ON RIEMANNIAN MANIFOLDS WITH HOMOGENEOUS HOLONOMY GROUP Sp(u)

HIDEKIYO WAKAKUWA

(Received July 20, 1958)

According to the results of M. Berger (M. Berger, [1], [2], [3]), it is known that the restricted homogeneous holonomy group of a non-symmetric, irreducible N-dimensional Riemannian manifold V_N is one of the followings: SO(N)(full rotation group), U(m) (unitary group; N = 2m), SU(m) (special unitary group; N = 2m), Sp(n) (unitary symplectic group; N = 4n), $Sp(n) \otimes T^{\dagger}$, Sp(n) $\otimes SU(2)$ or some other exceptions. The Riemannian manifold with restricted homogeneous holonomy group U(m) or SU(m) is characterized by the fact that it is pseudo-kaehlerian or pseudo-kaehlerian with Ricci tensor zero (Iwamoto, [1]; Lichnerowicz, [8]). The purpose of this paper is to study the 4n-dimensional Riemannian manifold whose restricted homogeneous holonomy group is the real representation of the unitary symplectic group Sp(n) or one of its subgroups. Since the group Sp(n) is a subgroup of the special unitary group SU(2n); our manifolds in consideration are special pseudo-kaehlerian manifolds. In Part I, we treat local properties and in Part II the theory of harmonic forms and the cohomology theory.

PART I

In this Part I, unless otherwise stated, the summation convention will be used and the indices run over the following ranges:

> $i, j, k, \dots = 1, 2, \dots, \dots, \dots, 4n;$ $a, b, c, \dots = 1, 2, \dots, n;$ $\alpha, \beta, \gamma, \dots = 1, 2, \dots, 2n;$ $\overline{\alpha}, \overline{\beta}, \overline{\gamma}, \dots = 1 + 2n, 2 + 2n, \dots, 4n.$

1. Preliminary remarks. Let C_{2n} be a 2n-dimensional complex Cartesian space. Unitary symplectic group Sp(n) operating on C_{2n} is a subgroup of unitary group U(2n) which leaves bilinear form

$$z^{a} \wedge w^{a+n} = (z^{a}w^{a+n} - z^{a+n}w^{a})/2 \qquad ((z^{\alpha}), (w^{\alpha}) \in \boldsymbol{C}_{2n})$$

invariant and it is necessarily special unitary. Hence, the necessary and sufficient conditions that a linear endomorphism of C_{2n}

(1.1) $z^{*\alpha} = U^{\alpha}_{\beta} z^{\beta}$ ((U^{α}_{β}): complex matrix of order 2n)

be unitary symplectic are as follows:

(i) $U = (U_{\beta}^{\alpha})$ be unitary, that is, ${}^{t}\overline{U}U = E_{2n}$ (E_{2n} : unit matrix of order 2n), where the bar over U denotes the complex conjugate of U and ${}^{t}U$ the transpose of U.

(ii) U leaves the matrix $\begin{pmatrix} 0 & E_n \\ -E_n & 0 \end{pmatrix}$ invariant, where E_n denotes the unit

matrix of order n.

Such a matrix U is called unitary symplectic. The condition (ii) is equivlent to the fact that U be of the form

(1.2)
$$U = \begin{pmatrix} \Sigma & -\overline{\Theta} \\ \Theta & \Sigma \end{pmatrix},$$

where Σ , Θ denote complex matrices of order *n*. If we put

$$\Sigma = P + Ri, \quad \Theta = Q + Si \quad (i = \sqrt{-1})$$

where P, Q, R, S denote real matrices of order n, we have a real representation of (1.2):

(1.3)
$$T = \begin{pmatrix} P & -Q & -R & -S \\ Q & P & -S & R \\ R & S & P & -Q \\ S & -R & Q & P \end{pmatrix}$$

The condition (i) implies that this T be an orthogonal matrix. Therefore, with respect to an orthogonal base $[e_i]$, a transformation of Sp(n) is expressed by

$$(1.4) e^*_j = T^i_j e_i,$$

where $T = (T_j^i)$ is an orthogonal matrix of the form (1.3). With respect to a new base $[e_i]$ which is obtained from $[e_i]$ by an imaginary transformation

(1.5)
$$e'_{\alpha} = \frac{1}{\sqrt{2}} (e_{\alpha} - ie_{\overline{\alpha}}), \quad e_{\overline{\alpha}} = \frac{1}{\sqrt{2}} (e_{\alpha} + ie_{\overline{\alpha}})$$

the transformation (1.4) takes the form

$$e_j^{\prime *} = T_j^{\prime i} e_i^{\prime}$$

where

(1.6)
$$(T'_{i}) = \begin{pmatrix} P+Ri, & -Q+Si & 0\\ Q+Si, & P-Ri & \\ 0 & Q-Si, & P+Ri \end{pmatrix} = \begin{pmatrix} U & 0\\ 0 & \overline{U} \end{pmatrix}.$$

By an orthogonal matrix of the form (1.3), the three matrices

$$(1.7) \quad I = \begin{pmatrix} 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \\ 0 & 0 & 0 & -E_n \\ 0 & 0 & E_n & 0 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 0 & E_n & 0 \\ 0 & 0 & 0 & E_n \\ -E_n & 0 & 0 & 0 \\ 0 & -E_n & 0 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & 0 & -E_n & 0 \\ 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \end{pmatrix}$$

are left invariant, that is, ${}^{t}TIT = I$, etc. Among these I, J, K there are following relations:

(1.8)
$$\begin{cases} (I) & I^2 = J^2 = K^2 = -E_{4n} \\ (II) & {}^tII = {}^tJJ = {}^tKK = E_{4n} \end{cases}$$

(III) IJ = -JI = K, JK = -KJ = I, KI = -IK = J.

The necessary and sufficient condition that an orthogonal matrix be unitary symplectic is that it is conjugate to a matrix which leaves the three matrices (1.7) invariant.

2. Characterization of V_{4n} . Let V_{4n} be a 4n-dimensional Riemannian

manifold of class $C^r(r \ge 2)$ whose restricted homogeneous holonomy group h^0 is the real representation of Sp(n). With respect to a suitable orthogonal frame of reference, there exist three covariant constant tensor fields *I*, *J*, *K* of the form (1.7). Let F (components $F_{ij}^{(1)}$, F (components $F_{ij}^{(2)}$, F (components $F_{ij}^{(3)}$), F (components $F_{ij}^{(3)}$, F (components $F_{ij}^{(3)}$), F (comp

where G means the matrix of (g_{ij}) of the fundamental metric tensor of V_{4n} .

It is remarked that using the relations (I), (II) and one of (III), the other two relations of (III) can be proved.

If we use the components of $\overset{(1)}{F}$, $\overset{(2)}{F}$ and $\overset{(3)}{F}$, (2.1) is also written in the following forms:

$$(2.1') \begin{cases} (I) \quad F^{i}_{k}F^{k}_{j} = F^{(2)}_{k}F^{c}_{j} = F^{3}_{k}F^{k}_{j}F^{k}_{j} = -\delta^{i}_{j}, \\ (II) \quad g_{ij}F^{i}_{k}F^{j}_{h} = g_{ij}F^{i}_{k}F^{h}_{h} = g_{ij}F^{i}_{k}F^{j}_{h} = g_{kh}, \\ (III) \quad F^{i}_{k}F^{b}_{j} = -F^{i}_{k}F^{c}_{j} = F^{i}_{j}, \quad F^{i}_{k}F^{c}_{j} = -F^{i}_{k}F^{c}_{j} = F^{i}_{j}, \quad F^{i}_{k}F^{c}_{j} = -F^{i}_{k}F^{c}_{j} = F^{i}_{j}, \end{cases}$$

If we put

(2.2)
$$g_{ik}F^{k}{}_{j} = F^{(1)}{}_{ij}, g_{ik}F^{k}{}_{j} = F^{(2)}{}_{ij}, g_{ik}F^{k}{}_{j} = F^{(3)}{}_{ij}, g_{ik}F^{k}{}_{j} = F^{(3)}{}_{ij},$$

then $\stackrel{(1)}{F_{ij}}$, $\stackrel{(2)}{F_{ij}}$, $\stackrel{(3)}{F_{ij}}$ are anti-symmetric tensor fields. This fact is easily verified from (I) and (II) of (2.1').

Now we have seen that if the restricted homogeneous holonomy group of V_{in} is the real representation of Sp(n), then there exist three covariant constant tensor fields $F^{(1)} = (F_j^{(1)})$, $F^{(2)} = (F_j^{(2)})$ and $F^{(3)} = (F_j^{(3)})$ over V_{in} satisfying (2.1) or (2.1) in each coordinate neighborhood.

We shall prove, conversely, that if there exist three covariant constant tensor fields over V_{4n} satisfying (2.1) or (2.1') in a 4*n*-dimensional Riemannian manifold V_{4n} , then the restricted homogeneous holonomy group of V_{4n} is the real representation of Sp(n) or one of its subgroups.

LEMMA 2.1. Let u' be an arbitrary non-zero vector field. Then u^i , $F^{(1)}_{i_j}u^i$, $F^{(2)}_{j_j}u^i$ and $F^{(3)}_{j_j}u^j$ are mutually orthogonal. If u^i is a unit vector, then the other three are also unit vectors.

PROOF. The orthogonality of u^i to the other three is evident from (2.2). The orthogonality of $\tilde{F}_{ij}^{(1)}u^j$ to $\tilde{F}_{ij}^{(2)}u^j$, for example, is verified as follows:

 $g_{ij}(\overset{(1)}{F^i}_k u^k) \overset{(2)}{(F^j}_h u^k) = \overset{(1)}{F^j}_{jk} \overset{(2)}{F^j}_h u^k u^h = -g_{ik} \overset{(1)}{F^j}_j \overset{(2)}{F^j}_h u^k u^h$

$$=-g_{ik}\overset{(3)}{F^i}_h u^k u^h = -\overset{(3)}{F_{kh}} u^k u^h = 0.$$

If u^i is a unit vector, then the [other three are also unit vectors by vitue of (II) of (2, 1).

LEMMA 2.2. Let u^i be an arbitrary non-zero vector field and v^i be a vector field which is orthogonal to all of four vectors u^i , $\overset{(1)}{F^i}_{j}u^i$, $\overset{(2)}{F^i}_{j}u^j$ and $\overset{(3)}{F^i}_{j}u^i$. Then, $\overset{(1)}{F^i}_{j}v^j$, $\overset{(2)}{F^i}_{j}v^j$, $\overset{(3)}{F^i}_{j}v^j$ are mutually orthogonal and orthogonal to all the other five vectors.

PROOF. For example, the orthogonality of $\overset{(1)}{F_{ij}}v^{j}$ to u^{i} , $\overset{(1)}{F_{j}}u^{i}$, $\overset{(2)}{F_{ij}}u^{j}$, $\overset{(3)}{F_{ij}}u^{j}$ is verified as follows. By assamption, v^{j} is orthogonal to all of u^{i} , $\overset{(1)}{F_{ij}}u^{i}$, $\overset{(2)}{F_{ij}}u^{i}$, $\overset{(2)}{F_{ij}}u^{i}$, $\overset{(3)}{F_{ij}}u^{i}$, $\overset{($

$$g_{ij} u^i v^j = 0,$$

 $g_{ij}(\stackrel{(1)}{F^{i}_{k}}u^{k})v^{j}=0$ or

$$\overset{(1)}{F_{ij}}u^i\,v^j=0$$

and similarly

$$\overset{(2)}{F}_{ij} \, u^i \, v^j = 0, \ \overset{(3)}{F}_{ij} \, u^i \, v^i = 0.$$

Hence we see that

$$g_{ij} u^{i} (\stackrel{(1)}{F_{k}^{j}} v^{k}) = \stackrel{(1)}{F_{ik}} u^{i} v^{k} = 0, \quad g_{ij} (\stackrel{(1)}{F_{ik}} u^{k}) (\stackrel{(1)}{F_{jk}} v^{h}) = g_{kh} u^{k} v^{h} = 0,$$

$$g_{ij} (\stackrel{(2)}{F_{jk}^{j}} u^{h}) (\stackrel{(1)}{F_{jk}^{j}} v^{h}) = \stackrel{(3)}{F_{kh}} u^{k} v^{h} = 0, \quad g_{ij} (\stackrel{(3)}{F_{ik}^{j}} u^{k}) (\stackrel{(1)}{F_{jk}^{j}} v^{h}) = - \stackrel{(2)}{F_{kh}} u^{k} v^{h} = 0.$$

The others can be proved similarly.

By the aid of above two Lemmas, we prove that the restricted homogeneous holonomy group h^0 of our V_{4n} is the real representation of Sp(n) or one of its subgroups by showing that F, F, F can be taken in the form (1.7) by choosing a suitable orthogonal frame of reference $[e_1, e_2, \ldots, e_{4n}]$.

At first, choose an arbitrary unit vector as e_1 , then its components are δ'_1 . The three vectors (components $F_1^{(1)}$, $F_1^{(3)}$, $F_1^{(2)}$) obtained from e_1 by performing collineations given by F, F, F respectively, are mutually orthogonal by Lemma 2.1. If we choose these vectors as $-e_{n+1}$, $-e_{2n+1}$, $-e_{3n+1}$, then with respect to such frame of reference, we have

$$\overset{(1)}{F^{n+1}}_{1} = -1, \ \overset{(2)}{F^{2n+1}}_{1} = -1, \ \overset{(3)}{F^{3n+1}}_{1} = -1$$

and the other $\overrightarrow{F'_1}$, $\overrightarrow{F'_1}$, $\overrightarrow{F'_1}$ are all zero.

Next, choose a vector which is orthogonal to all of the above e_1 , e_{n+1} , e_{2n+1} and e_{3n+1} as e_2 . Then the components of the last vector are δ^{t_2} . The three vectors (components $F_{2,}^{(1)}$, $F_{2,}^{(3)}$, $F_{2,}^{(3)}$) obtained from e_2 by collineations $F_{2,}^{(1)}$, $F_{2,}^{(3)}$,

q.e.d.

Lemma 2.1 and 2.2. If we choose these three vectors as $-e_{n+2}$, $-e_{2n+2}$, $-e_{3n+2}$, then with respect to such a frame of reference

$$F^{(1)}_{P^{n+1}_{2}} = -1, \ F^{(2)}_{2^{n+1}_{2}} = -1, \ F^{(3)}_{2^{n+1}_{2}} = -1$$

and the other $\stackrel{(1)}{F_{2}}$, $\stackrel{(2)}{F_{2}}$, $\stackrel{(3)}{F_{2}}$ are all zero.

Repeating similar process *n* times, we get an orthogonal frame of reference. Taking account of the fact that with respect to this orthogonal frame of reference, $\overrightarrow{F'}_{j}$, $\overrightarrow{F'}_{j}$ and $\overrightarrow{F'}_{j}$ are anti-symmetric with respect to the upper and lower indices, we see that $\overrightarrow{F} = (\overrightarrow{F'}_{j})$, $\overrightarrow{F} = (\overrightarrow{F'}_{j})$ and $\overrightarrow{F} = (\overrightarrow{F'}_{j})$ are of the forms

$$\overset{(1)}{F} = \begin{pmatrix} 0 & E_n & 0 & 0 \\ -E^n & X_1 & X_2 & X_3 \\ 0 & X_1' & X_2' & X_3' \\ 0 & X_1'' & X_2' & X_3'' \end{pmatrix}, \quad \overset{(2)}{F} = \begin{pmatrix} 0 & 0 & E_n & 0 \\ 0 & Y_1 & Y_2 & Y_3 \\ -E_n & Y_1' & Y_2' & Y_3' \\ 0 & Y_1'' & Y_2'' & Y_3'' \end{pmatrix}, \quad \overset{(3)}{F} = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & Z_1 & Z_2 & Z_3 \\ 0 & Z_1' & Z_2' & Z_3' \\ -E_n & Z_1'' & Z_2' & Z_3'' \end{pmatrix},$$

respectively, where $X_1, X_2, \ldots; Y_1, Y_2, \ldots; Z_1, Z_2 \ldots$ denote real matrices of order *n*. From (I) of 2.1, we have

$$\overset{(1)}{F^2} = \begin{pmatrix} -E_n X_1 X_2 X_3 \\ -X_1 & & \\ -X_1 & & \\ -X_1 & & \\ -X_1 & & \end{pmatrix} = -E_{4n}$$

hence

$$X_1 = X_2 = X_3 = X_1^{'} = X_1^{''} = 0$$

Similarly, from
$$\stackrel{(2)}{F^2} = \stackrel{(3)}{F^2} = -E_{4n}$$
 we get
 $Y_2 = Y_1' = Y_2' = Y_3' = Y_2'' = 0,$
 $Z_3 = Z_3' = Z_1'' = Z_2'' = Z_3'' = 0.$

So, $\stackrel{(1)}{F}$, $\stackrel{(2)}{F}$ and $\stackrel{(3)}{F}$ have the following forms:

$$\overset{(1)}{F} = \begin{pmatrix} 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \\ 0 & 0 & X'_2 & X'_3 \\ 0 & 0 & X''_2 & X''_3 \end{pmatrix}, \quad \overset{(2)}{F} = \begin{pmatrix} 0 & 0 & E_n & 0 \\ 0 & Y_1 & 0 & Y_3 \\ -E_n & 0 & 0 & 0 \\ 0 & Y''_1 & 0 & Y''_3 \end{pmatrix}, \quad \overset{(3)}{F} = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & Z_1 & Z_2 & 0 \\ 0 & Z'_1 & Z'_2 & 0 \\ -E_n & 0 & 0 & 0 \end{pmatrix},$$

By virtue of (III) of (2.1), that is, FF = F, we have

$$\overset{(1)(2)}{FF} = \begin{pmatrix} 0 & Y_1 & 0 & Y_3 \\ 0 & 0 & -E_n & 0 \\ -X'_2 & X'_3Y'_1 & 0 & X'_3Y''_3 \\ -X''_2 & X'_3Y''_1 & 0 & X''_3Y''_3 \end{pmatrix} = \overset{(3)}{F} = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & Z_1 & Z_2 & 0 \\ 0 & Z'_1 & Z'_2 & 0 \\ -E_n & 0 & 0 & 0 \end{pmatrix},$$

hence we get

 $X_2' = 0, \ X_2'' = E_n, \ Y_1 = 0, \ Y_3 = E_n, \ Z_1 = 0, \ Z_2 = -E_n, \ Z_2' = 0.$ Since $\stackrel{(1)}{F}, \ \stackrel{(2)}{F}$, and $\stackrel{(3)}{F}$ are anti-symmetric, we find

$$X_{3}^{'} = -E_{n}, \ Y_{1}^{''} = -E_{n}, \ Z_{1} = E_{n}.$$

Hence, from $X'_{3} Y''_{1} = 0$ and $X'_{3} Y''_{3} = 0$, we get $X''_{3} = 0, Y''_{3} = 0$

respectively.

Consequently, we find finally that $\overset{(1)}{F}$, $\overset{(2)}{F}$, $\overset{(3)}{F}$ are of the form

$$\overset{(1)}{F} = \begin{pmatrix} 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \\ 0 & 0 & 0 & -E_n \\ 0 & 0 & E_n & 0 \end{pmatrix}, \quad \overset{(2)}{F} = \begin{pmatrix} 0 & 0 & E_n & 0 \\ 0 & 0 & 0 & E_n \\ -E_n & 0 & 0 & 0 \\ 0 & -E_n & 0 & 0 \end{pmatrix}, \quad \overset{(3)}{F} = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & 0 & E_n & 0 \\ 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \end{pmatrix}$$

These three tensors being covariant constant, hence left invariant by the restricted homogeneous holonomy group h^0 , which means that h^0 is Sp(n) or one of its subgroups as mentioned in §1.

THEOREM 2.1. If the restricted homogeneous holonomy group of V_{4n} is the real representation of Sp(n) or one of its subgroups, then there exist covariant constant tensor fields $F_{ij}^{(1)}$, $F_{ij}^{(2)}$ and $F_{ij}^{(3)}$ over V_{4n} satisfying (I), (II) and (III) of (2.1'). The converse is also true.

3. An example of 4-dimensional case. We shall show an example of 4-dimensional Riemannian manifold V_4 with homogeneous holonomy group Sp(1), following to Prof. T. Ôtsuki's method.¹⁾.

At first, we shall investigate the necessary condition for such a V_4 . Introduce in V_4 an orthogonal frame of reference $[P, e_i]$ (i = 1, 2, 3, 4), then the connection of V_4 is given by

$$(3.1) dP = \omega^i e_i, \ de_j = \omega^i {}_j e_i,$$

where ω^i , ω^{i_j} are Pfaffian forms with respect to the coordinate neighborhood (x^1, x^2, x^3, x^4) of V_4 . The structural equations are given by

$$\begin{array}{ll} (3.2) & d\omega^i = \omega^{,} \wedge \omega^{,}, \ d\omega^i{}_j = \omega^{,}{}_j \wedge \omega^i{}_a + \Omega^i{}_j & (i,j,k,a=1,2,3,4). \end{array} \\ \text{We can easily see from the remark of §1 that} \end{array}$$

$$\omega_{2}^{1} = \omega_{4}^{3}, \ \omega_{3}^{1} = -\omega_{4}^{2}, \ \omega_{4}^{1} = \omega_{3}^{2},$$

since the homogeneous holonomy group is Sp(1). If we put

$$\omega_{2}^{1} = \omega_{4}^{3} = \theta_{2}, \ \omega_{3}^{1} = -\omega_{4}^{2} = \theta_{3}, \ \omega_{4}^{1} = \omega_{3}^{2} = \theta_{4},$$

then the structural equation can be written as

(3.3)
$$\begin{pmatrix} d\omega^{1} = & \omega^{2} \wedge \theta_{2} + \omega^{3} \wedge \theta_{3} + \omega^{4} \wedge \theta_{4} \\ d\omega^{2} = -\omega^{1} \wedge \theta_{2} & + \omega^{3} \wedge \theta_{4} - \omega^{4} \wedge \theta_{3} \\ d\omega^{3} = -\omega^{1} \wedge \theta_{3} - \omega^{2} \wedge \theta_{4} & + \omega^{4} \wedge \theta_{2} \\ d\omega^{4} = -\omega^{1} \wedge \theta_{4} + \omega^{2} \wedge \theta_{3} - \omega^{3} \wedge \theta_{2}, \end{cases}$$

1) Prof. T. Otsuki set forth some examples of fundamental forms of 4-dimensional Riemannian manifolds with homog. holonomy group Sp(1) (Otsuki, [6]), but it seems to contain some errors. The details of his method should be referred to his paper.

and

(3.4)
$$\begin{cases} d\theta_2 = 2\theta_3 \wedge \theta_4 + \Omega_2^1 \\ d\theta_3 = 2\theta_4 \wedge \theta_2 + \Omega_3^1 \\ d\theta_4 = 2\theta_2 \wedge \theta_3 + \Omega_4^1 \end{cases}$$

Let i, j, k be the imaginary units of quaternions and put

$$\omega = \omega^1 + i\omega^2 + j\omega^3 + k\omega^4, \ \Gamma = i\theta_2 + j\theta_3 + k\theta_4$$

If we define formally $d\omega$, $\Gamma \wedge \omega$, then (3.3) can be represented by

$$(3.5) d\omega = \Gamma \wedge \omega \quad .$$

We can see that ω is reducible to the form

$$\omega = a\{dx^{1} + i \, dx^{2} + \prod (dx^{3} + i \, dx^{4})\}$$

where Π is a quaternic function and *a* is a real function. Substituting ω , Γ in (3.5) and eliminating θ_2 , θ_3 and θ_4 , we have a differential equation for Π :

(3.6)
$$\frac{\partial \Pi}{\partial x^1} \overline{\Pi} + \frac{\partial \Pi}{\partial x^2} \overline{\Pi} i - \frac{\partial \Pi}{\partial x^2} - \frac{\partial \Pi}{\partial x^4} i = 0,$$

where $\overline{\Pi}$ is the quaternic conjugate of Π .

Put $\Pi = b_1 + ib_2 + jb_3 + kb_4$, then the fundamental form of V_4 becomes

$$egin{aligned} ds^2 &= a^2 [(dx^1)^2 + (dx^2)^2 + \sum_{r=1}^{\star} b_r^2 \{(dx^3)^2 + (dx^4)^2\} \ &+ 2b^1 \, (dx^1 \, dx^3 + dx^2 \, dx^4) - 2b_2 \, (dx^1 \, dx^4 - dx^2 \, dx^3)], \end{aligned}$$

we may put $b_4 = 0$ and consider the special case where $b_2 = 0$. Then the differential equation (3.6) for b_1 and b_3 becomes

$$\left\{egin{array}{ll} Rrac{\partial R}{\partial x^1}&=rac{\partial b_1}{\partial x^3}\,, & Rrac{\partial R}{\partial x^2}&=rac{\partial b_1}{\partial x^4}\,,\ Rrac{\partial R}{\partial x^3}&=-rac{\partial b_1}{\partial x^1}R^2+2b_1rac{\partial b_1}{\partial x^3}\,,\ Rrac{\partial R}{\partial x^4}&=-rac{\partial b_1}{\partial x^2}R^2+2b_1rac{\partial b_1}{\partial x^4}\,, \end{array}
ight.$$

where $R^2 = b_1^2 + b_3^2$. These are satisfied for example by

$$b_1 = c x^3 + c' x^4, \ b_3 = \{2(cx^1 + c'x^2) + (cx^3 + c'x^4)\}^{\frac{1}{2}}$$

where c and c' are non-zero constants and we have

$$(3.7) \quad \begin{cases} \omega^1 = a dx^1 & + a b_1 dx^3 & , \\ \omega^2 = & a dx^2 & + a b_1 dx^4 , \\ \omega^2 = & a b_3 dx^3 , \\ \omega^4 = & - a b_3 dx^4 \end{cases}$$

Putting $\theta_2 = p_i dx^i$, $\theta_3 = q_i dx^i$, $\theta_4 = r_i dx^i$ and substituting these and (3.7) in (3.3), we get after long but straightforward calculations,

$$(3.8) \qquad p_1 = \frac{\partial \log a}{\partial x^2}, p_2 = -\frac{\partial \log a}{\partial x^1}, p_3 = \frac{\partial \log a}{\partial x^4}, p_4 = -\frac{\partial \log a}{\partial x^3};$$

,

.

(3.9)
$$\begin{cases} q_1 = r_2 = \frac{1}{b_3} \left(b_1 \frac{\partial \log a}{\partial x^1} - \frac{\partial \log a}{\partial x^3} \right) = 0, \\ q_2 = r_1 = \frac{1}{b_3} \left(b_1 \frac{\partial \log a}{\partial x^2} - \frac{\partial \log a}{\partial x^4} \right) = 0; \\ q_3 = -\frac{c}{b_3} - b_3 \frac{\partial \log a}{\partial x^1} = -r_4 = b_3 \frac{\partial \log a}{\partial x^1} \end{cases}$$

(3.10)
$$(q_4 = b_3 \frac{\partial \log a}{\partial x^2} = r_3 = -\frac{c'}{b_3} - b_3 \frac{\partial \log a}{\partial x^2}.$$

From (3.9), we see that log *a* must be a solution of differential equations

$$b_1 \frac{\partial f}{\partial x^1} - \frac{\partial f}{\partial x^3} = 0, \quad b_1 \frac{\partial f}{\partial x^2} - \frac{\partial f}{\partial x^4} = 0.$$

Solving these we find

$$\log a = -\frac{1}{2}\log b_3$$

as one of the solutions. This satisfies (3.10) and some other relations imposed to p_i , q_i and r_i by (3.3). Hence we find finally

$$\begin{cases} p_1 = -\frac{c'}{2b_3^2}, \ p_2 = \frac{c}{2b_3^2}, \ p_3 = -\frac{c'b_1}{2b_3^2}, \ p_4 = \frac{cb_1}{2b_3^2}, \\ q_1 = q_2 = r_1 = r_2 = 0, \\ q_3 = -r_4 = -\frac{c}{2b_3}, \ q_4 = r_3 = -\frac{c'}{2b_3}. \end{cases}$$

Consequently, the structural equations (3.3) are fulfilled by (3.7) and

$$\begin{cases} \theta_2 = -\frac{1}{2b_3^2} \left(c' \, dx^1 - c \, dx^2 + c' \, b_1 \, dx^3 - cb_1 \, dx^4 \right) &, \\ \theta_3 = -\frac{1}{2b_3} \left(c dx^3 + c' \, dx^4 \right) &, \\ \theta_4 = -\frac{1}{2b_3} \left(c' \, dx^3 - c \, dx^4 \right) &, \end{cases}$$

where

$$a = b_3^{-\frac{1}{2}} = \{2(cx^1 + c'x^2) + (cx^3 + c'x^4)^2\}^{-\frac{1}{4}}$$

$$l_1 = cx_3 + c'x^4, \quad b_3 = \{2(cx^1 + c'x^2) + (cx^3 + c'x^4)^2\}^{\frac{1}{2}}.$$

Furthermore, from (3.4) we see that

$$\Omega^{1}_{2} \neq 0, \ \Omega^{1}_{3} \neq 0, \ \Omega^{1}_{4} \neq 0,$$

for non-zero c, c'. Therefore, we consider each domain of the 4-dimensional number space separated by a 3-dmensional cylindrical surface

$$2(cx^{1} + c'x^{2}) + (cx^{3} + c'x^{4})^{2} = 0.$$

Then

$$ds^{2} = a^{3}[(dx^{1})^{2} + (dx^{2})^{2} + 2\{cx^{1} + c'x^{2} + (cx^{3} + c'x^{4})^{2}\} \{(dx^{3})^{2} + (dx^{4})^{2}\} + 2(cx^{3} + c'x^{4})(dx^{1} dx^{3} + dx^{2} dx^{4})]$$

($a = \{2(cx^{1} + c'x^{2}) + (cx^{3} + c'x^{4})^{2}\}^{-\frac{1}{4}}, c \cdot c' \neq 0$)

gives an example of an analytic Riemannian metric which defines a Euclidean connection with homogeneous holonomy group Sp(1) in such domain.

4. Root spaces. The characteristic roots of the equation $|\stackrel{(1)}{F} - \rho E| = 0$ (E: unit matrix of order 4n) for $\stackrel{(1)}{F} = (\stackrel{(1)}{F'_J})$ being *i* and -i (multiplicity 2n) respectively, there exist two 2n-dimensional imaginary root spaces $L(\stackrel{(1)}{F})$ and $\overline{L}(\stackrel{(1)}{F})$ corresponding to the two characteristic roots *i* and -i respectively. A vector *x* in the tangent space at a point of V_{4n} belongs to $L(\stackrel{(1)}{F})$ at the point if and only if

$$(\overset{(1)}{F}-i\,E)^{\nu}\,x=0 \qquad (1\leq\nu\leq 2n)$$
 but this condition is equivalent to

$$(\stackrel{(1)}{F}-iE)x=0$$

by virtue of $F^2 = -E$.

There exist also root spaces $L(\vec{F})$, $\overline{L}(\vec{F})$ $(\vec{F} = (\vec{F}_{j}))$; $L(\vec{F})$, $\overline{L}(\vec{F})$ $(\vec{F} = (\vec{F}_{j}))$; $L(\vec{F})$, $\overline{L}(\vec{F})$ $(\vec{F} = (\vec{F})^{i}_{j})$; $L(\vec{F})$, $L(\vec{F})$ corresponding to characteristic roots i and $\overline{L}(\vec{F})$, $\overline{L}(\vec{F})$ to -i. These root spaces form (imaginary) parallel fields of 2n-dimensional

planes respectively which is easily verified from the fact that $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F}$ are covariant constant and from the above remark.

These 2*n*-planes have no intersections in common except the origin, for, if, for example, L(F) and L(F) contain a vector x in common, we have $\begin{array}{c}
\overset{(1)}{Fx} = \overset{(2)}{Fx}.
\end{array}$

from $\stackrel{(1)}{Fx} = ix$, $\stackrel{(2)}{Fx} = ix$. Operating $\stackrel{(1)}{F}$ to the above equation from the left and taking account of $\stackrel{(2)}{F^2} = -E$, $\stackrel{(1)}{FF} = \stackrel{(2)}{F}$, we get

$$-x = \overset{\scriptscriptstyle{(3)}}{Fx}.$$

This means that $\overset{(3)}{F}$ have a characteristic root -1, which is a contradiction.

Next, consider a vector $x \in L(F)$ and operating F to Fx = ix from the left we have

$$-\overset{(3)}{Fx} = \overset{(2)}{iFx}$$
 or $\overset{(2)}{Fx} = \overset{(3)}{iFx}$

From this and from $\overset{(1)}{F}\overset{(2)}{F}=\overset{(3)}{F}$, we see that

$$F(Fx) = Fx = -iFx$$
 ,

that is, for a vector $x \in L(F)$, Fx is a vector in L(F). This means that $\begin{array}{l}
\overset{(2)}{F} = \overline{L}(F) \\
\overset{(2)}{F} = \overline{L}(F) \\
\end{array}$

We can see analogously that $\overset{(3)}{F}(L(F)) = \overline{L}(F)$ and so on. Accordingly, we get

the following

THEOREM 4.1. Let L(F), $\overline{L}(F)$; L(F), $\overline{L}(F)$; L(F); L(F); $\overline{L}(F)$ be 2n-dimensional root spaces determined by F, F, F; L(F), L(F), L(F), $\overline{L}(F)$ be 2n-dimensional racteristic root i and $\overline{L}(F)$, $\overline{L}(L)$, $\overline{L}(F)$, L(F), L(F) corresponding to the characteristic root i and $\overline{L}(F)$, $\overline{L}(L)$, $\overline{L}(F)$ to -i. These are imaginary parallel fields of 2n-planes which have no point in common except the origin and the following relations hold good:

$$\begin{array}{l} \begin{pmatrix} 2 \\ F(L(F)) \\ F(L(F)) \\ (3 \\ F(L(F)) \\ (F(L(F)) \\ F(L(F)) \\ F(L(F)) \\ (1 \\ F(L(F)) \\ F(L(F)) \\ (2 \\ F$$

where $\overset{(2)}{F}(L(F))$ designates the 2n-plane obtained from L(F) by operating the collineation $\overset{(2)}{F} = \overset{(2)}{(F_j)}$, eic.

5. Connection in complex form. For each point of our V_{4n} , associate an orthogonal frame of reference $[e_i]$, then the connection in V_{4n} is given by (5.1) $dP = \omega^i e_i, \ de_j = \omega^i_j e_i, \qquad (\omega^i_j = -\omega^i_l)$ where the matrix $(\omega^i_j) (= -\omega^j_l)$ is of the form

,

(5.2)
$$(\omega'_{j}) = \begin{pmatrix} \omega & -\omega^{*} & -\widetilde{\omega} & -\widetilde{\omega}^{*} \\ \omega^{*} & \omega & -\widetilde{\omega}^{*} & \widetilde{\omega} \\ \widetilde{\omega}^{*} & \widetilde{\omega}^{*} & \omega & -\omega^{*} \\ \widetilde{\omega}^{*} & -\widetilde{\omega} & \omega^{*} & \omega \end{pmatrix}$$

 $\omega, \omega^*, \widetilde{\omega}, \widetilde{\omega}^*$ being matrices of order *n*. Hence, of course, we see that (5.3) $\omega^{\alpha}{}_{\beta} = \omega^{\overline{\alpha}}{}_{\overline{\beta}}, \quad \omega^{\overline{a}}{}_{\beta} = -\omega^{\alpha}{}_{\overline{\beta}}$

If we perform an imaginary transformation for the base $[e_i]$:

$$e'_{\alpha} = (e_{\alpha} - ie_{\overline{\alpha}})/\sqrt{2}$$
, $e'_{\overline{\alpha}} = (e_{\alpha} + ie_{\overline{\alpha}})/\sqrt{2}$

and we write again $[e_i]$ instead of $[e'_i]$, then (5.1) can be written as (5.4) $dP = \pi^a e_a + \pi^{-} e_{\overline{a}}, de_j = \pi^i {}_j e_i,$ (and compl. conj.) where we have put

$$\begin{cases} \pi^{\alpha} = (\omega^{\alpha} + i \, \omega^{\alpha})/\sqrt{2} = \overline{\pi}^{\alpha} ,\\ \pi^{\alpha}{}_{\beta} = \omega^{\alpha}{}_{\beta} + i \, \omega^{\overline{\alpha}}{}_{\beta} = \omega^{\alpha}{}_{\beta} - i \, \omega^{\alpha}{}_{\beta} = \overline{\pi}^{\overline{\alpha}}{}_{\overline{\beta}} ,\\ \pi^{\overline{\alpha}}{}_{\beta} = \pi^{\alpha}{}_{\overline{\beta}} = 0. \end{cases}$$

From (1.2) of §1, the matrix $(\pi^{\alpha}{}_{\beta})$ have the form

(5.5)
$$(\pi^{\alpha}{}_{\beta}) = \begin{pmatrix} \pi & -\overline{\widetilde{\pi}} \\ \overline{\pi} & \overline{\pi} \end{pmatrix} = (\overline{\pi}^{\overline{\alpha}}{}_{\overline{\beta}}),$$

where π , $\widetilde{\pi}$ denote matrices of order $n: \pi = (\pi^a_b), \ \widetilde{\pi} = (\widetilde{\pi}^i_b \text{ and } (\pi^a_\beta) \text{ being}$

unitary, we have

(5.6) $\pi^{a}{}_{b} + \overline{\pi}^{b}{}_{a} = 0, \quad \widetilde{\pi}^{a}{}_{b} - \widetilde{\overline{\pi}^{b}}{}_{a} = 0.$ The fundamental form is given by

$$ds^2 = \mathcal{E}_{ij}\pi^i\pi^j = 2\pi^lpha\,\pi^{\overline{lpha}}$$
 ,

where

ere $(\mathcal{E}_{ij}) = \begin{pmatrix} 0 & E_{2n} \\ E_{2n} & 0 \end{pmatrix}$. Now, if we put

 $d\pi^i{}_j=\pi^k{}_j\wedge\pi^i{}_k-\Omega^i{}_j$

then Ω^{i}_{j} satisfies the following relations similar to (5.5):

(5.7)
$$\begin{cases} \Omega^{\alpha}{}_{\beta} = \Omega^{\alpha}{}_{\overline{\beta}} = 0, \\ (\Omega^{\alpha}{}_{\beta}) = \begin{pmatrix} \Omega & -\widetilde{\Omega} \\ \widetilde{\Omega} & \overline{\Omega} \end{pmatrix} = (\overline{\Omega}^{\overline{\alpha}}{}_{\overline{\beta}}), \quad (\Omega = (\Omega^{a}{}_{b}), \quad \widetilde{\Omega} = (\widetilde{\Omega}^{a}{}_{b})) \\ \Omega^{a}{}_{b} + \overline{\Omega}^{b}{}_{a} = 0, \quad \widetilde{\Omega}^{a}{}_{b} - \widetilde{\widetilde{\Omega}^{b}}{}_{a} = 0. \end{cases}$$

A manifold with pseudo-kaehlerian connection (5.4) have Sp(n) as its restricted homogeneous holonomy group if and only if $(\pi^{\alpha}{}_{\beta})$ be of the form (5.5) with (5.6). Then the curvature form Ω'_{J} satisfies (5.7). We have especially

(5.8)
$$\Omega^a{}_a = \Omega^a{}_a + \Omega^{\bar{a}}{}_a = 0$$

and the structural equation becomes

(5.9)
$$\begin{cases} d\pi^{\alpha} = \pi^{\beta} \wedge \pi^{\alpha}{}_{\beta} \\ d\pi^{\alpha}{}_{\beta} = \pi^{\gamma}{}_{\beta} \wedge \pi^{\alpha}{}_{\gamma} + \Omega^{\alpha}{}_{\beta} \end{cases}$$
(and compl. conj.)

under the condition (5.5), (5.6) and (5.7).

If we put

$$\Omega^{\alpha}{}_{\beta} = R^{\alpha}{}_{\beta kh} \pi^k \wedge \pi^h \text{ (conj.)}, \ R_{kh} = R^i{}_{khi}$$

it is easily verified that the non-zero components of $R^{\alpha}_{\beta kh}$ are $R^{\alpha}_{\beta \bar{\gamma}\delta}(= -R^{\alpha}_{\beta \bar{\delta}\bar{\gamma}})$ and appearently non-zero components of the Ricci tensor $R_{\beta \bar{\gamma}}$ are zero by virtue of $R_{\beta \bar{\gamma}} = R^{\alpha}_{\beta \bar{\gamma} \alpha} = -R^{\alpha}_{\alpha \beta \bar{\gamma}} = 0$ and (5.8). So V_{4n} is of Ricci tensor zero, which is also verified from the fact that $Sp(n) \subset SU(2n)$.

6. Sectional curvatures. Return to the real natural frame of reference, then $\stackrel{(1)}{F^{i}}_{j}$ satisfies the equation $\stackrel{(1)}{F^{i}}_{j,k} = 0$, where the semi-colon denotes the covariant differentiation with respect to the Christoffoel symbols obtained from g_{ij} . From the Ricci's identity, we have $\stackrel{(1)}{F^{i}}_{l}R^{l}_{lkh} = \stackrel{(1)}{F^{j}}_{j}R^{l}_{lkh}$ or $\stackrel{(1)}{F^{i}}_{l}R_{ljkh} = \stackrel{(1)}{F^{i}}_{j}R_{likh}$ and hence

(6.1)
$$\overset{(1)}{F^l}{}^{(1)}_{k}F^m{}_{j}R_{lmkh} = R_{ljkh}$$

(Sasaki, [1]; Yano, K and I. Mogi, [2]). Let x^i , y^i be components of two arbitrary vectors. Then the sectional curvature K with respect to the 2-plane π spanned

by x^t and y^t is given by

$$K = - \frac{R_{ijkh} x^i y^j x^k y^h}{(q_{ik} g_{jh} - g_{ih} g_{jk}) x^i y^j x^k y^h} \,.$$

This quantity being independent from the choice of two vectors in π , we choose especially two orthogonal unit vectors x^i , y^i in π , then K is given by

$$(6.2) K = -R_{ijkh} x^{i} y^{j} x^{k} y^{h}.$$

For two orthogonal unit vectors x^i , y^i , we have again orthogonal unit vectors $\overset{(1)}{F_{ij}}x^j$, $\overset{(1)}{F_{ij}}y^j$ and the sectional curvature with respect to the plane spanned by $\overset{(1)}{F_{ij}}x^j$, $\overset{(1)}{F_{ij}}y^j$ is equal to K, which is easily seen from (6.1) and (6.2). Thus we get

LEMMA 6.1. Let V_{2m} be a pseudo-kaehlerian manifold with pseudo-kahlerian structure $F = (F^i_j)$, then the sectional curvature with respect to an arbitrary 2-plane π is equal to the one with respect to 2-plane $F(\pi)$.

Now, in our V_{4n} , there exist three covariant constant tensors $\stackrel{(1)}{F} = (\stackrel{(2)}{F^i}_j)$, $\stackrel{(2)}{F} = (\stackrel{(2)}{F^i}_j)$, $\stackrel{(3)}{F} = (\stackrel{(3)}{F^i}_j)$ and hence if a vector x^i is given, we can determine a 4dimensional linear space $L_4(x)$ spanned by mutually orthogonal four vectors x^i , $\stackrel{(1)}{F^i}_j x^j$, $\stackrel{(2)}{F^i}_j x^j$ and $\stackrel{(3)}{F^i}_j x^j$. An arbitrary vector y^i in $L_4(x)$ being given in the form

$$y^{i} = \alpha x^{i} + \beta F^{(1)}_{ij} x^{j} + \gamma F^{(2)}_{ij} x^{j} + \delta F^{(3)}_{ij} x^{j} \qquad (\alpha, \beta, \gamma, \delta: \text{ scalar functions}).$$

Hence if we perform a collineation \ddot{F} to x^i , then we have

$$\overset{(1)}{F^{k}}_{i}y^{i} \simeq \alpha \overset{(1)}{F^{k}}_{i}x^{i} - \beta x^{k} + \gamma \overset{(3)}{F^{k}}_{i}x^{i} - \delta \overset{(2)}{F^{k}}_{i}x^{i}$$

by virtue of (III) of (2.1). This means that if a vector $y \in L_4(x)$, then $F(y) \in L_4(x)$ and we get similar properties for F, F.

THEOREM 6.1. Let x be an arbitrary vector and $L_4(x)$ be a 4-dimensional linear space spanned by mutually orthogonal four vectors x, $\stackrel{(1)}{F(x)}$, $\stackrel{(2)}{F(x)}$, $\stackrel{(3)}{F(x)}$. If π is an arbitrary 2-planed in $L_4(x)$, then $\stackrel{(1)}{F(\pi)}$, $\stackrel{(2)}{F(\pi)}$, $\stackrel{(3)}{F(\pi)}$ are also in $L_4(x)$, furthermore the sectional curvatures with respect to π , $\stackrel{(1)}{F(\pi)}$, $\stackrel{(2)}{F(\pi)}$, and $\stackrel{(3)}{F(\pi)}$ are all equal.

Using (III) of (2.1), we can see that if π is a 2-plane spanned by any two of x, $\overset{(1)}{F(x)}$, $\overset{(2)}{F(x)}$ or $\overset{(2)}{F(x)}$ and π' is the one spanned by the other two, then, the 2-plane obtained from π by operating $\overset{(1)}{F}$, $\overset{(2)}{F}$ or $\overset{(3)}{F}$ is π itself or π' .

COROLLARY 6.1. Let x be an arbitrary vector and π the plane spanned by any two of x, $\overset{(1)}{F(x)}$, $\overset{(2)}{F(x)}$, $\overset{(3)}{F(x)}$ and π' the one spanned by the other two. Then,

the plane obtained from π by operating $\stackrel{(1)}{F}$, $\stackrel{(2)}{F}$ or $\stackrel{(2)}{F}$ is π itself or π' and the sectional curvatures with respect to π and π' are equal.

PART II

7. Preliminary Remarks. Let V_N be an N-dimensional Riemannian manifold whose class of differentiability is assumed sufficiently high (so far as the Hodge's theorem concerning the harmonic integrals of Riemannian manifolds be true).

The indices run from 1 to N unless otherwise stated and the summation convention is adopted.

To a *p*-form

$$\varphi = \frac{1}{p!} \varphi_{i_1 \dots i_p} dx^{i_1} \dots dx^{i_p} = \varphi_{i_1 \dots i_p} dx^{i_1} \dots dx^{i_{p^2}} \qquad (k_1 < \dots < k_p)$$

of the manifold V_N we introduce the following operators.

d: exterior differentiation.

$$(d\varphi)_{i_1\ldots i_{p+1}} = \sum_{\alpha=1}^{p+1} (-1)^{\alpha} \varphi_{i_1\ldots i_{\alpha}\ldots i_{p+1},i_{\alpha}}$$

where $(\)_{i_1...i_{p+1}}$ denotes the components of the (p+1)-form in the parenthesis and the semi-colon denotes the covariant differentiation and Λ the absence of the undermentioned component.

*: adjoint operator.

$$(* \varphi)_{j_1,\dots,j_{n-p}} = \sqrt{g} \, \mathcal{E}_{i_1,\dots,i_p j_1\dots,j_{n-p}} \varphi^{i_1\dots i_p}$$
$$= \sqrt{g} \, \mathcal{E}_{i_1\dots,i_p j_1\dots,j_{n-p}} g^{i_1k_1}\dots g^{i_pk_p} \varphi_{k_1\dots,k_p}$$
$$(i_1 < \dots < i_p; \text{ not summed with these indices})$$

where $\mathcal{E}_{i_1...i_{pj_1...j_{n-p}}}$ equals to +1 if $i_1....i_p j_1....j_{n-p}$ is an even permutation of 1....N and equals to -1 if it is an odd permutation and equals to zero if otherwise.

With repect to this *-operation, we see that the relation

$$** = (-1)^{(N-p)p}$$

holds true.

$$\delta = (-1)^{Np+N+1} * d*: (\delta \varphi)_{i_1...i_{p-1}} = (-1)^p g^{jk} \varphi_{i_1...i_{p-1}j}; k$$

$$\Delta = d\delta + \delta d: (7.1) \qquad (\Delta \varphi)_{i_1...i_p} = -g^{jk} \varphi_{i_1...i_{p};j;k} + \sum_{s=1}^p R^{j}_{i_s} \varphi_{i_1...i_{s-1}j_{s+1}...i_p} + \sum_{s$$

2) In the following the products of differential forms designate the exterior products unless otherwise stated.

where $R^{j_k}{}_{i,i_l} = g^{kh} R^{j}_{hi,i_l}$ and R^{j}_{hi,i_l} is the curvature tensor and $R_{ij} = g_{ik} R^{k_j}$ is the Ricci tensor.

If $\Delta \varphi = 0$, the *p*-form φ is called a harmonic form and the coefficients $\varphi_{i_1...i_p}$ are called components of a harmonic tensor. If the support of φ is compact, the condition $\Delta \varphi = 0$ is equivalent to the following two conditions:

$$d\varphi = 0, \ \delta \varphi = 0$$

or

 $\mathcal{E}_{i_1...i_{p+1}}^{j_1...j_{p+1}} \varphi_{j_1...j_p;j_{p+1}} = 0, \ g^{j_k} \varphi_{i_1...i_{p-1}j_{j,k}} = 0,$

where $\mathcal{E}_{i_1...,i_{p+1}}^{j_1...,j_{p+1}}$ equals to +1 if $(j_1...,j_{p+1})$ is an even permutation of $(i_1...,i_{p+1})$ and equals to -1 if it is an odd permutation and otherwise equals to zero.

If especially V_N is orientable, we can define an inner product (φ^p, Ψ^p) of two *p*-forms φ^p and Ψ^p whose supports are compact by

(7.2)
$$(\varphi^{p}, \Psi^{p}) = \int \varphi^{p} * \Psi^{p} = \int \langle \varphi^{p}, \Psi^{p} \rangle dV$$

where the integral be extended over the whole manifold and

$$=arphi_{i_1\ldots i_p}oldsymbol{\psi}^{i_1\ldots i_p}, \ dV=\sqrt{g}\ dx^{i_1}\ldots dx^{i_p}.$$

 (φ^{p}, Ψ^{p}) possesses the all properties as an inner product, that is,

$$\begin{cases} (c_1\varphi_1^p + c_2\varphi_2^p, \boldsymbol{\psi}^p) = c_1(\varphi_1^p, \boldsymbol{\psi}^p) + c_2(\varphi_2^p, \boldsymbol{\psi}^p), & (c_1, c_2: \text{ constants}), \\ (\varphi^p, \boldsymbol{\psi}^p) = (\boldsymbol{\psi}^p, \varphi^p), \\ (\varphi^p, \varphi^p) \ge 0, \\ (\varphi^p, \varphi^p) = 0 \to \varphi^p = 0. \end{cases}$$

Furthermore, if N = 2m and V_{2m} is a 2*m*-dimensional pseudo-kaehlerian manifold, we can introduce the following important operators where F_{ij} are the components of the pseudo-kaehlerian structure of V_{2m} and

$$F_{j} = g^{ik} F_{kj}, \ F^{ij} = g^{jk} F^{i}_{kj},$$

the indices runing from 1 to 2m.

L: the exterior multiplication of $\Omega = \frac{1}{2} F_{ij} dx^i dx^j$ to an arbitrary form.

 $\Lambda: *^{-1}L^* = (-1)^{p(2m-p)} *L^* = (-1)^p *L^*$, where p is the degree of the operated form. We can see that

(7.3)
$$(\Lambda \varphi^{\nu})_{i_1...i_{p-2}} = \frac{1}{2} F^{j_k} \varphi_{i_1...i_{p-2jk}}$$

 F^{2}

for a *p*-form

$$\varphi^p = \frac{1}{p!} \varphi_{i_1 \dots i_p} dx^{i_1} dx^{i_p}$$

and the following theorem is known:

THEOREM I. L and Λ transform harmonic forms into harmonic forms.

This theorem is showed by the relations

 $L\Delta = \Delta L, \ \Lambda \Delta = \Delta \Lambda$

which are proved as follows.³⁾

At first, we can easily see that

(7.4) dL = Ld

by virtue of the property: $d\Omega = 0$. Then if we define an operator \widetilde{d} by

$$\widetilde{d} \varphi^p = \frac{1}{(p+1)!} F^j{}_k \varphi_{i_1 \dots i_p; j} dx^k dx^{i_1} \dots dx^{i_p}$$

for a *p*-form $\varphi^p = \frac{1}{p!} \varphi_{i_1...i_p} dx^{i_1}...dx^{i_p}$, we have

$$(d\widetilde{d} + \widetilde{d}d)\varphi^{p} = \frac{1}{(\not{p}+2)!} F^{j_{k}} \varphi_{i_{1}\dots i_{p};j;h} dx^{h} dx^{k} dx^{i_{1}}\dots dx^{i_{p}}$$

$$(7.5) \qquad \qquad + \frac{1}{(\not{p}+2)!} F^{j_{k}} \varphi_{i_{1}\dots i_{p};h,j} dx^{k} dx^{h} dx^{i_{1}}\dots dx^{i_{p}}$$

$$= \frac{1}{(\not{p}+2)!} F^{j_{k}} (\varphi_{i_{1}\dots i_{p};j;h} - \varphi_{i_{1}\dots i_{p};h;j}) dx^{h} dx^{k} dx^{i_{1}}\dots dx^{i_{p}} =$$

Cosider a normal coordinate system with center P_0 , we see that

0.

$$(\delta L \varphi^p)_{P_0} = (L \delta \varphi^p - \widetilde{d} \varphi^p)_{P_0}$$

thesefore, at each point of the manifold

(7.6)

 $\delta L = L\delta - \widetilde{d}$

holds good.

By (7.4), (7.5) and (7.6) we can verify the equality

$$L\Delta = \Delta L.$$

The latter equality $\Lambda \Delta = \Delta \Lambda$ is proved by using the former and relations $*\Delta = \Delta *, \ *L = L*, \ *\Lambda = L*.$

Let L^r be the iteration of L r times, then we have

(7.7) $\Lambda L^{r} = L^{r} \Lambda + r(m - p - r + 1) L^{r-1}, \qquad (p \le m - 2r)$

especally if r = 1, we have

(7.8) $\Lambda L = L\Lambda + (m-p)E,$

where E denotes the identity operation.

A p-form φ^p is called *effective* or of class 0 or primitive if

$$\Lambda \varphi^p = 0.$$

A *p*-form $L^h \varphi_0^{p-2h}$ is called of *class h*, where φ_0^{p-2h} is an effective (p-2h)-form.

Then, the following decomposition theorems hold good, which are proved by Hodge for Kählerian manifold for the first time and extended by Lichnerowicz to pseudo-kaehlerian manifolds (Hodge, [1]; Lichnerowicz, [3]).

THEOREM II. An arbitrary p-form φ^p can be decomposed uniquely in the

³⁾ For example, see Guggenheimer, [3] Anhang.

following form :

$$\varphi^{p} = \varphi_{0}^{p} + L\varphi_{0}^{p-2} + \ldots + L^{h}\varphi_{0}^{p-2h} \qquad \left(h \leq \left\lfloor \frac{p}{2} \right\rfloor\right)$$

where $\varphi_0^p, \ldots, \varphi_0^{p-2h}$ are effective forms.

From this theorem, we have

THEOREM III. ΛL is an isomorphism of the linear vector space Φ^p spanned by all p-forms $(p \leq m-2)$. And therefore L is an isomorphism from Φ^p into Φ^{p+2} $(p \leq m-2)$.

Cosequently, if $\varphi^{p} \neq 0$, then $L\varphi^{p} \neq 0$ ($p \leq m-2$). Since L and A transform harmonic forms into harmonic forms, Theorem II turns into the decomposition theorem of the *p*-th cohomology group (coefficients real), if V_{2m} is compact and orientable.

THEOREM IV. If V_{2n} is compact, orientable, the p-th cohomology group H^p $(p \leq m)$ can be decomposed into the form:

$$H^p = H^p_0 + L H^{p-2}_0 + \ldots + L^h H^{p-2h}_0, \qquad \qquad \left(h \leq \left\lceil \frac{p}{2} \right
ight
ceil)$$

where $H_0^p, \ldots, H_0^{p-2h}$ are subgroups generated by p-, \ldots, n and (p-2h)-th effective cohomology classes respectively.

The products mean the cup products. From this theorem, we have

THEOREM V. Let d_0^p be the dimension of the linear vector space spanned by all effective harmonic p-forms and B_p be the p-th Betti number, then

$$d_0^p = B_p - B_{p-2} \ge 0 \qquad (p \le m).$$

And the odd dimensional Betti numbers are even and the even dimensional Betti numbers are ≥ 1 .

Using the above theorems, we treat differential forms in our V_{4n} , which is *orintable* but not necessarily compact unless otherwise stated.

8. Harmonic forms of degree odd. In this section, the indices i, j, k, run over 1,, 4n.

Since the three pseudo-kaehlerian structures

$$\overset{(u)}{F} = \overset{(u)}{(F'_{j})}$$
 (u = 1, 2, 3)

are covariant constant, the integrability conditions are given by

$$R_{imkh}F_{i}^{(u)}F_{j}^{(u)} = R_{ijkh} \qquad (u = 1, 2, 3; \text{ not summed})$$

or

(8.1)
$$R^{im}{}_{kh}F^{i}{}_{l}F^{j}{}_{m} = R^{ij}{}_{kh}$$

$$(u = 1, 2, 3; \text{ not summed}).$$

And furthermore

(8.2)
$$R^{ij}{}_{lm}F^{l}{}_{k}F^{m}{}_{h} = R^{ij}{}_{k}$$

(8.3) $R^{a}{}_{i}F^{j}{}_{a} = R^{j}{}_{a}F^{a}{}_{i}$

289

- - ->

hold good.

Let \mathfrak{H}^p be the linear vector space spanned by all harmonic *p*-forms of V_{4n} and put

(8.4)
$$F^{(u)}_{i_1,\ldots,i_p} = F^{(u)}_{i_1,\ldots,i_p}$$
 (*u* = 1, 2, 3; not summed).

and consider the transformations

(8.6)
$$\overset{(u)}{\vartheta} : \varphi_p \to \overset{(u)}{\varphi}{}^p = \frac{1}{p!} \overset{(u)}{\varphi_{i_1 \dots i_p}} dx^{i_1} \dots dx^{i_p} \qquad (u = 1, 2, 3).$$

LEMMA 8.1. The transformations $\overset{(u)}{\mathfrak{G}}(u=1,2,3)$ are automorphisms of the linear vebtor space \mathfrak{G}^p spanned by all harmonic p-forms of V_{4n} . That is to say, if $\varphi_{i_1...i_p}$ is a non-zero harmonic p-tensor, then the p-tensors $\overset{(u)}{\varphi_{i_1...i_p}}(u=1,2,3)$ are also non-zero harmonic p-tensors.

PROOF. Using (7.1), (8.5) and the equation

1....

$$F^{(u)}_{j_{\mu_{1}...j_{p_{i_{1}...i_{p};k}}}=0, \qquad (u=1,2,3)$$

we can see that

$$(\Delta_{\varphi}^{(u)}{}^{p})_{i_{1}...i_{p}} = -g^{kh}F^{j_{1}...j_{p}}_{i_{1}...i_{p}}\varphi_{j_{1}...j_{p};k;h} + \sum_{s=1}^{p} R^{k}{}_{i_{s}}F^{j_{1}...j_{p}}_{i_{1}...i_{s-1}ki_{s+1}...i_{p}}\varphi_{j_{1}...j_{p}} + \sum_{s$$

By virtue of (8.1) and (8.2), we have

$$R^{kh}{}_{i_{s}i_{t}}F^{j_{i_{s}}}F^{j_{i_{s}}}F^{j_{i_{s}}}=R^{j_{s}j_{i_{s}}}F^{k_{i_{s}}}F^{k_{i_{s}}}F^{k_{i_{s}}}, \qquad (u = 1, 2, 3; \text{ not summed})$$

therefore, we get

from (8.4). And we also have

$$R^{k_{j_{s}}}F^{j_{1}...j_{p}}{}_{i_{1}...i_{p}}F^{j_{1}...i_{p}}{}_{i_{1}...i_{p}}\varphi_{j_{1}...j_{p}}$$

$$= R^{i_{t_{k}}}F^{j_{1}...k_{...j_{p}}}{}_{i_{1}...i_{s-1}i_{s}i_{s+1}...i_{p}}\varphi_{j_{1}...j_{p}} \qquad (u = 1, 2, 3)$$

$$= R^{k_{j_{s}}}F^{i_{1}...j_{p}}{}_{i_{1}...i_{p}}\varphi_{j_{1}...i_{p}}.$$

Consequently, it becomes that

$$\begin{aligned} (\Delta \varphi^{p})_{l_{1}..i_{p}} \\ &= \overset{(u)}{F^{j_{1}..j_{p}}}_{i_{1}...i_{p}} \left[-g^{kh} \varphi_{j_{1}...j_{p};k;h} + \sum_{s=1}^{p} R^{k}_{j_{s}} \varphi_{j_{1}...j_{s-1}kj_{s}+1...j_{p}} \right] \\ &+ \sum_{s< t}^{p} R^{kh}_{j_{s}j_{t}} \varphi_{j_{1}...j_{s-1}kj_{s}+1...j_{t-1}hj_{t}+1...j_{p}} \right] \\ &= \overset{(u)}{F^{j_{1}...j_{p}}}_{i_{1}...i_{p}} (\Delta \varphi^{p})_{j_{1}...j_{p}}, \qquad (u = 1, 2, 3) \end{aligned}$$

from which we see that

$$\Delta \varphi^p = 0 \to \Delta^{(u)} \varphi_p = 0 \qquad (u = 1, 2, 3).$$

The transformation $\hat{\mathfrak{G}}^{(u)}$ are non-singular, that is, if $\varphi^{(u)} = 0$, then $\varphi^p = 0$ (u = 1, 2, 3), which is easily seen from the definition.

q. e. d.

We consider the case in which p is odd and for the sake of brevity, we put

$$F^{(u)}_{i_1...i_p} = F^{(u)}_{\xi_{\eta}} \qquad (u = 1, 2, 3)$$

where $\xi = (i_1....i_p), \ \eta = (j_1....j_p).$ And similarly, we put
 $g_{i_1j_1}....g_{i_pj_p} = G_{i_1...i_p, j_1...j_p} = G_{\xi,\eta},$
 $g^{i_1i_1}....g^{i_pj_p} = G^{i_1...i_p, j_1...j_p} = G^{\xi,\eta},$

where $\xi = (i_1 \dots i_p)$, $\eta = (i_1 \dots j_p)$ as in the above. Then, we can easily see that

$$G_{\xi\eta}\,G^{\eta\zeta}=\,\delta^{\zeta}_{\xi}$$

where δ_{ξ}^{ζ} is the Kronecker's delta. Since p is odd, by the definition of $F_{\eta}^{(u)} = F^{i_1...i_p}$ and by (2.1) of §2, we see that

$$(8.7) \begin{cases} \begin{pmatrix} {}^{(u)}_{\mathcal{F}_{\eta}} F^{\eta}_{\zeta} = -\delta_{\zeta}^{\xi}, \\ G_{\xi\eta} F_{\zeta}^{(u)} F^{\eta}_{\kappa} = G_{\zeta\kappa}, \\ {}^{(u)}_{\mathcal{F}_{\eta}} F^{\eta}_{\zeta} = \mathcal{E}_{uvw} F^{\xi}_{\zeta}, \\ F^{\xi}_{\eta} F^{\eta}_{\zeta} = \mathcal{E}_{uvw} F^{\xi}_{\zeta}, \\ \end{pmatrix} (u = 1, 2, 3)$$
(u = 1, 2, 3)

where ε_{uvw} is equal to +1 if (uvw) is an even permutation of (123) and -1 if it is an odd permutation.

If we put

$$G_{\xi\eta} F^{(u)}_{\eta\zeta} = F^{(u)}_{\xi\zeta}, \qquad (u = 1, 2, 3)$$

then from the first two equations of (8.7), we see that $F_{\xi\zeta}$ is anti-symmetric with respect to ξ and ζ . We say two differential forms φ^p , Ψ^p whose supports are compact to be orthogonal, if

$$(\varphi^p, \Psi^p) = \int \langle \varphi^p, \Psi^p \rangle dV = 0,$$

where dV is the volume element of the manifold.

It is easily verified that non-zero mutually orthogonal p-forms are linearly independent in real constant coefficients.

LEMMA 8.2. In V_{4n} (of class C^r , $r \ge 1$), if φ^p is a differential p-form where p is odd and if the support of φ^p is compact, then φ^p , $\overset{(1)}{\Im}\varphi^p$, $\overset{(2)}{\Im}\varphi^p$, and $\overset{(3)}{\Im}\varphi^p$ are mutually orthogonal.

PROOF. For brevify, put

 $arphi_{\iota_{1}\ldots\iota_{p}}=arphi_{arphi}$, $arphi^{arphi}=G^{arphi_{\eta}}\,arphi_{\eta},$

then we have

$$(\overset{(u)}{\eth}\varphi^p)_{i_1\dots i_p} \equiv (\overset{(u)}{\eth}\varphi^p)_{\xi} = \overset{(u)}{F^{\eta}}_{\xi}\varphi_{\eta} \qquad (u = 1, 2, 3)$$

where $\xi = (i_1 i_p)$.

Using (8.7) and in the similar way as the proof of Lemma of §2, we get

$$\begin{split} (\varphi^{p}, \stackrel{(u)}{\Im}\varphi^{p}) &= \int \langle \varphi^{p}, \stackrel{(u)}{\Im}\varphi^{p} \rangle dV = \int (G^{\xi\eta} \varphi_{\xi} \stackrel{(u)}{F_{\xi\eta}} \varphi_{\zeta}) dV = \int (\stackrel{(u)}{F_{\xi\eta}} \varphi^{\xi} \varphi^{\eta}) dV = 0, \\ (\stackrel{(u)}{\Im}\varphi^{p}, \stackrel{(v)}{\Im}\varphi^{p}) &= \int \langle \stackrel{(u)}{\Im}\varphi^{p}, \stackrel{(v)}{\Im}\varphi^{p} \rangle dV = \int (G^{\xi\eta} \stackrel{(u)}{F_{\xi\xi}} \varphi_{\zeta} \stackrel{(v)}{F_{\kappa\eta}} \varphi_{\kappa}) dV \\ &= \mathcal{E} \int (\stackrel{(w)}{F_{\xi\eta}} \varphi^{\xi} \varphi^{\eta}) dV = 0, \\ (u, v, w = 1, 2, 3; u \neq v \neq w; \mathcal{E} = +1 \text{ or } -1) \end{split}$$

which is to be proved.

LEMMA 8.3. In V_{4n} (of class C^r , $r \ge 1$), let φ^v be a non-zero differential p-form with compact support and ψ^v be a non-zero differential p-form with compact support which is orthogonal to four p-forms φ^v , $\tilde{\psi}\varphi^v$ (u = 1, 2, 3), where p is odd. Then ψ^v , $\tilde{\psi}\psi^p$, $\tilde{\psi}\psi^v$ and $\tilde{\psi}\psi^v$ are mutually orthogonal and orthogonal to the four p-forms φ^v , $\tilde{\psi}\varphi^v$ (u = 1, 2, 3).

P_{ROOF}. The orthogonality of any two of ψ^{ν} , $\overset{(u)}{\eth}\psi^{\nu}$ (u=1,2,3) is already proved by Lemma 8.2.

Since Ψ^p is orthogonal to φ^p and $\overset{(u)}{\Im}\varphi^p$ (u = 1, 2, 3), we have

$$(\varphi^{v}, \Psi^{p}) = \int (G_{\xi\eta} \varphi \ \Psi^{\eta}) dV = 0,$$

 $(\overset{(u)}{(v)} \varphi^{p}, \Psi^{p}) = -(\overset{(u)}{F_{\xi\eta}} \varphi^{\xi} \Psi^{\eta}) dV = 0$

From these relations, we see that

$$(\varphi^{\mathfrak{p}}, \overset{(u)}{\Im} \boldsymbol{\Psi}^{\mathfrak{p}}) = \int (G^{\xi_{\eta}} \varphi_{\xi} \overset{(u)}{F^{\xi_{\eta}}} \boldsymbol{\Psi}_{\zeta}) dV = \int (\overset{(u)}{F_{\xi_{\eta}}} \varphi^{\xi} \boldsymbol{\Psi}^{\eta}) dV = 0,$$

$$\begin{pmatrix} {}^{(u)}_{(\widetilde{v})} \varphi^{v}, \\ {}^{(v)}_{\widetilde{v}} \varphi^{v}, \\ {}^{(v)}_{\widetilde{v}} \psi^{v} \end{pmatrix} = \begin{cases} \varepsilon \int (G_{\xi\eta} \varphi^{\xi} \psi^{\eta}) dV = 0 \\ \varepsilon' \int (F_{\xi\eta} \varphi^{\xi} \psi^{\eta}) dV = 0 \\ (\varepsilon, \varepsilon' = +1 \text{ or } -1) \end{cases}$$
 (for $u, v, w = 1, 2, 3$)

which proves the Lemma.

From Lemma 8.2 and Lemma 8.3, we have

THEOREM 8.1. In our V_{4n} (of class C^r, $r \ge 4$), if the number of linearly independent (in real coefficients) harmonic forms with compact supports of odd degree is finite, then it is $\equiv 0 \pmod{4}$.

PROOF. If there exists a non-zero harmonic form φ^p , then $\widehat{\vartheta}\varphi^p$, $\widehat{\vartheta}\varphi^p$ and $\widehat{\vartheta}\varphi^p$ are also harmonic by Lemma 8.1. And these are mutually orthogonal by Lemma 8.2, and so linearly independent in real coefficients.

If furthermore there exists another harmonic p-form Ψ^p linearly independent from the four p-forms mentioned above, we can find a harmonic p-form orthogonal to them. Then we can find 8 mutually orthogonal and hence 8 linearly independent harmonic p-forms by Lemma 8.3. Repeating similar process we get the conclusion of the theorem.

If especially V_{4n} is compact and the class of differentiability is sufficiently high⁴, this theorem can be lead to the following Corollary.

COROLLARY 8.1. Let V_{4n} be compact and the class of differentiability be sufficiently high⁴ and let B_{2q+1} be the odd dimensional Betti numbers of V_{4n} , then

$$B_{2g+1} \equiv 0 \qquad (mod \ 4).$$

For the 1-dimensional Betti number we can study more precisely, if V_{4n} is compact.

The following theorem is known.

THEOREM. In a compact Riemanian manifold, in order that a harmonic vector φ^{t} satisfy

$$R_{jk}\,\varphi^j\,\varphi^k\geqq 0$$

it is necessary and sufficient that φ^i is a parallel vector field, that is φ^i satisfy $\varphi^i_{;j} = 0$ (for ex. Yano, [1]).

Since $R_{jk} = 0$ in our V_{4n} , the above theorem is applicable if V_{4n} is compact, and hence a vector φ^i is harmonic if and only if it is parallel vector field. Then from Corollary 8.1, we get

$$B_1 = 4r \qquad (r \ge 0)$$

for the 1-dimensional Betti number B_1 .

4) So far as the Hodge's theorem concerning the harmonic integrals of Riemannian manifolds be true.

The linear vector space \mathfrak{H}^1 of all harmonic 1-forms is spanned by 4r linearly independent (in real coefficients) harmonic forms whose coefficients are components of a harmonic vectors. These 4r vectors $\varphi_{(1)i}, \ldots, \varphi_{(4r)i}$ are linearly independent with respect to coefficients of scalar functions. For, if otherwise, we can put without any loss of generality,

(8.8)
$$\begin{cases} \varphi_{(1'+1)i} = \alpha_{(1)} \varphi_{(1)i} + \dots + \alpha_{(r')} \varphi_{(r')i}, \\ \dots \\ \varphi_{(4r)i} = \rho_{(1)} \varphi_{(1)i} + \dots + \rho_{(r')} \varphi_{(r')i}, \end{cases} \qquad (r' < 4r)$$

where $\alpha_{(1)}, \ldots, \alpha_{(r')}, \ldots, \rho_{(1)}, \ldots, \rho_{(r')}$ are scalar functions and $\varphi_{(1)_l}, \ldots, \varphi_{(r')_l}$ are lenearly independent with respect to coefficients of scalar functions. Since $\varphi_{(1)_l}, \ldots, \varphi_{(4r)_l}$ are harmonic and hence parallel vector fields, by differentiating (8.8) covariantly, we get

Multiplying an arbitrary vector v^{j} and contracting, these become

where $\widetilde{\alpha}_{(1)} = \alpha_{(1),j} v^j, \ldots, \widetilde{\alpha}_{(r')} = \alpha_{(r',)j} v^j, \ldots, \widetilde{\rho}_{(1)} = \rho_{(1),j} v^j, \ldots, \widetilde{\rho}_{(r')} = \rho_{(r'),j} v^j$ are scalar functions. Since $\varphi_{(1)i} \ldots, \varphi_{(r')i}$ are linearly independent in scalar functions, we have

$$\widetilde{\alpha}_{(1)} = 0, \ldots, \widetilde{\alpha} = 0, \ldots, \widetilde{\rho}_{(1)} = 0, \ldots, \widetilde{\rho}_{(r')} = 0,$$

that is

$$\alpha_{(1),j}v^j = 0, \ldots, \ \alpha_{(r'),j}v^j = 0, \ldots, \ \rho_{(1),j}v^j = 0, \ldots, \ \rho_{(r'),j}v^j = 0.$$

As v^i is arbitrary, we get $\alpha_{(1),j} = 0, \ldots, \alpha_{(r'),j} = 0, \ldots, \rho_{(1),j} = 0, \ldots, \rho_{(r'),j} = 0$ and hence $\alpha_{(1)} = \text{const.}, \ldots, \alpha_{(r')} = \text{const}, \ldots, \rho_{(1)} = \text{const.}, \ldots, \rho_{(r')} = \text{const.}$, which contradicts by (8.8) to the fact that $\varphi_{(1)i}, \ldots, \varphi_{(4^r)i}$ are linearly independent in constant coefficients.

Consequently, V_{4n} admits 4r linearly independent perallel vector fields, hence V_{4n} decomposes locally into the form

$$V_{4n} = E_r \times V_{4(n-r)}$$

where E_{4r} is a 4r-dimensional compact flat manifol and $V_{4(n-r)}$ is a Riemannian manifold whose resricted homogeneous holonomy group is Sp(n-r) or one of its subgroups which does not fix any directions. If otherwise, $V_{4(n-r)}$ admits a parallel and hence harmonic vector fields, hence there are more than 4r harmonic vector fields, contradictorily to the fact that $B_1 = 4r$.

Conversely, if V_{4n} decomposes into the above form locally, then we can easily see that $B_1 = 4r$.

THEOREM 8.2. Let V_{4n} in consideration be compact and denote the 1-dimen-

sional Betti number by B_1 , then

$$B_1 = 4r$$
 (r: non-negative integers).

Furthermore, V_{4n} decomposes locally into the direct product :

 $V_{4n} = E \times V_{4(n-r)}$

where E_{4n} is a 4r-dimensional compact flat manifold and $V_{4(n-r)}$ is a compact Riemannian manifold whose restricted homogeneous holonomy group is Sp(n-r)or one of its subgroups which does hot fix any directions. The converse is also true.

We see therefore that $B_1 \leq 4n$. And if V_{4n} is irreducible, then $B_1 = 0$.

9. Harmonic forms of degree even. Let R be the Grassmann ring of differential forms of V_{4n} . For a suitably chosen orthogonal frame of reference, we can take

$$\overset{(1)}{(F_{ij})} = \begin{pmatrix} 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \\ 0 & 0 & 0 - E_n \\ 0 & 0 & E_n & 0 \end{pmatrix}, \quad \overset{(1)}{(F_{ij})} = \begin{pmatrix} 0 & 0 & E_n & 0 \\ 0 & 0 & 0 & E_n \\ -E_n & 0 & 0 & 0 \\ 0 & -E_n & 0 & 0 \end{pmatrix}, \quad \overset{(3)}{(F_{ij})} = \begin{pmatrix} 0 & 0 & 0 & E_n \\ 0 & 0 - E_n & 0 \\ 0 & E_n & 0 & 0 \\ -E_n & 0 & 0 & 0 \end{pmatrix}.$$

In this section the range of indices are set forth as follows:

$$\begin{vmatrix} a, b, c, \dots = 1, 2, \dots, n; \\ a^*, b^*, c^*, \dots = a + n, b + n, c + n, \dots (\leq 2n) \\ \overline{a, b, c, \dots} = a + 2n, b + 2n, c + 2n, \dots (\leq 3n) \\ \overline{a^*, b^*, c^*, \dots} = a + 3n, b + 3n, c + 3n, \dots (\leq 4n)$$

Then, $\overset{(1)}{\Omega} = \frac{1}{2} \overset{(1)}{F_{ij}} \omega^i \omega^j$, $\overset{(2)}{\Omega} = \frac{1}{2} \overset{(2)}{F_{ij}} \omega^i \omega^j$, $\overset{(3)}{\Omega} = \frac{1}{2} \overset{(3)}{F_{ij}} \omega^i \omega^j$ can be written in the following form

(9.1)
$$\begin{cases} \Omega = F_{aa}^{(1)} \omega^{a} \omega^{a} \omega^{a} + \theta_{1} = \sum_{a} \omega^{a} \omega^{a} \omega^{c*} + \theta_{1} \\ \Omega = F_{aa}^{(2)} \omega^{a} \omega^{a} + \theta_{2} = \sum_{a} \omega^{a} \omega^{a} + \theta_{2} \\ \Omega = F_{aa}^{(3)} \omega^{a} \omega^{a} + \theta_{3} = \sum_{a} \omega^{a} \omega^{a} \omega^{a*} + \theta_{3}, \end{cases}$$

where θ_1 , θ_2 , θ_3 are the sum of the terms which do not contain ω^a $(a = 1, \ldots, n)$.

Consider the 2r-form of the type

(9.2)
$$\varphi^{2r} = \Omega^{\lambda} \Omega^{\mu} \Omega^{\nu}, \qquad (\lambda + \mu + \nu = r)$$

where $\overset{(u)}{\Omega^{\lambda}}(u=1,2,3)$ designate the exterior product of $\overset{(u)}{\Omega} \lambda$ times and $r \leq n$. There are $_{3}H_{r}$ different forms of the type (9.2), where $_{3}H_{r} = \binom{r+2}{r}$. We denote the set of such forms by Φ^{2r} . In φ^{2r} the sum of the terms which contain just r of $\omega^{2}(a=1,\ldots,n)$ is given by

$$\sum \omega^{a_1} \dots \omega^{a_{\lambda}} \omega^{a_1} \dots \omega^{b_{\mu}} \omega^{c_1} \dots \omega^{c_{\nu}} (\omega^{a_1^*} \dots \omega^{a_1^*} \omega^{\overline{b_1}} \dots \omega^{\overline{b_{\mu}}} \omega^{\overline{c}_{1^*}} \dots \omega^{\overline{c}_{\nu^*}})$$

 $(a_1,\ldots,a_{\lambda},b_1,\ldots,b_{\mu}, c_1,\ldots,c_{\nu}=1,\ldots,n;$ any two of them are not equal). Next, let

$$oldsymbol{\Psi}^{2r}= \stackrel{(1)}{\Omega}^{\lambda'} \cdot \stackrel{(2)}{\Omega}^{\mu'} \cdot \stackrel{(3)}{\Omega}^{\nu'} \qquad \qquad (\lambda'+\mu'+\nu'=r)$$

be a form in Φ^{2r} different from φ^{2r} . In ψ^{2r} the sum of the terms which contain just r of ω^a (a = 1, ..., n) is given by

$$\sum \omega^{a_1} \dots \omega^{a_{\lambda'}} \omega^{\flat_1} \dots \omega^{\flat_{\mu'}} \omega^{c_1} \dots \omega^{c_{\nu'}} (\omega^{\flat_1}^* \dots \omega^{a_{\lambda}^*} \omega^{\flat_1} \dots \omega^{\flat_{\mu'}} \omega^{c_1^*} \dots \omega^{c_{\nu'}})$$

 $(a_1, \ldots, a_{\lambda'}, b_1, \ldots, b_{\mu'}, c_1, \ldots, c_{\nu'} = 1, \ldots, n;$ any two of them are not equal). Since φ^{2r} and ψ^{2r} are different, at least one of the pairs (λ, λ') , (μ, μ') , (ν, ν') is not equal, for example, $\lambda \neq \lambda'$. Therefore, In Φ^{2r} , there are no forms which contain just λ of ω^{a*} , μ of $\omega^{\overline{b}}$, ν of $\omega^{\overline{c}*}$ other than φ^{2r} . In other words, a form in Φ^{2r} contains some bases of R which are not contained in any other forms in Φ^{2r} . Consequently, the forms in Φ^{2r} are linearly independent with respect to constant coefficients.

And all forms in Φ^{2r} are non-zero harmonic by Theorem I and Theorem III of §7. Therefore we have

THEOREM 9.1. In V_{4n} (of class C^r , $r \ge 4$), let h_{2r} be the number of linearly independent (in real constant coefficients) harmonic 2r-forms. Then, $h_{2r} \ge {}_{3}H_{r} = \binom{r+2}{r}$.

COROLLARY 9.1. If the V_{4n} is compact, orientable and the class of differentiability is sufficiently high, then the 2r-th $(r \leq n)$ Betti number B_{2r} satisfies the inequality:

$$B_{2r} \geq {}_{3}H_{r} = {r+2 \choose r}.$$

10. Decomposition theorem. In the similar way to pseudo-kaehlerian case, we introduce the following operators for a *p*-form $\varphi^p = \frac{1}{p!} \varphi_{i_1...i_p} dx^{i_1} \dots dx^{i_p}$

(u=1,2,3)

then, we can see that

(10.1)
$$(\Lambda_{(u)} \varphi^p)_{i_1 \dots i_{p-2}} = \frac{1}{2} F^{(u)} \varphi_{i_1 \dots i_{p-2} kh},$$

(10.2)
$$\Lambda_{(u)} L^{r}_{(u)} \varphi^{p} = L^{r}_{(u)} \Lambda_{(u)} \varphi^{p} + r(2n - p - r + 1) L^{r-1}_{(u)} \varphi^{p},$$

analogously to the pseudo-kaehlerian case.

And since the linear combination $\alpha F^{(1)} + \beta F^{(2)} + \gamma F^{(3)}(\alpha, \beta, \gamma)$: scalar functions; $\alpha^2 + \beta^2 + \gamma^2 = 1$) is also a pseudo-kaehlerian structure, we can introduce the operators

(10.3)
$$\begin{cases} L: \alpha L_{(1)} + \beta L_{(2)} + \gamma L_{(3)} \\ \Lambda: \alpha \Lambda_{(1)} + \beta \Lambda_{(2)} + \gamma \Lambda_{(3)} \end{cases} \quad (\alpha^2 + \beta^2 + \gamma^2 = 1).$$

The operators L, $L_{(u)}$, Λ , $\Lambda_{(u)}$ transform harmonic forms into harmonic forms. We call a *p*-form φ^p such as

$$\Lambda_{(u)} \varphi^p = 0$$

 $\Lambda_{(u)}$ -effective and call Λ -effective if $\Lambda \varphi^{\nu} = 0$.

An arbitrary *p*-form φ^{p} $(p \leq 2n)$ decomposes in the following three manners:

(10.4)
$$\begin{cases} \varphi^{p} = \Psi_{(1)}^{p} + L_{(1)} \Psi_{(1)}^{p-2} + \dots + L_{(1)}^{q_{1}} \Psi_{(1)}^{p-2q_{1}} & \left(q_{1} \leq \left[\frac{p}{2}\right]\right) \\ = \Psi_{(2)}^{p} + L_{(2)} \Psi_{(3)}^{p-2} + \dots + L_{(2)}^{q_{2}} \Psi_{(2)}^{p-2q_{2}} & \left(q_{2} \leq \left[\frac{p}{2}\right]\right) \\ = \Psi_{(3)}^{p} + L_{(3)} \Psi_{(3)}^{p-2} + \dots + L_{(3)}^{q_{3}} \Psi_{(3)}^{p-2q_{3}} & \left(q_{3} \leq \left[\frac{p}{2}\right]\right) \end{cases}$$

where $\Psi_{(1)}^{p-2h}$ $(h = 0, ..., q_1)$, $\Psi_{(2)}^{p-2h}$ $(h = 0, ..., q_2)$ and $\Psi_{(3)}^{p-2h}$ $(h = 0, ..., q_3)$ are $\Lambda_{(1)}$ -, $\Lambda_{(2)}$ -, $\Lambda_{(3)}$ -effective (p-2h)-forms respectively.

We also have the decomposition with respect to L:

(10.5)
$$\varphi^{p} = \Psi^{p} + L\Psi^{p-2} + \ldots + L^{q}\Psi^{p-2q} \qquad \left(q \leq \left[\frac{p}{2} \right] \right)$$

where $\Psi^{p-2h}(h=0,1,\ldots,q)$ is a Λ -effective (p-2h)-form.

We call such a form as $L_{(u)}^{s} \psi_{(u)}^{r}$ where $\psi_{(u)}^{r}$ is $\Lambda_{(u)}$ -effective to be of $L_{(u)}$ class s.

If \mathfrak{H}^p is the linear vector space of all harmonic *p*-torms, then \mathfrak{H}^p decomposes in following three manners:

(10.6)
$$\begin{cases} \mathfrak{H}^{p} = \mathfrak{H}_{(1)}^{p} + L_{(1)} \mathfrak{H}_{(1)}^{p-2} + \ldots + L_{(1)}^{q} \mathfrak{H}_{(1)}^{p-2q_{1}} & \left(q_{1} \leq \left\lfloor \frac{p}{2} \right\}\right) \\ = \mathfrak{H}_{(2)}^{p} + L_{(2)} \mathfrak{H}_{(2)}^{p-2} + \ldots + L_{(2)}^{q_{3}} \mathfrak{H}_{(2)}^{p-2q_{3}} & \left(q_{2} \leq \left\lfloor \frac{p}{2} \right\rfloor\right) \\ = \mathfrak{H}_{(3)}^{p} + L_{(3)} \mathfrak{H}_{(3)}^{p-2} + \ldots + L_{(3)}^{q_{3}} \mathfrak{H}_{(3)}^{p-2q_{3}} & \left(q_{2} \leq \left\lfloor \frac{p}{2} \right\rfloor\right) \end{cases}$$

where $L_{(u)}^{h} \mathfrak{H}_{(u)}^{p-2h}$ (u = 1, 2, 3; $h = 1, \ldots, q_{u}$) are linear vector sub-spaces of all harmonic p-forms of $L_{(u)}$ -class h.

Now, let

$$\Psi_{(u)} = \frac{1}{r!} \Psi_{(u) i_1 \dots i_p} dx^{i_1} \dots dx^{i_p} \qquad (u = 1, 2, 3)$$

be a $\Lambda_{(u)}$ -effective *r*-form and consider the operations $\overset{(v)}{\mathfrak{V}}(v=1,2,3)$ of §8, that is

$$\overset{(v)}{\otimes} \psi_{(u)}^{\cdot} = \frac{1}{r} \overset{(v)}{F^{i_{1}}} \cdots \overset{(v)}{F^{i_{r_{i_{r}}}}} \psi_{(u)j_{1}\dots j_{r}} dx^{i_{1}} \dots dx^{i_{r}}$$
 $(u, v = 1, 2, 3)$

or in tensor forms

$$(\overset{(r)}{\upsilon} \psi_{(u)}^{r})_{i_{1} \dots i_{p}} = \overset{(v)}{F^{j_{1}}}_{i_{1}} \dots \overset{(v)}{F^{r_{r_{i_{r}}}}} \psi_{(u)j_{1} \dots j_{r}}.$$
 $(u, v = 1, 2, 3)$

These operations are non-singular and taking account of the fact that $\Psi_{(u)}^{\cdot}$ is $\Lambda_{(u)}$ -effective, we see that

$$(\Lambda_{(u)} \overset{(v)}{\partial} \psi_{(u)}^{r})_{i_{1} \dots i_{p-2}} = \frac{1}{2} \overset{(u)}{F^{k_{h}}} (\overset{(v)}{F^{j_{1}}}_{i_{1} \dots \dots F^{j_{p-2}}} \overset{(v)}{F^{j_{p-2}}}_{i_{p-2}} \overset{(v)}{F^{j_{p-1}}}_{k} \overset{(v)}{F^{j_{p}}}_{i_{p}h} \psi_{(u)j_{1} \dots j_{p}})$$
$$= \frac{\varepsilon}{2} \overset{(u)}{F^{j_{1}}}_{i_{1} \dots \dots F^{j_{p-2}}} \overset{(v)}{F^{j_{p-2}}}_{i_{p-2}} \overset{(u)}{F^{j_{p-1}}}_{j_{p}} \psi_{(u)j_{1} \dots j_{p-1}j_{p}} = 0 \qquad (\varepsilon = \pm 1).$$

That is to say, $\overset{(v)}{\overleftarrow{v}}$ $\overset{(v)}{\overleftarrow{v}} = 1, 2, 3$) transforms $\Lambda_{(u)}$ -effective forms (u = 1, 2, 3) again into $\Lambda_{(u)}$ -effective forms.

Next, consider a form of $L_{(u)}$ -class s (u = 1, 2, 3):

$$L^{s}_{(u)}\Psi^{r}_{(u)} = \frac{1}{(s+r)!} \frac{1}{2^{s}r!} - \mathcal{E}^{h_{1}h'_{1}\dots h_{s}h'_{s}k_{1}\dots k_{r}}_{l_{1}l'_{1}\dots l_{s}l'_{s}l_{1}\dots l_{r}} F^{(u)}_{h_{1}h_{1}}\dots F^{(u)}_{h_{s}h'_{s}}\Psi^{(u)k_{1}\dots k_{r}} dx^{i_{1}}\dots dx^{i_{r}},$$

$$(u = 1, 2, 3)$$

where $\Psi_{(u)}^{r}$ is $\Lambda_{(i)}$ -effective. Then, we see that

$$\overset{(r)}{\textcircled{b}} L^{s}_{(u)} \Psi^{r}_{(u)} = \frac{1}{(s+r)!} \frac{1}{2'r!} \overset{(r)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \ldots \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} & \ldots \overset{(n)}{F'^{1}} \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} & \ldots \overset{(n)}{F'^{1}} \iota_{1} & \ldots \overset{(n)}{F'^{1}} \iota_{1} & \ldots \overset{(n)}{F'^{1}} \iota_{1} & \ldots & \iota_{1} \overset{(n)}{F'^{1}} \iota_{1} & \ldots$$

Since $\psi_{(u)}^r$ is $\Lambda_{(u)}$ -effective, $\overset{(v)}{\eth}\psi_{(u)}^r$ is also $\Lambda_{(u)}$ -effective. From the above, we have

THEOREM 10.1. The operations $\overset{(v)}{\mathfrak{G}}$ (v = 1, 2, 3) are automorphisms of the linear vector space of all forms of $L_{(u)}$ -class s $(s = 0, 1, \ldots, 2n; u = 1, 2, 3)$.

Since $\overset{(\psi)}{\breve{v}}$ transform harmonic forms into harmonic forms, we have

COROLLARY 10.1. The operations $\overset{(v)}{\bigotimes}(v=1,2,3)$ are automorphisms of the linear vector spaces of all harmonic forms of $L_{(u)}$ -class s $(u=1,2,3; s=0,1,\ldots,2n)$.

In particular, if p is odd and if the dimension of \mathfrak{H}^{p} of all harmonic p-forms whose supports are compact is finite, then we have three decompositions of the forms (10.4) for an arbitrary forms $\varphi^{p} \in \mathfrak{H}^{p}$. If there exists a non-zero harmonic p-form $L^{s}_{(u)} \Psi^{p-2s}_{(u)}$ of $L_{(4)}$ -class s, then there exist in \mathfrak{H}^{p} four non-zero harmonic p-forms $L_{(4)} \Psi^{p-2s}_{(u)}$, $\overset{(v)}{\mathfrak{H}}(L_{(4)} \Psi^{p-2s}_{(u)})$ (v = 1, 2, 3) by Corollary

10.1, these being orthogonal with respect to the inner product and hence linearly independent. If there exists another harmonic p-form of $L_{(u)}$ -class s independent from the above four, we can find 8 linearly independent forms in \mathfrak{H}^p in the similar way to §8.

THEOREM 10.2. Let p be odd. If the dimension of \mathfrak{H}^v of all harmonic pforms with compact supports is finite, then in each decomposition (10.6) of \mathfrak{H}^{p} the dimension of $L^h_{(u)} \mathfrak{H}^{p-2h}_{(u)}$ (u = 1, 2, 3) is $\equiv 0 \pmod{4}$.

If furthermore V_{4n} is compact the decomposition (10.6) of \mathfrak{H}^p turns into the decomsition of the *p*-th cohomology group H^p :

$$H^{\rho} = H^{p}_{(1)} + L_{(1)} H^{p-2}_{(1)} + \dots + L^{q}_{(1)} H^{p-2q}_{(1)} \qquad \left(q_{1} \leq \left\lfloor \frac{p}{2} \right\rfloor\right)$$

$$(10.7) = H^{p}_{2} + L_{(2)} H^{p-2}_{(2)} + \dots + L^{q}_{(2)} H^{p-3q}_{(1)} \qquad \left(q_{2} \leq \left\lfloor \frac{p}{2} \right\rfloor\right)$$

$$= H^{p}_{(3)} + L_{(3)} H^{p-2}_{(3)} + \dots + L^{q}_{(3)} H^{p-2q}_{(3)} \qquad \left(q_{3} \leq \left\lfloor \frac{p}{2} \right\rfloor\right).$$

Let B_r and B_{r-2} $(r \leq 2n)$ be the r-th and (r-2)-th Betti numbers of V_{4n} and let $d_{(u)}^r$ be the dimension of the linear vector space of $\Lambda_{(u)}$ -effective harmonic p-forms, then

$$d_{(u)}^r = B_r - B_{r-2},$$
 ($u = 1, 2, 3$)

from which we see that the rank of the subgroups $L_{(1)}^{h} H_{(1)}^{\mu-2h}$, $L_{(2)}^{h} H_{(2)}^{\mu-2h}$ and $L^{h}_{(3)} H^{p-2h}_{(3)}$ are equal for every $h \leq \left\lfloor \frac{p}{2} \right\rfloor$ and $\equiv 0 \pmod{4}$ by the theorem.

COROLLARY 10.2. Let V_{4n} be compact. Then the p-th cohomology group H^p decomposes in three manners such as (10.7) and the rank of each corresponding subgroups $L_{(1)}^{h}H_{(1)}^{p-2h}$, $L_{(2)}^{h}H_{(2)}^{p-2h}$ and $L_{(3)}^{h}H_{(3)}^{p-2h}$ are equal for every $h \leq \left\lceil \frac{p}{2} \right\rceil$. If p is odd, these ranks are $\equiv 0 \pmod{4}$.

In the next place, let p be even and consider a harmonic p-form φ^p whose support is compact. Then $L_{(1)}^{r_1}L_{(2)}^{2}L_{(3)}^{r_3}\varphi^{\rho}$ are harmonic 0-forms, that is, constants for all non-negative integers r_1 , r_2 , and r_3 satisfying $r_1 + r_2 + r_3$ = p/2. Then the $_{3}H_{p/2}$ linear equations

....

12

$$(10.8) \qquad L_{(1)}^{r_1} L_{(2)}^{2} L_{(3)}^{r_2} \varphi^p = \sum_{r'_1 + r'_2 + r'_3 = p/2} (L_{(1)}^{r_1} L_{(2)}^{r_2} L_{(3)}^{r_3} \cdot \mathbf{1}, \ \Omega^{r'_1} \Omega^{r'_2} \Omega^{r'_2} \Omega^{r'_3}) \sigma_{(r'_1 r'_2 r'_3)}$$
$$= \sum_{r'_1 + r'_2 + r'_3 = p/2} (\Omega^{(1)} \Omega^{r_1} \Omega^{r_2} \Omega^{3}, \ \Omega^{r'_1} \Omega^{r'_1} \Omega^{r'_2} \Omega^{r'_3}) \sigma_{(r'_1 r'_2 r'_3)}$$

have a unique solution for unknown constants $\sigma_{(r'_1r'_2r'_2)}$. To show this, for brevity, write the ${}_{3}H_{p/2}$ forms $\Omega^{(1)}r_{1}^{(2)}\Omega^{(2)}\Omega^{(3)}$ $(r_{1} + r_{2} + r_{3} = p/2)$ as $v_{1}, v_{2}, \ldots, v_{q}$ $(q = {}_{3}H_{p/2})$, and $\sigma_{(r'_1r'_2r'_2)}$ as $c_{\lambda}(\lambda = 1, \ldots, q)$. Then (10.8) can be written in the form

(10.9)
$$\begin{cases} c_1(v_1, v_1) + c_2(v_2, v_1) + \dots + c_q(v_q, v_1) = d_1 \\ c_1(v_1, v_2) + c_2(v_2, v_2) + \dots + c_q(v_q, v_2) = d_2 \\ \dots \\ c_1(v_1, v_q) + c_2(v_2, a_q) + \dots + c_q(v_q, v_q) = d_q, \end{cases}$$

where c_1, \ldots, c_q are unknown constants and d_1, \ldots, d_q and (v_{λ}, v_{μ}) $(\lambda, \mu = 1, \ldots, q)$ are known constants. The determinant

is not zero, for if otherwise, there exist constants c'_1, \ldots, c'_q which are not simultaneously equal to zero and satisfy

$$\left\{egin{array}{ll} c_1^{'}(v_1,v_1)+c_2^{'}(v_2,v_1)+\ldots+c_q^{'}(v_q,v_1)=0,\ \ldots\ldots\ldots\ldots\ldots,\ c_1^{'}(v_1,v_q)+c_2^{'}(v_2,v_q)+\ldots\ldots+c_q^{'}(v_q,v_q)=0, \end{array}
ight.$$

or

$$\left\{egin{array}{lll} (c_1^{'}v_1+c_2^{'}v_2+\ldots+c_q^{'}v_q,\ v_1)=0,\ \ldots \ (c_1^{'}v_1+c_2^{'}v_2+\ldots+c_q^{'}v_q,\ v_q)=0. \end{array}
ight.$$

Since $c'_1 v_1 + \ldots + c'_q v_q$ lies in the vector space spanned by linearly independent v_1, \ldots, v_q , we must have

$$c_1'v_1+\ldots+c_q'v_q=0,$$

from which we get

$$c_1' = c_2' = \ldots = c_q' = 0,$$

by virtue of the linear independence of v_1, \ldots, v_q . But this is a contradiction. Consequently, φ^p decomposes uniquely into the following form:

(10.10)
$$\varphi^{\nu} = \tau^{\nu} + \sum_{r_1 + r_2 + r_3 = p/2} \Omega^{(1)} \Omega^{r_1} \Omega^{(2)} \Omega^{2} \Omega^{(3)'3} \sigma_{(r_1 r_2 r_3)}, \quad (\sigma_{(r_1 r_2 r_3)}: \text{ constants})$$

where τ^{p} satisfies the equations

$$(\tau_{p}, \ \Omega^{(1)} \Omega^{r_{2}} \Omega^{(2)} \Omega^{r_{3}}) = \int \langle \tau^{p}, \ \Omega^{(1)} \Omega^{r_{1}} \Omega^{2r_{2}} \Omega^{3} > dV = 2^{r_{1}+r_{2}+r_{3}} \int \Lambda^{r_{1}}_{(1)} \Lambda^{r_{3}}_{(2)} \Lambda^{r_{3}}_{(3)} \tau^{p} dV = 0$$

for all r_1 , r_2 and r_3 satisfying $r_1 + r_2 + r_3 = p/2$. These equations are equivalent to

(10.11)
$$\Lambda_{(1)}^{r_1} \Lambda_{(2)}^{r_2} \Lambda_{(3)}^{r_3} \tau^p = 0 \qquad (r_1 + r_2 + r_3 = p/2),$$

since $\Lambda_{(1)}^{r_1} \Lambda_{(2)}^{r_2} \Lambda_{(3)}^{r_3} \tau^{\nu}$ are harmonic 0-forms, that is, constants.

THEOREM 10.3. Let p be even. If the dimension of the linear vector space \mathfrak{H}^p of all harmonic p-forms with compact supports is finite, then every p-form $\varphi^p \in \mathfrak{H}^p$ decomposes into the form

 $\varphi^{p} = \tau^{p} + \sum_{r_{1}+r_{2}+s=p/2} \Omega^{(1)r_{1}(2)} \Omega^{(3)} \Omega^{s} \sigma_{(r_{1}r_{2}r_{3})} \qquad (\sigma_{(r_{1}r_{2}r_{3})}: constants)$

where τ^{ν} is a harmonic *p*-form satisfying

 $\Lambda_{(1)}^{r_1} \Lambda_{(2)}^{r_2} \Lambda_{(3)}^{r_3} \tau_{\cdot}^p = 0,$

where r_1 , r_2 and r_3 are non-negative integers satisfying $r_1 + r_2 + r_3 = p/2$.

COROLLARY 10.3. Let V_{4n} be compact and p be even. Then the p-th Betti number B_p can be given by

$$B_p = \mathcal{E}_p + {}_{\mathfrak{P}/2}$$

where ε_p is the number of linearly independent harmonic p-forms satisfying $\Lambda_{(1)}^{r_1} \Lambda_{(2)}^{r_2} \Lambda_{(3)}^{r_3} \tau^{\nu} = 0$ $(r_1 + r_2 + r_3 = p/2)$.

References

AKIZUKI, Y.

[1] Theory of harmonic integrals, I, II (in Japanese). Tokyo (1955 and 1956) BERGER, M.:

- Sur les groupes d'holonomie des variétés riemanniennes. C. R. Acad. Sci., Paris, 237 (1953), 472-474.
- [2] Sur les groupes d'holonomie des variétés riemanniennes non symétriques., C. R. Acad. Sci., Paries, 237 (1953), 1036-1038.
- [3] Groupes d'holonomie des variétés riemanniennes. Applications. C. R. Acad. Paris, 238 (1954), 985-986.

BOCHNER, S.:

- [1] Vector fields and Ricci curvature. Bull. A. M. S., 52 (1946), 776-797.
- [2] Curvature in Hermitian metric. Bull. A. M. S., 52 (1946), 179-195.
- [3] Curvature and Betti numbers, I. Ann. of Math., 49 (1948), 379-390.
- [4] Curvature and Betti numbers, II. Ann. of Math., 50(1949), 77-93.
- BIDAL, P. et G. DE RHAM:
 - [1] Les forms différentielles harmoniques. Comm. Math. Helv., 19 (1940), 1-49.
- CALABI, E. AND D.C. SPENCER:
 - Completely integrable almost complex manifolds. Bull. A. M. S., 57 (1951), 254-255.
- CHERN, S.S.:
 - [1] On Riemannian manifold of four dimensions. Bull. A. M. S., 51 (1945), 964-971.
 - [2] Characteristic classes of Hermitian manifolds, Ann. of Math., 47 (1946), 85-121.
 - [3] Topics in differential geometry. Princeton (1951),
- Cartan, E.:
 - [1] Les groupes d'holonomie des espaces généralisées. Acta Math., 48(1926), 1-42.
- de Rham, G.:

[1] Variétés différentiables. Act. Sci. et Indust. 1222., Paris (1955).

- ECKMANN, B.:
- [1] Quelque propriétés globales des variétés kähleriennes. C.R. Acad. Sci., Paris, 229 (1949), 577-579.

ECKMANN, B. AND H. GUGGENHEIMER. :

[1] Formes différentielles et métrique hermitienne sans torsion. I., C. R. Acad. Sci., Paris 229 (1949), 464-496.

- [2] Formes différentielles et métrique hermitienne sans torsion. II. C. R. Acad. Sci., Paris, 229 (1949) 489-491.
- [3] Sur les variétés closes à métrique hermitienne sans torsion. C. R. Acad. Sci., Paris, 229 (1949), 503-505.

- [1] Sur la théorie des espaces fibrés. Coll. Top. Alg. (1947).
- [2] Sur les variétés presque complexes. Proc. Int. Congr.
- EISENHART, L.P.:
- [1] Cotinuous groups of tran formations. 38, Princeton (1933).
- FRÖLICHER, A.:
 - [1] Sur l'intégrabilité de structures presque complexes. C. R. Acad. Sci., Paris, 232 (1951), 2284-2286.

GUGGENHEIMER, H.:

- [1] Sur les variétés qui possèdent une forme exterieur quadiatique fermée. C. R. Acad. Sci., Paris, 232 (1951), 470-472.
- [2] A note on curva nee and Betti numbers. Proc. Amer. Math. Soc., 2(1951), 867-870.
- [3] Über komplex-analytische Mannigfaltigkeit mit Kählerscher Metrik. Commt. Math. Helv., 25(1951), 257-297.
- [4] Über Kählersche und symplektische Differentialalgebren. Tôhoku Math. J., 4, No. 2, (1952), 157-171.
- [5] Formes et vecteurs pseudo-analytiques. Ann. Mat. pura appl. (4), 36 (1954), 223-246.
- [6] Variétés symplectiques. Coll. Top., Strasbourg, Janvier (1951).
- HODGE, W.V.D.: [1] Theory and Applications of harmonic integrals. Cambr. (1941).
- IWAMOTO, H.:
 - [1] On the structure of Riemannian spaces whose holonomy grous fix a null system, Tôhoku Math. J., 1, No.2 (1950), 109-135.

LIEBERMANN, P.:

- [1] Sur les variéfés presque complexes V_{2n} munies d'un champ de *n*-elements reels. C. R. Acad. Sci., Paris, 233 (1951), 1971-1973.
- [2] Formes différentielles sur une variété symlestique. C. R. Acad. Sci., Paris, 234 (1952), 395-397.
- Sur les structures presque quaternioniennes de deuxieme espèce. C. R. Acad. Sci., Paris, 234 (1952), 1030:1032.
- [4] Sur le problème d'équivalence de certaines structures infinitésimales. Thèse (1953).

LICHNEROWICZ, A.:

- [1] Un théorème sur les espaces homogènes complexes. Archiv. der Math., 5 (1954), 207-215.
- Théorème de réductibilité des variétés kähleriennes et applications. C.R. [2] Acad. Sci., Paris, 231 (1950) 1280-1282.
- [3] Généralisations de la géométrie kählertenne globale. Coll. geo. diff., Louvain (1951).
- [4] Formes a dérivée covariante nulle sur une variété riemannienne. C. R. Acad. Sci., Paris, 232 (1951), 146-147.
- [5] Sur les variétés riemanniennes admettant une forme à dérivée covariante nulle. C. R. Acad. Sci., Paris, 232 (1951), 677-679.
- [6] Sur les variétés symplectiques. C. R. Acad. Sci., Paris, 233(1951), 723-725.
- [7] Sur les formes harmoniques des variétés riemanniennes localement réductibles. C.R. Acad. Sci., Paris, 232 (1951), 1634-1636.
- [8] Espaces homogenes kähleriens. Coll. Inter. C.N.R.S., LII, Géométrie differentielle, Strasbourg, 26 (1953).
- [9] Un théorème sur les espaces homogènes complexes. Archiv. der Math., 5(1954), 207-215.
- [10] Sur les groupes d'holonomie des variétés riemanniens et kähleriens. Edizioni

EHRESMANN, C:

Cremonese della S.A. Perrela, Roma (1954). OTSUKI, T.

[1] On some 4-dimensional Riemannian Spaces. I. II. Mem. Fac. Sci. Kyushu Univ., Ser. A (Math), 4 (1949).

SASAKI, S.:

 On the real representations of spaces with Hermitian connection. Sci. Rep. Tôhoku Univ., ser. I, 33 (1949), 52-61.

SCHOUTEN, J.A.

[1] Ricci Calculus. Springer (1954).

SCHOUTEN, J.A. AND K. YANO:

[1] On pseudo-Kählerian spaces admitting a continuous group of motions. Proc. Kon. Ned. Acad. Wet., Amsterdam, A. 54 (1951), 200-212.

THOMAS, T.Y.:

[1] The decomposition of Riemann Spaces in the large. Monatsh. f. Math. Phys., 47 (1939).

WEIL, A.:

[1] Sur la théorie des formes différentielles attachées à une variété analytique complexe. Commt. Math. Helv., 20(1947), 110-116.

YANO, K.:

[1] On harmonic and Killing vector fields. Ann. of Math., 55 (1952), 38-45. YANO, K. AND S. BOCHNER:

[1] Curvature and Betti numbers. Ann. of Math. Studies, Princeton (1953). YANO, K. AND I. MOGI:

[1] Sur les variétés pseudo-kächleriennes à courbure holomorphique constante. C R. Acad. Sci., Paris, 237 (1953), 962-964.

[2] On real representations of Kaehlerian manifolds. Ann. ot Math., 61(1955), 170-189.

FUKUSHJMA UNIVERSITY.