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Among various notions of the modern ring theory the idea of the
crossed product of an algebra by its group of automorphisms is seemed to
be not yet explicitly introduced. J.von Neumann's method of construction
of the example of factor shows us the possibility and the way of introducing
this notion.

In this paper, we define this notion in a C*-algebra (§ 1), in a unitary
algebra (§ 2), and in a special TF*-algebra (§ 3). We shall mainly concern
with the representation of the crossed product, and finally show that some of
the examples of factors by von Neumann can be considered as our just defined
crossed product (§4). We only interpretate the von Neumann's example

from the view-point of the crossed product, and we don't discuss further
problems, for example, "For what kind of T7*-algebra and its group of
automorphisms, does the crossed product produce the unknown new factor ?"
(For some of these problems, cf.N.Suzuki [4]).

1. For a (discrete) group G of the *-automorphisms of a *-algebra A,
we shall consider A-valued functions defined on G, which take 0 except a
finite subset of G, and denote any A-valued function which takes at € A at
the point at € G for each *(i=l,2, — ,m) by Σ«^ί«ί. The set © of all these
functions is clearly a linear space for the usual operations of the addition
and the scalar multiplication. Of course the zero element of © is the
function which takes 0 everywhere.

If we introduce the multiplication-operation and the *-operaΐion as
follows:

multiplication : (Σ&iOt)(Σjβjbj) =

• - o p e r a t i o n : ( 2 ) Σ

where a06 denotes the image of a by the automorphism α, then the set ©
is a *- algebra, which we call the crossed product of A by G and denote it
by (A,G).

As the mapping <z(€ A) ->£#(€( A, G)) is the * -isomorphism from A into
(A,G), where 6 denotes the unit of G, A is a *-subalgebra of (A,G).
Furthermore if A has the unit 1 then (A, G) has the unit £1.

In the following we shall study the representations of (A,G)for various
types of A. We shall begin with the following

DEFINITION 1. When ψ is a linear functional on A, we define the linear
functional lp on (A, G) as follows:
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(1 if a = 8
where δf denotes the Kronecker symbol δ£ = j Q i f α Φ β a n d W e c a l 1

the extension of <£> on (A,G)

At first if we assume that A is a C*-algebra with the unit, then we can
prove the following proposition:

PROPOSITION 1. Let Abe a C*-algebra, and G be a group of *-automorphisms

of A. If*Σ = {σ-} is a complete set1'* of positive linear functionals on A, then

2 — {σvh the set of extensions of elements of 2 ' *s a^so a complete set of

positive linear functionals on (A,G).

PROOF. Since the additivity and the homogeneity of σ' € 2 a r e obvious,

it is sufficient to show the positivity of ^ and the completeness of the set 2
Since

σ'is positive; moreover, if σ [(2«#«#«)CΣ«ΛίΛ* )*] = ® ̂ o r a ^ ^ ^

from the above computations σ-fβf1""1^**'"1) = 0 for all σ € 2 anc* « = 1,2, ..

. .m. Therefore by the completeness of 2 ' w e have aι—a%~ = am=0,

so that 2 ί α : ^ = ®> which shows the completeness of T*) on (A, G). Q. E. D.

Now, let A, G be a C*-algebra and a group of *-automorphisms of A

resp, and let 2 ' 2 ^ e a complete set of states of A and the set of ex-

tensions of elements of 2 r e s P We denote by $ the set of positive type

functionals Φ on (A, G) such that

where ? € 2 anc* 'Σjβfij *s a n arbitrary element of (A,G). If we in-
troduce a norm in (A, G) by

] 1 / 2 : φ «Ξ ? ] ,
then the completion of (A, G) by this norm is a C*-algebra, which we call

1) Cf.I.E.Segal [3].
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a u-crossed product of A by G, and we shall denote it by 5 1 = C * ( A , G , Σ )

Without the G-invariancy of the elements of 2> ft * s troublesome and

fruitless to proceed the study of C*\A,G,^J, so that in the rest of this

section we shall consider a C*-algebra A, a group G of * -automorphisms of

A and a complete state σ of A which is invariant with respect to G.

To discuss the representation of the C*-algebra 91 = C*(A, G, σ-), we
shall have a few preparatory discussions on the representation of C*-algebra
by its state.

Now, since σ is a complete state of a C*-algebra A, A can be considered
as a pre-Hilbert space, by introducing the inner product {a, b) = σ(ab*) we
shall denote by H the Hubert space obtained by the completion of A.
Moreover if we define the operator a* on A by ba* — ba, then cfi is bounded
on A, therefore a* can be extended onto H; and we denote this extension
by the same notation a#, then the mapping #->«# is a faithful representation
of A on H. We say this representation a canonical representation of A by
the state σ.

In the following we shall study the [relation between the canonical

representation of A by σ and that of (A,G) by Jr (the extension of σ ). For
this purpose we introduce the direct product Hubert space G®H of G and H
following H.Umegaki [5].

Let F(G) be the vector space of all finite-valued numerical functions on
G and F(G)®H the algebraic direct product of F(G) and H. Putting fa

the characteristic function of the point a and denoting f*®ξ as <x®ξ
conveniently, all elements a®ξ, a € G, ξ € H generate a vector subspace
of F(G) (xj H. We shall denote this subspace as IG © £Γ. For elements

2 2 f G®H, we define the inner product by

whence G 0 i7 is a pre-Hilbert space. The completion of this space, we
shall call the direct product Hubert space of G and H and denote it by
G<g)H. It is known that G®H is isomorphic to l\G)® H in the sense of
Murray-von Neumann [2].

Next, we introduce the two kinds of bounded operators on G®H:
1°. Ra (aeA): Define Ra = 1 ® a*, that is,

on the dense part G © A of G ® H. It is almost obvious that the mapping
«->i?α is a faithful representation of A on G®H.

2°. Ua (a € G): If we define U^ on G © A by the equation (2#« ® ^ ) f ; *

= 2 (α*Λ) ® *ί> t h e n U'a is bounded, so that Ua can be extended onto
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; we denote this extension by U*. As easily seen, Ua is a unitary
operator on G <g) H and the mapping a ->• U* is a unitary representation of
G on G ® if such that U^RaU* = Ra*. Moreover, by the easy computation
it follows that

and

therefore the *-algebra A which is algebraically generated by I = {Ra,

UΛ: a€A, a € G} is a set { 2 U*flat: tf* € A, α, € GJ. We denote by A
the uniform closure of A.

By means of these notations we have the following

THEOREM 1. / / A is a C*-algebm, G is a group of *-automorphisms of A
and σ is a complete state of A which is invariant with respect to G, then the
linear mapping

7r: 2 , ad at; -> 2 , Uai Rat

is an isometric representation of the crossed product {A, G) of A by G onto
the * -algebra A on the Hilbert space G(g)H.

PROOF. At first we shall show that the above correspondence is one-to-

one. Since the implication 2 Λ « a^ = ° O Σ < u«tR<κ = 0 is clear, we shall

show the converse one. If 2 Uai Raι = 0, then

Since σ- is a complete state of A, we have «i = a2 = = ^ Λ = 0, and 2 «
= 0.

That the mapping 7r is a *-homomorphism is almost obvious by con
sidering the * -operation and the multiplication in each algebra.

The isometric property of ir can be seen as follows:

where 2 ' denotes the summation over the indices such that βpcίi(Xj]β~ι=ε.

On the other hand,
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By the above computations

Σ&..&.
*») ( 2 α. * ) ( 2 α. *)* £ & *>»)* J,

therefore by the definition of norm (*)

j 2 Λ < Λ« I! - I Σ ̂  &•< I ( = operator bound).

REMARK. Since the representation π is isometric, it can be extended as
the representation of 3ί onto A we use the same notation to denote this
extension.

COROLLARY. Under the same conditions on A,G and σ as in Theorem 1,

the canonical representation of % = C*(A,G,σ) by the state Iris unitarily
equivalent to the representation IT defined in Theorem 1.

PROOF. If we define the mapping φ from (A,G) onto GQA:

then φ is linesgrSisometric. In fact.

Since (A,G)fcand G © A are dense in ξ> and G® i7 respectively, φ induces
the unitary operator from £> onto G®H, we use the same notation φ to
denote it. Whence it is easily verified, that

φ ^ Σ * ai **)!Σ« ^<^i 1Σ< ai aή
is valid on G © A 0 Since the representation 7r and the [canonical representa-
tion are both continuous, the proof is completed.

REMARK. Though in Theorem 1 and its Corollary we assume that the
C*-algebra A has a G-invariant complete state σ, we can show the similar
results, by passing the direct sum method, when A has a complete set

Σ ~ {°"} of G-invariant states but we don't enter intp #ie detail.
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2. In this section we shall develop the similar discussions for a unitary
algebra and its group of *-automorphisms.

Let A be a unitary algebra*> that is, A is an associative *-algebra over
the complex field and simultaneously A is a pre-Hilbert space with respect
to the inner product (,) satisfying the following conditions:

(1) (a, b) = (δ*, a*) (a, b € A),

(2) (ab, c) = (b, a*c) (a, b, c € A),

(3) for any a € A, the mapping b-^ ba is continuous,

(4) {ab: a, b ζ A} is dense in A.

We denote the Hubert space obtained by the completion of A by H.
The mapping b-+ba can be extended onto H by the condition (3), we

denote this extended operator by a* and call the right multiplication operator
by a. Similarly by the conditions (1), (3), the mapping b -> ab can be extended
on H and call this extended operator a* the left multiplication operator.
We call the TF*-algebra 8ί(A) [resp. 8(A)] which is generated by the right
[resp. left] multiplication operators, a right [resp. left] W*-algebra of A. At
last since the mapping a-+a* is continuous by (1), we can extend this map-
ping onto H which we denote by j, and call the involution. We can easily
show the following relations:

(abf = bb a\ a* V> - b* a*

Now let G be a group of *-automorphisms which preserve the inner
product: (Λ*, b*) = (a, b) for every a € G, a, b € A. Then since the mapping
a-ta* is continuous on A, it is uniquely extended on H, which we denote
by u{oc) thus G is a group of unitary operators on H, and satisfy the fol-
lowing relations

u[a)j = ju{a), a"# = u{ayιa*u{a)

which one can find without difficulty.

Under these assumptions, if we define the mapping φ . 2 ί <*i at -*

2e#t®<2i from the crossed product (A, G) onto the pre-Hilbert space
G®A, φ is linear and one-to-one; therefore if we define the inner product
in (A,G) by the following way:

then (A,G) becomes a pre-Hilbert space and satisfy the conditions (l)-(4) of
a unitary algebra at the beginning of this section. In fact,

Ad (1).

1) For a unitary algebra, cf. J.Dixmier: Les algebres d*opέrateurs dans Γespace >
hilbertien, Paris (1957).
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Ad (2). ((Σ«<«i)(Σ&^), *Σv*
c
κ) = Έ

Ad(3). (Σ)(ΣΓ

S M2|| 2 f t &, ||2, where M = m Max

Ad (4). Since A is a unitary algebra, for any a € A there exist 6,
c in A such that the distance between a and be is arbitrarily small, therefore
the distance between aa and abc in (A,G) is arbitrarily small for all # € G.
Since abc = (ab)(ε c), the finite linear combinations of the members of

{(βb)(yc): β}7eG,b,ceA} are dense in (A,G), so
is dense in (A,G).

In this way, we see that the crossed product (A,G) is also a unitary
algebra.

Now, let ξ> be the Hubert space obtained by the completion of (A,G)

and let ( Σ Λ « Λ « ) a n d ( Σ ^ ^ J denote the right and left multiplication
operators respectively. We define the following two kinds of operators on ξ):

1°. ra {a € A): Since the mapping 2 ai a^ "* Σ a i (Gi a^ ^s clearly con-
tinuous, it is extendable on £), we denote this extension by ra. (Clearly ra =
(£#)*, and since A is isomorphic to SA, a-^-ra is a representation of A on
£>; furthermore rα = φRaφ~ι, where i?« is the operator defined on G(&H in
§1.)

2°. wα (α € G): If we define < on (Λ,G) by the equation ( 2 a * « * ) w

= Σ(^ί^)βf> t n e n w

α is bounded, so that u can be extended on ©, we
define wα by this extension. (Clearly uΛ = φUaφ~ι, where Ua is the operator
defined on G® H in §1, so that α:->-wα is a unitary representation of G on

Then we have the following

THEOREM 2. Zeί A be a unitary algebra, and G a group of *•automorphisms
which preserve the inner product invariantly, then the crossed product {A, G) is
also a unitary algebra and the right W*-algebra is generated by {ra, ua\ a € A,
a € G}.

PROOF. The first half has been proved before stating the Theorem, and
the last half followes from Theorem 1 considering the weak closure instead
of uniform closure.

REMARK. It may be interesting to clarify the structure of (A,G) in the



362 τ TURUMARU

relation to that of A, but we could not obtain the concrete results. Under
suitable restrictions on G, we want to determine the structure of the unitary
algebra (A,G) elsewhere.

3. In this section we shall discuss a case of a PF*-algebra which has
a faithful normal trace as a special case of §2, and define the weakly closed
crossed product algebra which is a factor under the suitable restrictions.
(Def. 2 and Theorem 3.)

PROPOSITION 2. Let A be a *-algebra which has a faithful trace. If G is a
group of *-automorphisms of A ivhich preserve the trace tr{ ) invariant, then the

extension tr of tr is also a faithful trace of (A,G).

PROOF. By means of Proposition 1, it is sufficient to prove the equation

tr[(aa) (βb)] = Tr{(βb) (aa)l

Now, Tτ[(aa) (βb)] = Tr(aβaPb) = Sf tr(a^b) = δ£* ttφaP) = δζ» trj>«a) = tr[(βa)

b"a] — tr[(βb) (aa)], which is desired.

In the sequel we use the following notations:
A: A TF*-algebra acting on the Hubert space Ho with a faithful normal

trace tr{a) — (ξoa, ξ0), and ξQ is a generating and separating vector for A.
G: A group of *-automorphism of A, and we shall assume that tr is

G-invariant.
As the mapping a-+ξQa is one-to-one, A can be considered as a unitary

algebra and G as a group of *-automorphisms of a unitary algebra A which
preserve the inner product invariant. So we use the same notations as in § 2
without to refer.

Then the crossed product (A,G)is also a unitary algebra by Theorem 2.

On the other hand, the unitary algebra (A, G) has a faithful trace tr by

Proposition 2, so that the canonical representation of (A, G) by tr can be

taken, but as easily seen, the canonical image of 2 < ai aι ^ (Ά G) coincides

with the right multiplication operator ( 2 * α«a*) of the unitary algebra
(A, G)f so we don't distinguish each other in the following.

Since 61 is a unit element of (A, G), it is a central element of the
unitary algebra (A,G), so ((£L)7\ (61)) (T€$t(A,G)) gives a trace of the
right PF*-algebra of (A,G), and ((61)T, (βl)) = trκT), and moreover Si is a
generating vector for the right W*-algebra of (A,G).

DEFINITION 2. For such A, G as above, we call the right TF*-algebra of a
unitary algebra (A, G) a w-crossed product of A by G and denote it by
W*(A, G, tr).

By Theorems 1,2, W*(A,G,tr) is unitarily equivalent to the W*- algebra
W generated by I = {Ua, RΛ: ccζG, a £ A} on the Hubert space G 0 H,
where H is the completion of A, and Ua, Ra are the same as in §1. Of course
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H is isomorpbic to Ho.
In order to analyze W we iαtroduce the following operators on G

J: If we define/ by the equation ( 2 α < ® α « ) ^ = Σ # Γ ι ® tf**'

/ is continuous on G © A, so it is extendable onto GφH, we shall denote
this extension by /; then J2 == 1 holds, and / is unitarily equivalent to the
involution of the unitary algebra (A,G).

VΛ (a € G): Define Fα by the equation ]Ua] =s= Fr t, then Fr t acts on G ®
A as follows:

Zα (α € A): Define Zα by JRa*J, then Lα acts on G ® A as follows:

( 2 «* ® <*i) L» = 2 ^ ® (<***a^

The matrix representation of the operator on G&H due to von Neumann
[2] is as follows:

T = (Γα 'β): TΛ'* is a bounded operator on 77,

and < δg £: β € G > T = < ξ T« *: /S € G > .

Under these definitions and notations we have

)), v~iτvao =
ao

RaT = (a*T«>η, LaT = {a«b

TRa = (T«>t β*), TLa =

Therefore, if we define I = {Ua, Ra: a^G, a € A}, J = {Fα, La: a € G,
a € A}, then I' and JΓ can be characterized as follows:

PROPOSITION 3. T = (Γα>0) belongs to Γ if and only if them exist t(a, β) €
A such that T*>* = JK<*,β)* - w(^o)-1 / ( α < , ^ό" 1 )* «(α0) /or «// a0 € G m i
5 = (Sα^) belongs to J' // Λ ί̂i o t̂v 1/ there exist s(a,β) € A such that S«* =

^ - 1 , β'ψu{β) and s(a, βy* = w(Λo)"1 sC^α"1, βcς1)* ufao) for all a0

PROOF. If T = (T *) € Γ, then U^QTUao = T for all α0 € G and RaT =
TRa for all a € A, hence β»Γ«^ = Γ ^ β * , i. e., 2>^ € A*'= iA*/, there-
fore there exist t(a, β) € A such that T** = jt(a,β)*j; and U^TU*. = Γ
implies #(α,j8)*i = ^(αo)"1 /fteoς"1,/3a"-1)*iκ(αo) =MoCo)'ιt(ou3ς\ i8θ*«(«olλ
hence t(a,β)* = nCαo)" 1 ^^ 1 , βct7ι)*uίct0) for all α0 € G.

Conversely, if Γ = (ΓΛ ^), T«* = jt{a,βψj, and /(α,/S) satisfies the condi-
tions, then clearly Γ € Γ.

For the case of J', the proof is accomplished by considering the involution

7.
PROPOSITION 4. Γ = J", J' = Γ( = φ - 1 ^ φ), 2B=W*(A, G, fr).
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PROOF. This is easily seen from the commutation theorem for the right
and the left W*-algebra of a unitary algebra (A,G), but here we prove it
as an application of Proposition 3.

Since I c . J ' is easily verified, we have I ' I D J " , therefore it is sufficient
to show that the converse inclusion is true. Now, if T = (T»>β) belongs to
I', and S = (SΛ^) belongs to J', then by Proposition 3 we have the following:

yβ-ψju(β)

, β~ιa)*jt(a, yβ-χa)*ju(a-ιβ)

yβ-ψu(a)ju(a-ιβ)

β

This completes the proof.

Now, following J. Dixmier [1], we shall have the following

DEFINITION. A group G of the *-automorphisms of a PF*-algebra A is
called ergodic if and only if the operator of the center of A which is invariant
by G is only the scalar multiple of the unit.

If A is abelian, then the *-automorphism can be considered as the homeo-
morphism on the character space of A in this case, the above ergodicity is
equivalent to the usual one on the character space of A. (Cf. J. Dixmier [1])

THEOREM 3. Let A be a W*-algebra with a faithful normal trace tr such
that tr{a) = (ξoa, ξ0) and ξ0 being a generating and separating vector for A.
Moreover, let G be a group of * -automorphisms of A which preserve trinvaήant.
If G is ergodic, and satisfies the condition

(§) ab = u{aW, a*£t$a = b = 0(a, b € A)

then the w-cmssed product 28 = TF*(A, G, tr) is a factor.

PROOF. By Proposition 4, SS is unitarily equivalent to the W*-algebra
I" = j ' , so that it is sufficient to prove that the W*-algebra 1" = J' is a
factor.

If T belongs to the center of I" = Jr, then T belongs to I ' f l J ' ; whence
by Proposition 3, we have T = (T«>β), T«^ = jt{a,βM, t{a,βψ = u{a^)t{aa^\
βcCoYu(a0) for all a0 € G and T«* = u(a~ψ) s(arιβ, £)# for some t(a,β) and
s(ct,β) of A. If a =β, we have jt(a, a)*j = s(£, £)*: that is t(a,a)* = s(£,£)



CROSSED PRODUCT OF OPERATOR ALGEBRA 355

for all a € G and t(a,a)* = s(s,G) belongs to the center of A. Moreover,
s(£, £)* = u(a-ι)s(8,8)*u{a), that is, <£,£)* is permutable for all u(a). Since
{u{a)\ Λ € G } ' ί l A * ^ { λ l } by the ergodicity of the group G, we have
s(£, £) = λl (λ: scalar), i.e., 7VΛ = λ l for all α € G.

Next if α=i=/3, from jt(a,β)* j =u(a~ιβ)s(a-ιβ, £)* and the condition
(§) we have t(a,β) = 0, i.e., Γ'αβ = 0. Consequently we have T = λl, this
completes the proof. Q.E.D.

4. In this section we shall interprete an example of the factor due to
von Neumann from the view-point of our just defined crossed product.

Let © be an ergodic m-group in the measure space (S,μ) in the sense of
von Neumann [2; p. 195, Definition 12.1.5] and moreover we assume that
μ({s}) = 0 for all s € S and μ{S) = 1. Lat A be a multiplication algebra of
the measure space (S,μ), then for /(s) € A, the functional trjf) = (l/#, 1) =

f(s)dμ is a normal trace and 1 is a generating and separating vector for

A, where /* denotes the multiplication operator by the function /(s). Define
the automorphism of A as follows:

For ae&fe A, /(s) ->/«(s): /-(s) -/(sαr1).

Whence, by a slight modification such that Z7Λ, F α in von Neumann's notation
mean U~\ V~ι respectively in this paper, we can see that G = {a} is ergodic
in our sense by [2; p. 196, Lemma 12.2.4] and satisfies the condition (§) by
[2; p. 197, Lemma 12.2.3], so that the ^-crossed product W*(A,G,trμ) is a
factor, this is the case discussed in [2 p. 200, Lemma 12.3.4].

REFERENCES

[1] J.DIXMIER, Sous-anneaux abelians maximaux dans les facteurs de type fini,
Ann. of Math., 59(1954), 279-286.

[2] F. J. MURRAY AND J. VON NEUMANN, On rings of operators, Ann. of Math.,
37(1936), 116-229.

[3] I . E . S E G A L , Irreducible representations of operator algebras, Bull. Amer. Math.
Soc, 53(1947), 73-88.

[4] N.Suzuki, Crossed-product of W*-algebra, To appear in Tδhoku Math. Journ.
[5] H.Umegaki, Positive definite function and direct product of Hubert spaces,

Tόhoku Math. Journ., 7(1955), 206-211.

DEPARTMENT OF MATHEMATICS, TOHOKU UNIVERSITY.






