A CHARACTERIZATION OF DISTRIBUTIVE LATTICES

E.S. Wolk

(Received September. 25, 1957)

1. **Introduction**. Iseki [5] has shown that a lattice L is distributive if and only if every meet irreducible ideal of L is prime. A trivial extension of Is ki's proof yields the result that a lattice L is distributive if and only if every completely irreducible ideal is prime. The main purpose of this note is to obtain a more general form of the latter theorem in which we do not assume the existence of any lattice operations in L: i.e., we obtain a necessary and sufficient condition that an arbitrary partially ordered set be a distributive lattice. Our criterion reduces to that of Iseki when the existence of the lattice operations in P is assumed. Our main tool is the concept of a "dual imbedding operator" (for the basic properties of imbedding operators see [2, 4, 6, 7] which we use to obtain a generalization of a representation theorem of Birkhoff and Frink [1]. Our main result is then deduced as a consequence of this representation theorem. As a corollary of our result, we obtain, without employing the lattice operations, a characterization of a Boolean algebra in terms of its order properties.

2. Preliminaries. Let P be a partially ordered set with respect to a relation \leq . We assume always that P contains least and greatest elements 0 and I respectively. We shall make fundamental use of the following concept.

DEFINITION. Let ψ be a function on the set 2^{P} of all subsets of P into 2^{P} . We say that ψ is a *dual imbedding operator* on P if and only if

(i) $A \subset \psi(A)$ for all $A \subset P$,

(ii) $A \subset B$ implies $\psi(A) \subset \psi(B)$,

(iii) $\psi[\psi(A)] = \psi(A)$ for all $A \subset P$,

(iv) If $\{x\}$ denotes the set consisting only of the element x of P, then $\psi(\{x\}) = \{y \in P | y \ge x\}.$

If $\psi(A) = A$, we say that A is a ψ -*ideal* of P. The set $\{y \in P | y \ge x\}$ is a ψ -ideal for any dual imbedding operator ψ , and will be denoted by J_x . It is readily verified that if A is a ψ -ideal of P and $x \in A$, then $J_x \subset A$. A ψ ideal A is *completely irreducible* if and only if $A \neq P$ and A is not the intersection of any set of ψ -ideals, each distinct from A. A dual imbedding operator ψ is called *inductive* if and only if for any chain \mathfrak{A} of ψ -ideals, $\bigcup \{A | A \in \mathfrak{A}\}$ is a ψ -ideal (properties of such operators are discussed in [6]). A standard application of Zorn's lemma yields the following result.

LEMMA 1. If ψ is an inductive dual imbedding operator on P, and K is a ψ -ideal not containing the element x of P, then there exists a ψ -ideal M such that $K \subset M$ and M is maximal with respect to not containing x.

We also need the following lenma, the dual of which is proved in [6 Lemma G].

LEMMA 2. A ψ -ideal M in P is completely irreducible if and only if there exists $x \in P$ such that M is maximal with respect to not containing x.

If $S \subset P$, let $S^* = \{y \in P | y \ge x \text{ for all } x \in S\}$, and let $S^+ = \{y \in P | y \le x \text{ for all } x \in S\}$. We write S^{+*} for the set $(S^+)^*$. If S consists only of the two elements $\{x, y\}$, we write $\{x, y\}^*$ for S^* .

We define an operator λ on an arbitrary partially ordered set P as follows:

 $\lambda(A) = \bigcup \{F^{**} | F \text{ is a finite subset of } A\}.$

It is readily verified that λ is an inductive dual imbedding operator (the λ -ideals are precisely the dual ideals of Frink [3]). If P is a lattice, its λ -ideals are simply its dual ideals in the usual sense; i.e., $\lambda(A)$ is the dual ideal generated by A.

We say that two partially ordered sets P and \overline{P} are *isomorphic* if and only if there exists a 1:1 mapping f of P onto \overline{P} such that $f(a) \leq f(b)$ if and only if $a \leq b$.

We now obtain a representation theorem which generalizes a result of Birkhoff and Frink [1; Theorem 11, p. 307]. Let $\Omega(\Psi)$, or simply Ω , denote the set of all completely irreducible Ψ -ideals of P. Let the set 2^{Ω} of all subsets of Ω be partially ordered by set inclusion. For each $x \in P$, let $T_{\Psi}(x)$ = $\{M \in \Omega | x \in M\}$. Then we have

THEOREM 1. If ψ is an inductive dual imbedding operator on P, then the mapping $x \to T_{\psi}(x)$ is an isomorphism of P into 2^{Ω} .

PROOF. To show that the above mapping is 1:1, suppose that $x \in P$, $y \in P$, and $x \neq y$. Then either $x \notin J_y$ or $y \notin J_x$. Suppose the latter: then by Lemma 1 there exists a ψ -ideal $M \supset J_x$ such that M is maximal with respect to not containing y. By Lemma 2, $M \in \Omega(\psi)$. Thus $M \in T_{\psi}(x)$ but $M \notin T_{\psi}(y)$, and hence $T_{\psi}(x) \neq T_{\psi}(y)$.

We now show that this mapping is an isomorphism. Clearly $x \leq y$ implies $T_{\psi}(x) \subset T_{\psi}(y)$. Furthermore, suppose that $T_{\psi}(x) \subset T_{\psi}(y)$, and that $x \leq y$. Then $y \notin J_x$, and there exists $M \in \Omega(\Psi)$ such that $M \supset J_x$ and $y \notin M$. But then $M \in T_{\psi}(x)$, $M \notin T_{\psi}(y)$; a contradiction. Hence the theorem is proved.

We shall also need the following definition.

DEFINITION. A subset S of a partially ordered set P is prime if and only if $\{x, y\}^* \subset S$ implies $x \in S$ or $y \in S$. S is coprime if and only if $\{x, y\}^+ \subset S$ implies $x \in S$ or $y \in S$.

3. Main theorem. We are now ready to state our main result. If $M \subset P$, let M' denote the complement of M with respect to P.

THEOREM 2. A partially ordered set P is a distributive lattice if and only if there exists an inductive dual imbedding operator ψ on P such that every set \mathfrak{M} of completely irreducible ψ -ideals satisfies

(i) $\bigcup \{M | M \in \mathfrak{M}\}$ is prime, and

(ii) $\bigcup \{M' | M \in \mathfrak{M}\}$ is coprime.

PROOF. To prove the necessity of the condition, we need only note that if P is a distributive lattice the inductive dual imbedding operator λ , defined above, satisfies (i) and (ii).

To prove the sufficiency, let Ψ be an inductive dual imbedding operator on P satisfying (i) and (ii), and let Ω denote the set of all completely irreducible Ψ -ideals. For each $x \in P$, let $T(x) = \{M \in \Omega \mid x \in M\}$. By Theorem 1, the mapping $x \to T(x)$ maps P isomorphically onto a subset P of 2° . Let us denote set union and interesection by \bigcup and \cap respectively.

We first show that \overline{P} is closed with respect to \bigcup . Let $x \in P$, $y \in P$, and let $K = \{x, y\}^*$. We shall show that there exists $r \in K$ such that T(r) = T(x) $\bigcup T(y)$. Clearly the relation $T(r) \supset T(x) \cup T(y)$ holds for all $r \in K$. Let us assume that the reverse inclusion, $T(r) \subset T(x) \cup T(y)$ fails to hold for all $r \in K$. Then for each $r \in K$, there exists $M_r \in T(r)$ such that $x \notin M_r$ and $y \notin M_r$. Let $S = \bigcup \{M_r | r \in K\}$. Then $K = \{x, y\}^* \subset S$. Since by hypothesis S is prime, we must have $x \in S$ or $y \in S$. But then $x \in M_r$ for some r, or $y \in M_r$ for some r; a contradiction.

We now show that P is also closed with respect to \cap . Let $x \in P$, $y \in P$, and let $J = \{x, y\}^+$. We shall show that there exists $r \in J$ such that $T(r) = T(x) \cap T(y)$. The relation $T(r) \subset T(x) \cap T(y)$ holds for all $r \in J$. Let us assume that the reverse inclusion fails to hold for all $r \in J$. Then for each $r \in J_1$ there exists $M_r \in T(x) \cap T(y)$ with $r \notin M_r$. Hence the set $J \cap \bigcap \{M_r | r \in J\}$ is empty. Then $J' \cup (\cap M_r)' = J' \cup \bigcup M_r' = P$. Hence $J = \{x, y\}^+ \subset \bigcup M_r'$. But by hypothesis $\bigcup M_r$ is coprime, and hence $x \in \bigcup M_r'$ or $y \in \bigcup M_r'$. But then $x \notin M_r$ for some r or $y \notin M_r$ for some r; a contradiction.

P is thus a sublattice of the distributive lattice 2^{α} , and hence P is a distributive lattice. This completes the proof of the theorem.

Let us say that a partially ordered set P satisfies the *descending chain* condition if and only if every infinite descending chain $z_1 > z_2 > z_3 > ...$ in P has the element 0 as a greatest lower bound. We then have the following corollary (the obvious dual formulation is left to the reader).

COROLLARY. Let P be a partially ordered set with the descending chain condition. Then P is a distributive lattice if and only if there exists an inductive dual imbedding operator Ψ on P such that for every set \mathfrak{M} of completely irreducible Ψ -ideals, $\bigcup \{M' | M \in \mathfrak{M}\}$ is coprime.

PROOF. The necessity follows as before. To prove the sufficiency, we note that, as in the above proof, \overline{P} is closed with respect to \cap . To conclude the proof we need, therefore, only to apply the following simple lemma.

34

LEMMA 3. A partially ordered set P which satisfies the descending chain condition, and which is closed with respect to \cap , is also closed with respect to \bigcup .

PROOF. Suppose that $a \in P$, $b \in P$ and that $a \cup b$ does not exist in P. Let $c \in \{a, b\}^*$. Since $c \neq a \cup b$, there exists $d \in \{a, b\}^*$ such that $d \not\ge c$. But $c \cap d$ exists in P, and $c \cap d \in \{a, b\}^*$. Hence $a < c \cap d < c$ and $b < c \cap d < c$. Thus for each $c \in \{a, b\}^*$, there exists $c' \in \{a, b\}^*$ with c' < c. We can therefore construct an infinite descending chain $Z \subset \{a, b\}^*$; a contradiction.

4. Characterization of Boolean algebras.

DEFINITION. A partially ordered set P is complemented if and only if for each $x \in P$ there exists $x' \in P$ such that $\{x, x'\}^* = \{I\}$ and $\{x, x'\}^+ = \{0\}$. The element x' need not be unique.

LEMMA 4, Let P be a complemented partially ordered set and K a prime λ -ideal in P with $K \neq P$. Then (i) $x \in K$ implies $x' \notin K$ for all x', and (ii) $x \notin K$ implies $x' \in K$ for all x'.

PROOF. (i). If $x \in K$ and there exists $x' \in K$, then $\{x, x'\}^{+*} = P$, and hence K = P.

(ii). Since $\{x, x'\}^* = \{I\}$, we have $\{x, x'\}^* \subset K$ for all λ -ideals K. Hence, if K is prime, we have $x \in K$ or $x' \in K$.

LEMMA 5. If P is a complemented partially ordered set, and every completely irreducible λ -ideal of P is prime, then x' is unique for each $x \in P$.

PROOF. Suppose that there exist two distinct complements, x_1' and x_2' , for some $x \in P$. Let us suppose that $x_2' \Rightarrow x_1'$. Since λ is inductive, there exists a λ -ideal K containing x_1' such that K is maximal with respect to not containing x_2' . K is completely irreducible, and hence prime. But $x \notin K$, by Lemma 4. Since also $x_2' \notin K$, we have a contradiction.

Let Λ denote the set of all completely irreducible λ -ideals of P, and let $R(x) = \{M \in \Lambda | x \in M\}$ for each $x \in P$.

LEMMA 6. If P satisfies the hypothesis of Lemma 5, then R(x') = [R(x)]' for all $x \in P$.

PROOF. Follows immediately from Lemma 4.

THEOREM 3. A partially ordered set P is a Boolean algebra if and only if (i) P is complemented, and (ii) the union of any set of completely irreducible λ -ideals in P is prime.

PROOF. Assume that (i) and (ii) hold. The mapping $x \to R(x)$ maps P isomorphically onto a subset $\overline{P} \subset 2^{\Lambda}$. As in the proof of Theorem 2, \overline{P} is closed with respect to \bigcup . Since, by Lemma 6, \overline{P} is also closed with respect to complementation, it follows that \overline{P} is a Boolean algebra. The necessity of the conditions is well-known.

E.S.WOLK

References

- G. BIRKHOFF AND O. FRINK, Representations of lattices by sets, Trans. Amer. Math. Soc. 64 (1948) 299-316.
- [2] R.P. DILWORTH AND J. É. MCLAUGHLIN, Distributivity in lattices, Duke Math. J. 19 (1952) 683-693.
- [3] O.FRINK, Ideals in partially ordered sets, Amer. Math. Monthly vol. 61(1954), 223-234.
- [4] N.FUNAYAMA, Imbedding partly ordered sets into infinitely distributive complete lattices, Tohoku Math. J. 8(1956) 54-62.
- [5] K.ISEKI, A criterion for distributive lattices, Acta Math. Acad. Sci. Hungar. 3 (1952) 241-242.
- [6] G.B.ROBINSON AND E.S. WOLK, The imbedding operators on a partially ordered set, Proc. Amer. Math. Soc. 8 (1957) 551-559.
- [7] M. WARD, The closure operators of a lattice, Annals of Math. 43 (1942) 191-196.

UNIVERSITY OF CONNECTICUT.