we define $F^{*}(X \mid \xi)$ in the same way. Then $F^{i}(X \mid \xi)$ is continuous with respect to (X, ξ) on the region defined by $\|X\|>1.8$ and $|\xi|<1.6$, and regular in $|\xi|<1.6$. Therefore $F^{i}(X \mid \xi)_{x_{i}=\text { e }}$ is also regular in $|\xi|<1.6$ and continuous with respect to (X, ξ) when X ranges on the surface S_{i} of K. By an analogous method as above which depends only on the Cauchy's integral formula and on the theory of uniform convergence, we can show that

$$
\int . \int F^{i}(X \mid \xi)_{x_{i}==} d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{i n}
$$

is regular in $|\xi|<1.5$, integral domain being $-2 \leqq x_{j} \leqq 2, j=1,2, \ldots$, $i-1, i+1, \ldots, n$. By the similar consideration, we know that

$$
\begin{equation*}
\sum_{i=1}^{n} \int . . \int\left\{F^{i}(X \mid \xi)_{x_{i}=2}-F^{v}(X \mid \xi)_{x_{i}=-2}\right\} d x_{1} \ldots . d x_{i-1} d x_{i+1} \ldots . . d x_{n} \tag{4}
\end{equation*}
$$

is regular in a circle $|\xi|<1.5$.
Since (3) holds for every real ε sufficiently small, the representation (4) equals to a constant in $|\xi|<1.5$ by a well-known property of analytic functions. Putting $\xi=1$ in (4), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \int . \int\left\{F^{i}(X \mid 1)_{x_{i}=2}-F^{i}(X \mid 1)_{x_{i}=-2}\right\} d x_{1} \ldots . d x_{i-1} d x_{i+1} \ldots d x_{n} \neq 0 . \tag{5}
\end{equation*}
$$

It will be shown that, if f has no fixed point, the left side of (5) is zero. In fact, if f has no fixed point, then $F^{y}(X \mid 1)$ is defined and has continuous derivatives everywhere by our assumption. Therefore the left side of the representation (5) equals to

$$
\sum_{i=1}^{n} \int . . \int_{\mathbf{K}} \frac{\partial F^{i}(X \mid 1)}{\partial x_{i}} d x_{1} \ldots d x_{n}=\int . . \int_{K} \sum_{i=1}^{n} \frac{\partial F^{i}(X \mid 1)}{\partial x_{i}} d x_{1} \ldots . d x_{n} .
$$

Denote Δ_{j}^{i} the determinant which is obtained by differentiating the j-th column of $F^{i}(X \mid 1)$ with respect to x_{i}, then we have

$$
\sum_{i=1}^{n} \frac{\partial F^{v}(X \mid 1)}{\partial x_{i}}=\sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_{j}^{i}=\sum_{i=1}^{n} \Delta_{i}^{i},
$$

because $i \neq j$ implies $\Delta_{j}^{i}=-\Delta_{i}^{j}$ as is easily shown. Since $y_{1}^{2}+\ldots+y_{n}^{2}=1$ implies $\Delta_{i}^{i}=0$, we have

$$
\sum_{i=1}^{n} \frac{\partial F^{i}(X \mid 1)}{\partial x_{i}}=\sum_{i=1}^{n} \Delta_{i}^{t}=0 .
$$

Hence if f has no fixed point, the left side of the representation (5) vanishes. This contradicts (5). Therefore f has a fixed point.

