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The purpose of this paper is to supplement the theory of invariants of
W+-algebras accomplished by {11, [5], [6], [9] and [10] etc., with some
considerations and to show some spatial isomorphism theorems.

Through the following discussion M" denotes the center of a W*-algebra
M on a Hilbert space H. We denote by z(e) the central envelope of a pro-
jection e. By an isomorphism, we mean a *-preserving isomorphism.
Q denotes always the spectrum of M" and Q.r the spectrum of Me.

1. Definition of the Invariant. We employ the invariant of M in the
same sense as in Pallu de la Barriere [1] if M is finite with finite com-
mutator and denote it by C().

Next, let M be a W=*-algebra and a an infinite cardinal. A central
projection e is called a homogeneous projection of type F, if it is a “projection
of type S,” in the sense of Griffin [5] and “projection de uniforme d’ordre a”
in [1] and e is called a homogeneous projection of type C, if it is an “«a-
dimensional projection” in the sense of Griffin [6] and “homogeneous projection
of order a” in Suzuki [13].

The following multiplicity theorem of a W*-algebra is well known (cf.

[11, [5], [6], [13D.

THEOREM 1. Let M be a W*-algebra on a Hilbert space H and 7w, (resp.
ary) the set of infinite cardinal « for which there exists a homogeneous projection
of type F,, (resp. Cn). Then there exists a family of orthogonal central projec-
tions {eu}tuce, (resp. {es)gens) Such that

1= e + Zmem €q + 2351{383

where et € 7w, or ) IS a maximal homogeneous projection of type F. or of
type C, and e; a maximal central finite projection. This decomposition is unique.

We denote by K, an open and closed set in  corresponding to e, in
Theorem 1. A function p(¢) defined on a dense open set Uaepnyumumn Ks in Q
is called the algebraic invariant of M, if

)=« for t € K.

Now let {pi, .} be an orthogonal central decomposition where M,, is finite
with finite commutator and M,, does not contain such coupled component.

Denote by C(¢), p(t), and p'(#) the invariant of M,, the algebraic invariants

1) This is a part of the author’s graduation thesis in March 1957.
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of M,, and M,, respectively. p(¢) and p'(#) are defined on dense open sets
Q;, Qs in Qpa. :
We define the invariant of M as follows;
C@) = C@) for + € Qpm
= (p(),P@)) for t € Q; N Q,,
where (p(¢), p'()) means a formal coupled function on £, N Q.. C(#) is defined
on a dense open set of (.

9. Spatial Isomorphism Theorem. The following lemma is due to Pallu
de la Barriére [1].

LEMMA 1. Let M be a finite W*-algebra with finite commutator and C(t)

the invariant of M. For any projection ¢ € M’, let C‘;fy(t) be the invariant of
M. Then we have
Coult) = C(t) e" (2) for all t € Qoyand C(t) % .

LemMA 2. Let M, and M, be properly infinite W*-algebras on each Hilbert
space H, and H, with finite commutators and 6 an isomorphism between them.
There exists a continuous function 7y(t) defined on the common spectrum Q of
M i=1,2 and ranging over [0, ] such that for any finite projection e € M,

Cowyns(t) = y&)Com(t) for all t € Qom, = Qogeym,
where ayl(t) and 60(5)[12(,) are the invariants of My, and M-

Proor. By J. Dixmier [4: Proposition 2] one can easily verify that there
exists a W*-algebra N on a Hilbert space K and two projections f,f, in N
whose central eavelopes are the identity such that § may be identified with
the isomorphism

0:a;—a, for all @ € N.

Thus, we can assume that M, =N,, M:=N,. Since f; ({=1,2) are
finite, fj =/]V f, is finite, too. Take a finite projection e € N,;. Without loss
of generality we may assume that z(¢) = 1 in N, (i.e. =f;). We find a pro-
jection ¢, € N with e = ¢f;; ¢, is finite in N with 2(e) =1. As N, and
Ny, are finite, we can consider canonical applications §; and B, in N, and
Ny, respectively. Then, applying lemma 1 to N, we have

Com(t) = Cogt(t) = Cugpre(t X0 )1(t)
Coyi(t) = Cogiilt) = Cogryxi2) (€0 S3)(2E)

for ¢ € Qeyix = Qeyryx such as Copr(t) + oo. Since N’y is isomorphic to N,
we get the identification (ef})2 = f{" (i = 1,2). Moreover, byian isomorphism
between Ny and N, we get the further identification, that is, {f}"()}i-1,2
can be considered as continuous functions on Q.. Therefore putting () =
72(t)/f{(t), we have a continuous function on Q.. Q.E.D.

We are now going to prove our main
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THEOREM 2. Let M, and M. be W*-algebras and 0 an isomorphism
between them. By the isomorphism 0 we may identify two spectra Q. Q. of
M}, M} respectively. Suppose M, and M, have the same invariant C(t). Then

1° i Ct) =+ (a,1) for all infinite cardinal «, 6 is spatial,

2° i Ct) = (a,1), and <(t) =1, then @ is spatial.

Proor. Following the same notations as in the proof of Lemma 2 we

may assume

0: a; — ay, for allae N
where z(f"1) = 2(f;’) = 1. Hence, to prove 6@ being spatial is reduced to prove
that fi" ~f;" mod N’, so that it suffices to prove this fact in the following
cases, separately.

Case (1°) C(¢) =+ (a, 1).

a. fi', /i are finite. In this case Ny is finite, otherwise this yields an
excluded case. fy’ =/’ V /. is finite, too. Since Np' becomes finite we have,
by lemma 1 applying to Ny,

Cix(®) = Co/t)[(t) and Cr(t) = Crx()fXt)

for t € Q/and C () + oo. Therefore f'(¢) =f}(¢) for such z. But as Ny, is
isomorphic to Ny, we get f{(2) = f,X¢) over a dense oren set in Qyx, Whence
=1t We get f{ ~f, mod Ny, fi' ~f, mod N’

b. fi’, f, are homogeneous projections of type Cg, in N';; aud N,. We
may assume that NV, ( = 1,2) are countably decomposable, so that S and f,
are countably decomposable in N’. Then we have

fi= >e, with e, <f, mod N'.
n=1

On the other hand we may write f, = 2 fan Where f, ~f,, for all n. There-

n=1

fore f;<f,; by symmetry it follows f; ~f, mod N'.

c. f, f; are homogeneous projections of type F, (or Cx) in N; (7= 1,2).
(In case of type C, we assume « > &,). We may consider as in case b,
that N} are countably decomposable for 7 = 1,2. Then we can find an infinite
family {e}is of orthogonal, equivalent, finite (resp. cyclic) projections in N,
such that f] = ZM ¢;, where the cardinal of 7 is «. Now take a fixed projec-
tion e; and a central projection g such that ge; > gfy’ and (1 —gle;, <A —g)
f'. In both cases ge; >-gfy is impossible except for g = 0. Hence ¢; <f£,.
Take a maximal family {E}}_w of orthogonal, equivalent, finite (resp. cyclic)
projections such that e; is contained in £’ and equivalent to ¢/. Notice that
we may consider J as an infinite index set. Then we can choose a central

projection % such that E_ielhz;~ hf, 0. Therefore the cardinal of J is a,
which implies that /; = >, € ~ 2,6,72}<f;. By symmetry, this shows /] ~f,
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mod N

Casz (2°), C@¢) = (a, 1).

Put f, =]V /, then fj is finite. If () =1, f{ ~f, mod N from the
definition of <(¢). Hence /, ~f, mod N’. Q.E.D.

A spatial isomorphism between two W+*-algebras also induces an iso-
morphism b:tween their commutators and these two isomorphisms coincide
each other on the center. For the inverse statement we get

THEOREM 3. ZLel M, and M, be W*-algebras which do not contain such
coupled combponents as (11.,11,) and (I1,,11,). Suppose that 6 and 6 are iso-
morphisms betwezn M, and M., M, and M, respectively and coincides each other
on the center of M,. Then 0 is spatial.

For the proof we need the following

LeMMA 3. Let M, and M, be W+-algedras with commutative commutators.
Then any isomorphism betwezn M, and M. is spatial.

Proor or THEOREM 3. Without loss of generality we may restrict our proof
to each separated couplzd components which (M, M,) contain. But since,
except for the cases of (/., finite) and (finite and typ: 7, finite), the invariant
of M, is constructed by couplings cf algebraic invariants and theorem 2 may
be applicable it is sufficient to deal with the above excluded cases. Now take
an abelian projection e of M, with z(e) = 1. Then 6 induces an isomorphism
0, between M, and M. For the commutator of M,, we define 6, as 6,(a.)
= @'(a@’)6(e). Then one verifies easily that this is an isomorphism between M,
and M.;,. By lemma 3, 6, is spatial. Moreover 6, is also spatial because
My, = Mj,. Hence Coynt) = Com(?) for t € Qum, = Qaym. Therefore, if it is
the case of (1., finite) ¥(¢) = 1 on Q.s, by.-Lemma 2. But, as z(e) == 1 we have
y(¢) =1 on Q. That is, 6 is spatial. If M, is finite and type I with finite
commutator we have C,,, (t) = C,, n(2), where C,,,(2), C, () denote the in-
variants of M;, and M,,,. By lemma 1 applying M; and M, we get

C,u(t) = C/(t)e\(t) for t € Q. and Ci(t) * o,
Cooym(t) = Ci(t.0.eft) for t € Qyeyn, and Cy(t) + oo.
Therefore we gat C,(¢) = Cy(t)on Q considering z.e) = 1, which implies C(¢)

= Cy(t). Hence @ is spatial.

REMARK. Theorem 3 fails in the excluded cases. In the case of (11, II)),
take a standard approximately finite factor M on a separable Hilbert space
H. Let R%be a two-dimensional Euclidean space and construct H &) K% tensor
product of H and R% Coasider an ampliation from M to M &1 over H ) R2
Then (M ® 1) = M’ ¥ B(R?) is also an approximately finite factor by Misonou
[10], and so (M X 1Y is isomorphic to M’. Thus M is coupled isomorphic to
M®1 in the sense of theorem 3. But Cit) = 2Ci(t) = Ci(t) where C(¢) and

‘Cy(¢) denote the invariants of M ()1 and M respectively, whence M is not
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spatially isomorphic to M & 1. In the case (I1., II,), we shall only refer to
the paper [14], [7] (an example of the W*-algebra with a non-unitarily
induced center-elementwise-invariant automorphism).
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