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1. Introducticn. Iseki [5] has shown that a lattice Z is distributive if
and only if every meet irreducible ideal of Z is prime. A trivial extension of
Iseki’s proof yields the result that a lattice L is distributive if and only
if every completely irreducible ideal is prime. The main purpose of this
note is to obtain a more general form of the latter theorem in which we do
not assume the existence of any lattice operations in ZL: i.e., we obtain
a necessary and sufficient condition that an arbitrary partially ordered set
be a distributive Iattice. Our criterion reduces to that of Iseki when the
existence of the lattice operations in P is assumed. Our main tool is the
concept of a “dual imbedding operator” (for the basic properties of imbedding
operators see [2, 4, 6, 7]) which we use to'obtain a generalization of a repre-
sentation theorem of Birkhoff and Frink [1]. Our main result is then deduced
as a consequence of this representation theorem. As a corollary of our result,
we obtain, without employing the lattice operations, a characterization of
a Boolean algebra in terms of its order properties.

2. Preliminaries. Let P be a partially ordered set with respect to a
relation <. We assume always that P contains least and greatest elements
0 and I respectively. We shall make fundamental use of the following concept.

DEFINITION. Let 4 be a function on the set 2% of all subsets of P into
22, We say that Y is a dual imbedding operator on P if and only if

iy Ac(4) for all Ac P,

(ii) A < B implies Y(A) < Y(B),

- (i) YA =(A) for all A P,

(iv) If {x} denotes the set consisting only of the element x of P, then

Y({x}) = {y € Ply = x}.

If ¥ (A) = A, we say that A is a {r-ideal of P. The set {y € P|y =} is
a Yr-ideal for any dual imbedding operator VY-, and will be denoted by J,. It
is readily verified that if A isa r-idealof P and x € A, then J,C A. A -
ideal A is completely irreducible if and only if A += P and A is not the inter-
section of any set of +r-ideals, each distinct from A. A dual imbedding
operator ¥ is called inductive if and only if for any chain U of Y-ideals,
U{A|A € U} is a Y¥r-ideal (properties of such operators are discussed in [6]).
A standard application of Zorn’s lemma Yyields the following result. '

LemMmA 1. If Y is an inductive dual imbedding operator on P, and K is a
r-ideal not containing the element x of P, then there exists a V-ideal M such
that K< M and M is maximal with respect to not containing x.
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We also need the following lenma, the dual of which is proved in [6
Lemma GJ. '

LeMMA 2. A Yr-ideal M in P is completely irreducible if and only if there
exists x € P such that M is maximal with respect to not containing x.

If ScP, let S*={y€ Ply=xfor all xe S},and let S*={y€ Ply <
x for all x€ S}. We write S** for the set (S*)*. If S consists only of the
two elements {x, ¥}, we write {x,y}* for S*.

We define an operator A on an arbitrary partially ordered set P as
follows :

MA) = U {F**|F is a finite subset of A}.

It is readily verified that A is an inductive dual imbedding operator (the A-
ideals are precisely the dual ideals of Frink [3]). If P is a lattice, its A-ideals
are simply its dual ideals in the usual sense; i.e., A(A) is the dual ideal
generated by A.

We say that two partially ordered sets P and P are isomorphic if and

only if there exists a 1:1 mapping f of Ponto P such that f(e) <f(b) if and
only if a <b.

We now obtain a representation theorem which generalizes a result of
Birkhoff and Frink [1; Theorem 11, p.307]. Let Q(¥), or simply (), denote
the set of all completely irreducible Yr-ideals of P. Let the set 2¢ of all
subsets of Q be partially ordered by set inclusion. For each x € P, let Ty(x)
={M < Q|x € M}. Then we have

THEOREM 1. If Y is an inductive dual imbedding operator on P, then the
mapping x — Ty(x) is an isomorphism of P into 2°.

Proor. To show that the above mapping is 1:1, suppose that x < P,
Y€ P, and x+y. Then either x ¢ J, or y & J,. Suppose the latter : then by
Lemma 1 there existsa Y-ideal M o J, such that M is maximal with respect
to not containing y. By Lenma 2, M € Q:¥). Thus\M € Ty(x) but M & Ty(y),
and hence Ty(x) = Ty(y).

We now show that this mapping is an isomorphism. Clearly x <y implies
Ty(x) < Ty(y). Furthermore, suppose that Ty(x) < Ty(y), and that x£ y. Then
y & J,, and there exists M € Q(¥) such that M > J, and y ¢ M. But then
M € Ty(x), M &€ Ty(»); a contradiction. Hence the theorem is proved.

We shall also need the following definition.

DEFINITION. A subset S of a partially ordered set P is prime if and only
if {x,y}*<S implies x€ S or y € S. S is coprime if and only if {x,y}+* =S
implies x€ S or y € S.

3. Main theorem. We are now ready to state our main result. If M
< P, let M’ denote the complement of M with respect to P.

THEOREM 2. A partially ordered set P is a distributive lattice if and only
if there exists an inductive dual imbedding operator ¥ on P such that every
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set M of completely irreducible Vr-idzals satisfies
() U A{M|M € WM} is prime, and
(@) U {M|M €M} is coprime.

Proor. To prove the necsssity of the condition, we need only note that
if P is a distributive lattice the inductive dual imbedding operator A, defined
above, satisfies (i) and (ii).

To prove the sufficiency, Iet ¥ be an inductive dual imbedding operator
on P satisfying (i) and (ii), and let  denote the set of all completely irre-
ducible Yr-ideals. For each x& P, let T (x) = {M € Q|x <€ M}. By Theorem
1, the mapping ¥— T(x) maps P isomorphically onto a subset P of 22 Let
us denote set union and interesection by U and [ respectively.

We first show that P is closed with respectto |J. Let x€ P, y € P, and
let K = {x,y}*. We shall show that there exists » € K suca that T(») = T(x)
U T(y). Clearly the relation 7(r) > T(x) U T{y) holds for all r€ K. Let us
assume that the reverse inclusion, T{r) < T(x) U T(y) fails to hold for all
r&€ K. Then for each 7€ K, there exists M, € T(7) such that x &€ M, and
y& M, Let S= U {M,|r€ K}. Then K= {x,y}* = S. Since by hypothesis
S is prime, we must have x € S or y € S. But then x € M, for some 7, or
y € M, for some 7r; a contradiction.

We now show that P is also closed with respectto 1. Let x€ P, y € P,
and let J = {x,¥}*. We shall show that there exists » € J such that T(») =
T(x) N T{y). The relation T(») < T(x) N T(y) holds for all < J. Let us assume
that the reverse inclusion fails to hold for all &€ J. Then for each r<& J

there exists M, € T(x) N T(y) with » & M,. Hence the set J [’.\ {M,|r € J}
is empty. Then J U(NM,' =7 U\ M, = P. Hence J = {x,3}* =\ M.

But by hypothesis U M, is coprime, and henc= x € U M/’ oryé€ U M, .
But then x ¢ M, for some » or y ¢ M, for some r; a contradiction.

P is thus a sublattice of the distributive lattice 2°, and hence P is a
distributive lattice. This completes the proof of the theorem.

Let us say that a partially ordered set P satisfies the descending chain
condition if- and only if every infinite d=scanding chain z, >z, >2; > .... in
P has the eleament 0 as a greatest lower bound. We then have the following
corcllary (the obvious dual formulation is left to the reader).

COROLLARY. Let P be a pariially ordered sel with the descending chain
condition. Then P is a distributive lattice if and only if there exists an
inductive dual imbedding operator & on P such that for every set WM of com-

. pletely irreducible ¥r-ideals, \) {M'|M € M} s coprime.

Proor. The necessity follows as before. To prove the sufficiency, we

note that, asin the above proof, P is closed with respect to 1. To conclude
the proof we need, therefore, only to apply the following simple lemma, -
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LEMMA 3. A partially ordered set P which satisfies the descending chain
condition, and which is closed with respect to [\, is also closed with respect
to U.

Proor. ‘Suppose that ¢ € P, b € P and that a U b does not exist in P.
Let ¢ € {a, b}*. Since c = a U b, there exists d € {a, b}* such that 4 % ¢. But
cNdexistsin P, and ¢ N d€ {a,b}*. Hence a<cNd<cand b<cNd<c.
Thus for each ¢ € {a. b}*, there exists ¢’ € {a, b}* with ¢’ < c. We can there-
fore construct an infinite descending chain Z < {a, }*; a contradiction.

" 4. Characterization of Boolean algebras.

DEFINITION. A partially orde-ed set P is complemented if and only if for
each x € P there exists ¥ € P such that {x, ¥}* = {I} and {x,x}* = {0}. The
element & need not be unique.

LEMMA 4, Let P be a complemented partially ordered set and K a prime
A-ideal in P with K =+ P. Then (i) x € K implies ¥ & K for all x', and (i)
x & K implies ¥ € K for all x'.

Proor. (i). If x € K and there exists x’ € K, then {x, ¥}** = P, and hence
K=P

(ii). Since {x, ¥}* = {I}, we have {x «'}* < K for all A-ideals K. Hence,
if K is prime, we have x€ K or v’ € K.

LeEMMA 5. If P is a complemented partially ordered set, and every com-
pletely irreducible \-ideal of P is prime, then x' is unique for each x & P.

Proor. Suppose that there exist two distinct complemnents, x,’ and x,’, for
some x € P. Let us suppose that %’ 3>x,’. Since A is inductive, there exists
a A-ideal K containing x,’ such that K is maximal with respect to not contain-
ing x’. K is completely irreducible, and hence prime. But x ¢ K, by Lemma
4. Since also %’ ¢ K, we have a contradiction.

Let A denote the set of all completely irreducible x-ideals of P, and let
R(x)={M € Alx € M} for each x € P.

LeMMA 6. If P satisfies the hypothesis of Lemma 5, then R(x') = [R(x)]
for all x € P.

Proor. Follows immed ately from Lemma 4.

THEOREM 3. A partially ordered set P is a Boolean algebra if and only if
(z) P is complemented, and (ii) the union of any set of completely irreducible
A-ideals in P is prime.

Proor. Assume that (i) and (ii) hold. The mapping x— R(x) maps P iso-
morphically onto a subset P < 24. As in the proof of Theorem 2, P is closed
with respect to |J. Since, by Lemma 6, P is also closed with respect to com-

plementation, it follows that P is a Boolean algebra. The necessity of the
conditions is well-known.
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