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1. Introduction. I seki [5] has shown that a lattice L is distributive if
and only if every meet irreducible ideal of L is prime. A trivial extension of
Iseki's proof yields the result that a lattice L is distributive if and only
if every completely irreducible ideal is prime. The main purpose of this
note is to obtain a more general form of the latter theorem in which we do
not assume the existence of any lattice operations in L. i.e., we obtain
a necessary and sufficient condition that an arbitrary partially ordered set
be a distributive lattice. Our criterion reduces to that of Iseki when the
existence of the lattice operations in P is assumed. Our main tool is the
concept of a "dual imbedding operator" (for the basic properties of imbedding
operators see [2, 4, 6, 7]) which we use to obtain a generalization of a repre-
sentation theorem of Birkhoff and Frink [1J. Our main result is then deduced
as a consequence of this representation theorem. As a corollary of our result,
we obtain, without employing the lattice operations, a characterization of
a Boolean algebra in terms of its order properties.

2. Preliminaries. Let P be a partially ordered set with respect to a
relation <Ξ. We assume always that P contains least and greatest elements
0 and I respectively. We shall make fundamental use of the following concept.

DEFINITION. Let ψ be a function on the set 2P of all subsets of P into
2P. We say that ψ is a dual imbedding operator on P if and only if

(i) A c ψ ( A ) for all A c P ,
(ii) AdB implies ψ(A) cψ(B),
(iii) ψ [ψ(A)] = ψ(A) for all AczP,
(iv) If {x} denotes the set consisting only of the element x of P, then

Ήί*}) = {y <Ξ P\y ^ *>•
If ψ(A) = A, we say that A is a ψ-ideal of P. The set {y ζ P\y > x} is

a ψ -̂ideal for any dual imbedding operator ψ, and will be denoted by Jx. It
is readily verified that if A is a ^-ideal of P and x € A, then JxdA. A ψ-
ideal A is completely irreducible if and only if A Φ P and A is not the inter-
section of any set of ψ-ideals, each distinct from A. A dual imbedding
operator Ψ is called inductive if and only if for any chain 2ί of ^-ideals,
U{A|A € 51} is a ψ-ideal (properties of such operators are discussed in [6]).
A standard application of Zorn's lemma yields the following result.

LEMMA 1. If ψ is an inductive dual imbedding operator on P, and K is a
ψr~ideal not containing the element x of P, then there exists a ψ-ideal M such
that Kcz M and M is maximal with respect to not containing x.
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We also need the following lentna, the dual of which is proved in \6
Lemma G],

LEMMA 2. A ψ-ideal M in P is completely irreducible if and only if there
exists x 6 P such that M is maximal with respect to not containing x.

If S c P , let S* = {y € P\y ^ x for all xe S}, and let S+ = {y € P\y ^
x for all xζ S}. We write S+* for the set (S+)*. If S consists only of the
two elements {x,y}, we write {x,y}* for S*.

We define an operator λ on an arbitrary partially ordered set P as
follows:

\(A) = U {F+*|F is a finite subset of A}.

It is readily verified that λ is an inductive dual imbedding operator (the λ-
ideals are precisely the dual ideals of Frink [3]). If P is a lattice, its λ-ideals
are simply its dual ideals in the usual sense i. e., λ(A) is the dual ideal
generated by A.

We say that two partially ordered sets P and P are isomorphic if and

only if there exists a 1 : 1 mapping/ of Ponto P such that/(α) %f{b) if and
only if a^b.

We now obtain a representation theorem which generalizes a result of
Birkhoff and Frink [1 Theorem 11, p. 307]. Let Ω{ψ), or simply Ω, denote
the set of all completely irreducible ^-ideals of P. Let the set 2Ω of all
subsets of Ω be partially ordered by set inclusion. For each x 6 P, let Tφ(x)
= {M€ n\xe M}. Then we have

THEOREM 1. If ψ is an inductive dual imbedding operator on P, then the
mapping x -> Tφ(x) is an isomorphism of P into 2Ω.

PROOF. TO show that the above mapping is 1:1, suppose that xζ P,
y ζ P, and x Φ y. Then either x4pjv or y $ Jx. Suppose the latter : then by
Lemma 1 there exists a ψ*-ideal M ID/» such that ikfis maximal with respect
to not containing^. By Lenrna 2, M € Ω,'ψ). ThusiM 6 Tψ(χ) but M $ Tφ(y\
and hence Tφ(x) 4= Tψ(y).

We now show that this mapping is an isomorphism. Clearly x 2 y implies
Tφ(x) a Tψ(y). Furthermore, suppose that Tψ(x) c Tφ(y), and that x^y. Then
y ί Λ, and there exists M € Ω(ψ ) such that MZDJX and jy ί M. But then
M € Tφ(x), M $ TψM a contradiction. Hence the theorem is proved.

We shall also need the following definition.

DEFINITION. A subset S of a partially ordered set P is prime if and only
if {x, y}* d S implies x € S or y € S. S is copήme if and only if {#,jy}+ c S
implies # € S or y € S.

3. Main theorem. We are now ready to state our main result. If M
c= P, let M! denote the complement of M with respect to P.

THEOREM 2. A partially ordered set P is a distributive lattice if and only
if there exists an inductive dual imbedding operator ψ on P such that every
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set 9JI of completely irreducible ψ-idzals satisfies
(i) U {M\M e 3Jt} is prime, and
(ii) U {M\M e 2Jί} is copήme.

PROOF. TO prove the necessity of the condition, we need only note that
if P is a distributive lattice the inductive dual imbedding operator λ, defined
above, satisfies (i) and (ii).

To prove the sufficiency, let ψ be an inductive dual imbedding operator
on P satisfying (i) and (ii), and let Ώ denote the set of all completely irre-
ducible ψ-ideals. For each x<£ P, let T(x) = {Me Ω | # € M}. By Theorem
1, the mapping x—>T(x) maps P isomorphically onto a subset P of 2Ω. Let
us denote set union and interesection by U and fl respectively.

We first show that P is closed with respect to U. Let xe P, y e P, and
let K= {x,y}*. We shall show that there exists re K such that T(r) = T(x)
U T(y). Clearly the relation T(T)ZDT(X) U T(y) holds for all reK Let us
assume that the reverse inclusion, T(rj cz T(x) U T(y) fails to hold for all
re K. Then for each reK, there exists Mr € T(r) such that x $ Mr and
y $ Λfr. Let S = U {Λfr|r 6 #} . Then iΓ = '{x,y}* cz S. Since by hypothesis
S is prime, we must have x € S or ^ € S. But then # € Mr for some r, or
y e Mr for some r; a contradiction.

We now show that P is also closed with respect to fl Let x e P, y e P,
and let / = {x,y}+. We shall show that there exists rej such that T(r) =
T(x) Π T(y). The relation T(r) cz T(x) f] T(y) holds for all rej Let us assume
that the reverse inclusion fails to hold for all rej Then for each

there exists Mr € T(x) (Ί T(y) with r $ ΛfΓ. Hence the set / Π /^\ {M rk

is empty. Then / U(ΠM, / = / U \J Mr

f - P. Hence / = {x,y}+ cz \jMr

f.

But by hypothesis \J Mr is coprime, and hence x e \J Mr or ^ € \J M/.
But then ΛΓ $ Mi for some r or y $ Mr for some r; a contradiction.

P is thus a sublattice of the distributive lattice 2α, and hence P is a
distributive lattice. This completes the proof of the theorem.

Let us say that a partially ordered set P satisfies the descending chain
condition if and only if every infinite d-εcanding chain zv > z2 > z3 > . . . . in
P has the element 0 as a greatest lower bound. We then have the following
corollary (the obvious dual formulation is left to the reader).

COROLLARY. Let P be a parHally ordered set ivith the descending chain
condition. Then P is a distributive lattice if and only if there exists an
inductive dual imbedding operator ψ on P such that for every set 9Ji of com-
pletely irreducible ψ-ideals, \j {Mr \ M e 5W} is coprime.

PROOF. The necessity follows as before. To prove the sufiiciency, we
note that, as in the above proof, P is closed with respect to f|. To conclude
the proof we need, therefore, only to apply the following simple lemma,
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LEMMA 3. A partially ordered set P which satisfies the descending chain
condition, and which is closed with respect to f], is also closed with respect
to U

PROOF. Suppose that a € P, b ζ P and that a\j b does not exist in P.
Let c € {a, b}*. Since c Φ a \j b, there exists d € {a, b}* such that d ̂  c. But
c Π d exists in P, and c f] d€ {a, by. Hence a < c ft d < c and b < cf]d < c.
Thus for each c G {a. b}*, there exists c' 6 {a, b}* with c' < c. We can there-
fore construct an infinite descending chain Z ci {a, b}* a contradiction.

4. Characterization of Boolean algebras.

DEFINITION. A partially ordered set P is complemented if and only if for
each x € P there exists x' 6 P such that {x, xf}* = {/} and {x, xf}+ = {0}. The
element xf need not be unique.

LEMMA 4, Z#ί P be a complemented partially ordered set and K a prime
\-ideal in P ivith K Φ P. Then (i) x^K implies xf $ K for all xf, and (it)
x $ K implies x' e K for all xf.

PROOF, (i). If x € K and there exists x' € K} then {x, tf}+* = P, and hence
K= P.

(ii). Since {*, Λ/}* = {/}, we have {x, Λ/}* C iΓ for all λ-ideals K. Hence,
if K is prime, we have x € i£" or x' ζ K.

LEMMA 5. If P is a complemented partially ordered set, and every com-
pletely irreducible X-ideal of P is prime, then xf is unique for each x €Ξ P.

PROOF. Suppose that there exist two distinct complements, x{ and x/} for
some x € P. Let us suppose that χ.f φ> xγ

r. Since λ is inductive, there exists
a λ-ideal K containing X\ such that K is maximal with respect to not contain-
ing x /. K is completely irreducible, and hence prime. But x $ K, by Lemma
4. Since also &/ $ K, We have a contradiction.

Let Λ denote the set of all completely irreducible Videals of P, and let
R{x) = {M € A\x e M} for each x e P.

LEMMA 6. If P satisfies the hypothesis of Lemma 5, then R(xf) = [R(x)ϊ
for all x € P.

PROOF. Follows immediately from Lemma 4.

THEOREM 3. A partially ordered set P is a Boolean algebrj, if and only if
(i) P is complemented, and {ii) the union of any set of completely irreducible
X-ideals in P is prime.

PROOF. Assume that (i) and (ii) hold. The mapping x-^-R(x) maps P iso-
morphically onto a subset Pcz 2A. As in the proof of Theorem 2, P^is closed
with respect to U. Since, by Lemma 6, P is also closed with respect to com-
plementation, it follows that p"is a Boolean algebra. The necessity of the
conditions is well-known.
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