ON RIEMANNIAN MANIFOLDS WITH HOMOGENEOUS HOLONOMY GROUP $\boldsymbol{s p}_{\boldsymbol{p}}(*)$

Hidekiyo Wakakuwa

(Received July 20, 1958)

According to the results of M. Berger (M. Berger, [1], [2], [3]), it is known that the restricted homogeneous holonomy group of a non-symmetric, irreducible N-dimensional Riemannian manifold V_{N} is one of the followings : $S O(N)$ (full rotation group), $U(m)$ (unitary group ; $N=2 m$), $S U(m)$ (special unitary group ; $N=2 m$), $S p(n)$ (unitary symplectic group ; $N=4 n$), $S p(n) \otimes T^{1}, S p(n)$ $\otimes S U(2)$ or some other exceptions. The Riemannian manifold with restricted homogeneous holonomy group $U(m)$ or $S U(m)$ is characterized by the fact that it is pseudo-kaehlerian or pseudo-kaehlerian with Ricci tensor zero (Iwamoto, [1]; Lichnerowicz, [8]). The purpose of this paper is to study the $4 n$-dimensional Riemannian manifold whose restricted homogeneous holonomy group is the real representation of the unitary symplectic group $S p(n)$ or one of its subgroups. Since the group $S p(n)$ is a subgroup of the special unitary group $S U(2 n)$; our manifolds in consideration are special pseudo-kaehlerian manifolds. In Part I, we treat local properties and in Part II the theory of harmonic forms and the cohomology theory.

PART I

In this Part I, unless otherwise stated, the summation convention will be used and the indices run over the following ranges:

$$
\begin{aligned}
& i, j, k, \ldots=1,2, \ldots, \ldots, \ldots, \ldots . \ldots 4 n ; \\
& a, b, c, \ldots=1,2, \ldots, n ; \\
& \alpha, \beta, \gamma, \ldots=1,2, \ldots, \ldots, 2 n ; \\
& \bar{\alpha}, \bar{\beta}, \bar{\gamma} \ldots=1+2 n, 2+2 n, \ldots, 4 n .
\end{aligned}
$$

1. Preliminary remarks. Let $C_{2 n}$ be a $2 n$-dimensional complex Cartesian space. Unitary symplectic group $S p(n)$ operating on $C_{2 n}$ is a subgroup of unitary group $U(2 n)$ which leaves bilinear form

$$
z^{a} \wedge w^{r+n}=\left(z^{a} w^{a+n}-z^{a+n} w^{a}\right) / 2 \quad\left(\left(z^{\alpha}\right), \quad\left(w^{\alpha}\right) \in C_{2 n}\right)
$$

invariant and it is necessarily special unitary. Hence, the necessary and sufficient conditions that a linear endomorphism of $C_{2 n}$

$$
\begin{equation*}
z^{* \alpha}=U_{\beta}^{\alpha} z^{3} \quad\left(\left(U_{\beta}^{\alpha}\right): \text { complex matrix of order } 2 n\right) \tag{1.1}
\end{equation*}
$$

be unitary symplectic are as follows:
(i) $U=\left(U_{\beta}^{\alpha}\right)$ be unitary, that is, ${ }^{t} \bar{U} U=E_{2 n}\left(E_{2 n}\right.$: unit matrix of order $2 n$), where the bar over U denotes the complex conjugate of U and ${ }^{t} U$ the transpose of U.
(ii) U leaves the matrix $\left(\begin{array}{cc}0 & \cdot \\ -E_{n} & E_{n}\end{array}\right)$ invariant, where E_{n} denotes the unit
matrix of order n.
Such a matrix U is called unitary symplectic. The condition (ii) is equivlent to the fact that U be of the form

$$
U=\left(\begin{array}{cc}
\Sigma & -\overline{\boldsymbol{\Theta}} \tag{1.2}\\
\boldsymbol{\Theta} & \Sigma
\end{array}\right)
$$

where Σ, Θ denote complex matrices of order n. If we put

$$
\Sigma=P+R i, \quad \Theta=Q+S i \quad(i=\sqrt{-1})
$$

where P, Q, R, S denote real matrices of order n, we have a real representation of (1.2):

$$
T=\left(\begin{array}{rrrr}
P & -Q & -R & -S \tag{1.3}\\
Q & P & -S & R \\
R & S & P & -Q \\
S & -R & Q & P
\end{array}\right)
$$

The condition (i) implies that this T be an orthogonal matrix. Therefore, with respect to an orthogonal base [e_{2}], a transformation of $S p(n)$ is expressed by

$$
\begin{equation*}
e_{j}^{*}=T_{j}^{i} e_{i}, \tag{1.4}
\end{equation*}
$$

where $T=\left(T_{j}^{\prime}\right)$ is an orthogonal matrix of the form (1.3). With respect to a new base $\left[e_{i}^{\prime}\right]$ which is obtained from [e_{i}] by an imaginary transformation

$$
\begin{equation*}
e_{\alpha}^{\prime}=\frac{1}{\sqrt{2}}\left(e_{\alpha}-i e_{\bar{\alpha}}\right), \quad e^{\prime-\bar{\alpha}}=\frac{1}{\sqrt{2}}\left(e_{\alpha}+i e_{\bar{\alpha}}\right) \tag{1.5}
\end{equation*}
$$

the transformation (1.4) takes the form

$$
e_{j}^{*}=T_{j}^{\prime i} e_{i,}^{\prime},
$$

where

$$
\left(T_{i}^{\prime j}\right)=\left(\begin{array}{crc}
P+R i, & -Q+S i & 0 \tag{1.6}\\
Q+S i, & P-R i & \\
0 & & P-R i, \\
\hline Q-Q i, & P+R i
\end{array}\right)=\left(\begin{array}{cc}
U & 0 \\
0 & \bar{U}
\end{array}\right)
$$

By an orthogonal matrix of the form (1.3), the three matrices

$$
I=\left(\begin{array}{cccc}
0 & E_{n} & 0 & 0 \tag{1.7}\\
-E_{n} & 0 & 0 & 0 \\
0 & 0 & 0 & -E_{n} \\
0 & 0 & E_{n} & 0
\end{array}\right), J=\left(\begin{array}{cccc}
0 & 0 & E_{n} & 0 \\
0 & 0 & 0 & E_{n} \\
-E_{n} & 0 & 0 & 0 \\
0 & -E_{n} & 0 & 0
\end{array}\right), \quad K=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & 0 & -E_{n} & 0 \\
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0
\end{array}\right)
$$

are left invariant, that is, ${ }^{t} T I T=I$, etc. Among these I, J, K there are following relations:

$$
\begin{cases}\text { (I) } & I^{2}=J^{2}=K^{2}=-E_{4 n} \tag{1.8}\\ \text { (II) } & { }^{t} I I={ }^{t} J J={ }^{t} K K=E_{4 n} \\ \text { (III) } & I J=-J I=K, \quad J K=-K J=I, K I=-I K=J .\end{cases}
$$

The necessary and sufficient condition that an orthogonal matrix be unitary symplectic is that it is conjugate to a matrix which leaves the three matrices (1.7) invariant.
2. Characterization of $V_{4 n}$. Let $V_{4 n}$ be a $4 n$-dimensional Riemannian
manifold of class $C^{r}(r \geqq 2)$ whose restricted homogeneous holonomy group h^{0} is the real representation of $S p(n)$. With respect to a suitable orthogonal frame of reference, there exist three covariant constant tensor fields I, J, K
 ${ }_{F}^{(3)}{ }^{i} j$ be the three tensor fields I, J, K with respect to the natural frame of reference of $V_{4 n}$ respectively, then the relations (1.8) assert that
where G means the matrix of $\left(g_{i j}\right)$ of the fundamental metric tensor of $V_{4 n}$.
It is remarked that using the relations (I), (II) and one of (III), the other two relations of (III) can be proved.

If we use the components of $\stackrel{(1)}{F} \stackrel{(2)}{F}$ and $\stackrel{(3)}{F}$, (2.1) is also written in the following forms:

If we put

$$
\begin{equation*}
g_{i k}{\stackrel{(1)}{F^{k}}}_{j}=\stackrel{(1)}{F}_{i j}, g_{i k}{\stackrel{(2)}{F^{c}}}_{j}=\stackrel{(2)}{F}_{i j}, g_{i k} \stackrel{(3)}{F}_{k_{j}}=\stackrel{(3)}{F}_{i j} \tag{2.2}
\end{equation*}
$$

then $\stackrel{(1)}{F_{i j}}, \stackrel{(2)}{F_{i j}}, \stackrel{(3)}{F_{i j}}$ are anti-symmetric tensor fields. This fact is easily verified from (I) and (II) of (2.1').

Now we have seen that if the restricted homogeneous holonomy group of $V_{4 n}$ is the real representation of $S p(n)$, then there exist three covariant
 or (2.1') in each coordinate neighborhood.

We shall prove, conversely, that if there exist three covariant constant tensor fields over $V_{4 n}$ satisfying (2.1) or (2.1') in a $4 n$-dimensional Riemannian manifold $V_{4 n}$, then the restricted homogeneous holonomy group of $V_{4 n}$ is the real representation of $S p(n)$ or one of its subgroups.

Lemma 2.1. Let u^{2} be an arbitrary non-zero vector field. Then $u^{i}, F^{(1)}{ }^{(1)} u^{4}$, ${ }_{F^{\prime}}^{(2)} u^{\prime}$ and $\stackrel{(3)}{F}{ }_{j} u^{\prime}$ are mutually orthogonal. If u^{d} is a unit vector, then the other three are also unit vectors.

Proof. The orthogonality of u^{4} to the other three is evident from (2.2). The orthogonality of $\stackrel{(1)}{F^{\imath}}{ }_{j} u^{j}$ to $\stackrel{()^{\prime}}{F_{j}}{ }_{j} u^{j}$, for example, is verified as follows:

$$
=-g_{i k} \stackrel{(3)}{F^{i}}{ }_{h} u^{k} u^{h}=-\stackrel{(3)}{F_{k h}} u^{k} u^{h}=0
$$

If $u^{\boldsymbol{i}}$ is a unit vector, then the fother three are also unit vectors by vitue of (II) of (2.1).

Lemma 2.2. Let u^{d} be an arbitrary non-zero vector field and v^{\prime} be a vector field which is orthogonal to all of four vectors $u^{i}, \stackrel{(1)}{F_{j}^{i}} u^{\prime}, \stackrel{(2)}{F_{j}^{i}} u^{j}$ and $\stackrel{(3)}{F^{i}}{ }_{j} u^{i}$. Then, $\stackrel{(1)}{F_{j}^{\prime} v^{i}}, \stackrel{(2)}{F_{j}^{\prime}} v^{j}, \stackrel{(3)}{F_{j}^{i}} v^{j}$ are mutually orthogonal and orihogonal to all the other five vectors.

Proof. For example, the orthogonality of $\stackrel{(1)}{F_{j}^{i}} v^{j}$ to $u^{i}, \stackrel{(1)}{F}, u^{i} \stackrel{(2)}{F}_{j} u^{j}, \stackrel{(3)}{F}_{j}^{i} u^{j}$ is verified as follows. By assamption, v^{j} is orthogonal to all of $u^{i}, \stackrel{(1)}{F_{j}^{i}} u^{i}, \stackrel{(2)}{F^{i}} u^{j} u^{j}$ and $\stackrel{(3)}{F^{\prime}}, u^{\prime}$, we have

$$
g_{i j} u^{i} v^{j}=0
$$

$$
\stackrel{(1)}{F}_{i j} u^{i} v^{j}=0
$$

and similarly

$$
\stackrel{(2)}{F}_{i j} u^{i} v^{j}=0, \stackrel{(3)}{F}_{i j} u^{i} v^{i}=0
$$

Hence we see that

The others can be proved similarly.
q.e.d.

By the aid of above two Lemmas, we prove that the restricted homogeneous holonomy group h^{0} of our $V_{4 n}$ is the real representation of $S p(n)$ or one of its subgroups by showing that $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F}$ can be taken in the form (1.7) by choosing a suitable orthogonal frame of reference $\left[e_{1}, e_{2}, \ldots, e_{4 n}\right]$.

At first, choose an arbitrary unit vector as e_{1}, then its components are
 collineations given by $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F}$ respectively, are mutually orthogonal by Lemma 2.1. If we choose these vectors as $-e_{n+1},-e_{2 n+1},-e_{3 n+1}$, then with respect to such frame of reference, we have

$$
\stackrel{(1)}{F^{n+1}}{ }_{1}=-1, \stackrel{(2)}{F^{2 n+1}}{ }_{1}=-1, \stackrel{(3)}{F^{3 n+1}}{ }_{1}=-1
$$

and the other $\stackrel{(1)}{F_{1}^{i}}, \stackrel{(2)}{F_{1}^{i}}, \stackrel{(3)}{F_{1}}$ are all zero.
Next, choose a vector which is orthogonal to all of the above e_{1}, e_{n+1}, $e_{2 n+1}$ and $e_{3 n+1}$ as e_{2}. Then the components of the last vector are $\delta^{i}{ }_{2}$. The three vectors (components $\stackrel{(1)}{F_{2}^{\prime}}, \stackrel{(3)}{F^{i}}, \stackrel{(3)}{F^{i}}$) obtained from e_{2} by collineations $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F}$ respectively are mutualy orthogonal and orthogonal to $e_{1}, e_{n+1} e_{2 n+1}, e_{3 n+1}$ by

Lemma 2.1 and 2.2. If we choose these three vectors as $-e_{n+2},-e_{2 n+2}$, $-e_{3 n+2}$, then with respect to such a frame of reference

$$
\stackrel{(1)}{F^{n+1}}{ }_{2}=-1, \stackrel{(2)}{F^{2 n+1}}{ }_{2}=-1, \stackrel{(3)}{F^{3 n+1}}{ }_{2}=-1
$$

and the other $\stackrel{(1)}{F^{i}}, \stackrel{(2)}{F_{2}^{i}}, \stackrel{(3)}{F_{2}}$ are all zero.
Repeating similar process n times, we get an orthogonal frame of reference. Taking account of the fact that with respect to this orthogonal frame of reference, $\stackrel{(1)}{F^{\prime}}, \stackrel{(2)}{\left.F_{j}\right)_{j}}$ and $\stackrel{(3)}{F^{2}}{ }_{j}$ are anti-symmetric with respect to the upper and lower indices, we see that $\stackrel{(1)}{F}=\left(\stackrel{(1)}{F^{i}}\right), \stackrel{(1)}{F}=\left(\stackrel{(2)}{F^{i}}\right)$ and $\stackrel{(3)}{F}=\left(\stackrel{(3)}{F^{i}}\right)$ are of the forms

$$
\stackrel{(1)}{F}=\left(\begin{array}{cccc}
0 & E_{n} & 0 & 0 \\
-E^{n} & X_{1} & X_{2} & X_{3} \\
0 & X_{1}^{\prime} & X_{2}^{\prime} & X_{3}^{\prime} \\
0 & X_{1}^{\prime \prime} & X_{2}^{\prime} & X_{3}^{\prime \prime}
\end{array}\right), \stackrel{(2)}{F}=\left(\begin{array}{cccc}
0 & 0 & E_{n} & 0 \\
0 & Y_{1} & Y_{2} & Y_{3} \\
-E_{n} & Y_{1}^{\prime} & Y_{2}^{\prime} & Y_{3}^{\prime} \\
0 & Y_{1}^{\prime \prime} & Y_{2}^{\prime \prime} & Y_{3}^{\prime \prime}
\end{array}\right), \stackrel{(3)}{F}=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & Z_{1} & Z_{2} & Z_{3} \\
0 & Z_{1}^{\prime} & Z_{2}^{\prime} & Z_{3}^{\prime} \\
-E_{n} & Z_{1}^{\prime \prime} & Z_{2}^{\prime \prime} & Z_{3}^{\prime \prime}
\end{array}\right),
$$

respectively, where $X_{1}, X_{2}, \ldots ; Y_{1}, Y_{2}, \ldots ; Z_{1}, Z_{2} \ldots$ denote real matrices of order n. From (I) of 2.1, we have

$$
\stackrel{(1)}{F^{2}}=\left(\begin{array}{lll}
-E_{n} & X_{1} & X_{2} \\
-X_{3} \\
-X_{1} & * \\
-X_{1} & * \\
-X_{1}^{\prime \prime} &
\end{array}\right)=-E_{4 n}
$$

hence

$$
X_{1}=X_{2}=X_{3}=X_{1}^{\prime}=X_{1}^{\prime \prime}=0 .
$$

Similarly, from $\stackrel{(2)}{F^{2}}=\stackrel{(3)}{F^{2}}=-E_{4 n}$ we get

$$
\begin{aligned}
& Y_{2}=Y_{1}^{\prime}=Y_{2}^{\prime}=Y_{3}^{\prime}=Y_{2}^{\prime \prime}=0, \\
& Z_{3}=Z_{3}^{\prime}=Z_{1}^{\prime \prime}=Z_{2}^{\prime \prime}=Z_{3}^{\prime \prime}=0 .
\end{aligned}
$$

So, $\stackrel{(1)}{F}, \stackrel{(2)}{F}$ and $\stackrel{(3)}{F}$ have the following forms :

$$
\stackrel{(1)}{F}=\left(\begin{array}{cccc}
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0 \\
0 & 0 & X_{2}^{\prime} & X_{3}^{\prime} \\
0 & 0 & X_{2}^{\prime \prime} & X_{3}^{\prime \prime}
\end{array}\right), \stackrel{(2)}{F}=\left(\begin{array}{cccc}
0 & 0 & E_{n} & 0 \\
0 & Y_{1} & 0 & Y_{3} \\
-E_{n} & 0 & 0 & 0 \\
0 & Y_{1}^{\prime \prime} & 0 & Y_{3}^{\prime \prime}
\end{array}\right), \stackrel{(3)}{F}=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & Z_{1} & Z_{2} & 0 \\
0 & Z_{1}^{\prime} & Z_{2}^{\prime} & 0 \\
-E_{n} & 0 & 0 & 0
\end{array}\right),
$$

By virtue of (III) of (2.1), that is, $\stackrel{(1)(2)}{F F}=\stackrel{(3)}{F}$, we have

$$
\stackrel{(1)(2)}{F F}=\left(\begin{array}{cccc}
0 & Y_{1} & 0 & Y_{3} \\
0 & 0 & -E_{n} & 0 \\
-X_{2}^{\prime} & X_{3}^{\prime} Y_{1}^{\prime} & 0 & X_{3}^{\prime} Y_{3}^{\prime \prime} \\
-X_{2}^{\prime \prime} & X_{3}^{\prime} Y_{1}^{\prime \prime} & 0 & X_{3}^{\prime \prime} Y_{3}^{\prime \prime}
\end{array}\right)=\stackrel{(3)}{F}=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & Z_{1} & Z_{2} & 0 \\
0 & Z_{1}^{\prime} & Z_{2}^{\prime} & 0 \\
-E_{n} & 0 & 0 & 0
\end{array}\right),
$$

hence we get

$$
X_{2}^{\prime}=0, \quad X_{2}^{\prime \prime}=E_{n}, \quad Y_{1}=0, \quad Y_{3}=E_{n}, \quad Z_{1}=0, \quad Z_{2}=-E_{n}, \quad Z_{2}^{\prime}=0
$$

Since $\stackrel{(1)}{F}, \stackrel{(2)}{F}$, and $\stackrel{(3)}{F}$ are anti-symmetric, we find

$$
X_{3}^{\prime}=-E_{n}, \quad Y_{1}^{\prime \prime}=-E_{n}, \quad Z_{1}^{\prime}=E_{n}
$$

Hence, from $X_{3}^{\prime \prime} Y_{1}^{\prime \prime}=0$ and $X_{3}^{\prime} Y_{3}^{\prime \prime}=0$, we get

$$
X_{3}^{\prime \prime}=0, \quad Y_{3}^{\prime \prime}=0
$$

respectively.
Consequently, we find finally that $\stackrel{(1)}{F} \stackrel{(2)}{F}, \stackrel{(3)}{F}$ are of the form

$$
\stackrel{(1)}{F}=\left(\begin{array}{cccc}
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0 \\
0 & 0 & 0 & -E_{n} \\
0 & 0 & E_{n} & 0
\end{array}\right), \stackrel{(2)}{F}=\left(\begin{array}{cccc}
0 & 0 & E_{n} & 0 \\
0 & 0 & 0 & E_{n} \\
-E_{n} & 0 & 0 & 0 \\
0 & -E_{n} & 0 & 0
\end{array}\right), \stackrel{(3)}{F}=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & 0 & E_{n} & 0 \\
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0
\end{array}\right)
$$

These three tensors being covariant constant, hence left invariant by the restricted homogeneous holonomy group h^{0}, which means that h^{0} is $\boldsymbol{S p}(\boldsymbol{n})$ or one of its subgroups as mentioned in $\S 1$.

Theorem 2.1. If the restricted homogeneous holonomy group of $V_{4 n}$ is the real representation of $S p(n)$ or one of its subgroups, then there exist covariant constant tensor fields $\stackrel{(1)}{F_{j}}, \stackrel{(2)}{F^{i}}$, and $\stackrel{(3)}{F_{j}}$ over $V_{4 / 2}$ satisfynng (I), (II) and (III) of (2.1'). The converse is also true.
3. An example of 4 -dimensional case. We shall show an example of 4-dimensional Riemannian manifold V_{4} with homogeneous holonomy group $S p(1)$, following to Prof.T.Ôtsuki's method. ${ }^{1}$.

At first, we shall investigate the necessary condition for such a V_{4}. Introduce in V_{4} an orthogonal frame of reference $\left[P, e_{i}\right](i=1,2,3,4)$, then the connection of V_{4} is given by

$$
\begin{equation*}
d P=\omega^{i} e_{i}, d e_{j}=\omega^{i}{ }_{j} e_{i} \tag{3.1}
\end{equation*}
$$

where $\omega^{i}, \omega_{j}^{i}$ are Pfaffian forms with respect to the coordinate neighborhood ($x^{1}, x^{2}, x^{3}, x^{4}$) of V_{4}. The structural equations are given by

$$
\begin{equation*}
d \omega^{i}=\omega^{j} \wedge \omega_{j}^{i}, d \omega_{j}^{i}=\omega_{j}{ }_{j} \wedge \omega_{a}^{i}+\Omega_{j}^{i} \quad(i, j, k, a=1,2,3,4) \tag{3.2}
\end{equation*}
$$

We can easily see from the remark of $\S 1$ that

$$
\omega^{1}{ }_{2}=\omega_{4}^{3}, \quad \omega_{3}^{1}=-\omega_{4}^{2}, \quad \omega_{4}^{1}=\omega_{3}^{2},
$$

since the homogeneous holonomy group is $S p(1)$. If we put

$$
\omega_{2}^{1}=\omega_{4}^{3}=\theta_{2}, \quad \omega^{1}{ }_{3}=-\omega_{4}^{2}=\theta_{3}, \quad \omega_{4}^{1}=\omega_{3}^{2}=\theta_{4},
$$

then the structural equation can be written as

$$
\left\{\begin{array}{l}
d \omega^{1}=-\omega^{2} \wedge \theta_{2} \quad \omega^{2} \wedge \theta_{2}+\omega^{3} \wedge \theta_{3}+\omega^{4} \wedge \theta_{4} \tag{3.3}\\
d \omega^{2}=-\omega^{3} \wedge \theta_{4}-\omega^{4} \wedge \theta_{3} \\
d \omega^{3}=-\omega^{1} \wedge \theta_{3}-\omega^{2} \wedge \theta_{4} \\
d \omega^{4}=-\omega^{1} \wedge \theta_{4}+\omega^{2} \wedge \theta_{3}-\omega^{3} \wedge \theta_{2}+\omega^{4} \wedge \theta_{2}
\end{array}\right.
$$

[^0]and
\[

\left\{$$
\begin{array}{l}
d \theta_{2}=2 \theta_{3} \wedge \theta_{4}+\Omega^{1}{ }_{2} \tag{3.4}\\
d \theta_{3}=2 \theta_{4} \wedge \theta_{2}+\Omega^{1}{ }_{3} \\
d \theta_{4}=2 \theta_{2} \wedge \theta_{3}+\Omega^{1}{ }_{4} .
\end{array}
$$\right.
\]

Let i, j, k be the imaginary units of quaternions and put

$$
\omega=\omega^{1}+i \omega^{2}+j \omega^{3}+k \omega^{4}, \quad \Gamma=i \theta_{2}+j \theta_{3}+k \theta_{4} .
$$

If we define formally $d \omega, \Gamma \wedge \omega$, then (3.3) can be represented by

$$
\begin{equation*}
d \omega=\Gamma \wedge \omega . \tag{3.5}
\end{equation*}
$$

We can see that ω is reducible to the form

$$
\omega=a\left\{d x^{1}+i d x^{2}+\Pi\left(d x^{3}+i d x^{4}\right)\right\}
$$

where Π is a quaternic function and a is a real function. Substituting ω, Γ in (3.5) and eliminating θ_{2}, θ_{3} and θ_{4}, we have a differential equation for Π :

$$
\begin{equation*}
\frac{\partial \Pi}{\partial x^{1}} \bar{\Pi}+\frac{\partial \Pi}{\partial x^{2}} \bar{\Pi} i-\frac{\partial \Pi}{\partial x^{3}}-\frac{\partial \Pi}{\partial x^{4}} i=0 \tag{3.6}
\end{equation*}
$$

where $\bar{\Pi}$ is the qua'ernic conjugate of Π.
Put $\Pi=b_{1}+i b_{2}+j b_{3}+k b_{4}$, then the fundamental form of V_{4} becomes

$$
\begin{aligned}
d s^{2}=a^{2}\left[\left(d x^{1}\right)^{2}\right. & +\left(d x^{2}\right)^{2}+\sum_{r=1}^{4} b_{r}^{2}\left\{\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right\} \\
& \left.+2 b^{1}\left(d x^{1} d x^{3}+d x^{2} d x^{4}\right)-2 b_{2}\left(d x^{1} d x^{4}-d x^{2} d x^{3}\right)\right]
\end{aligned}
$$

we may put $b_{4}=0$ and consider the special case where $b_{2}=0$. Then the dfferential equation (3.6) for b_{1} and b_{3} becomes

$$
\left\{\begin{array}{l}
R \frac{\partial R}{\partial x^{1}}=\frac{\partial b_{1}}{\partial x^{3}}, \quad R \frac{\partial R}{\partial x^{2}}=\frac{\partial b_{1}}{\partial x^{4}} \\
R \frac{\partial R}{\partial x^{3}}=-\frac{\partial b_{1}}{\partial x^{1}} R^{2}+2 b_{1} \frac{\partial b_{1}}{\partial x^{3}} \\
R \frac{\partial R}{\partial x^{4}}=-\frac{\partial b_{1}}{\partial x^{2}} R^{2}+2 b_{1} \frac{\partial b_{1}}{\partial x^{4}}
\end{array}\right.
$$

where $R^{2}=b_{1}^{2}+b_{3}^{2}$. These are satisfied for example by

$$
b_{1}=c x^{3}+c^{\prime} x^{4}, b_{3}=\left\{2\left(c x^{1}+c^{\prime} x^{2}\right)+\left(c x^{3}+c^{\prime} x^{4}\right)\right\}^{\frac{1}{2}}
$$

where c and c^{\prime} are non-zero constants and we have
(3.7) $\left\{\begin{array}{llll}\omega^{1}=a d x^{1} & & +a b_{1} d x^{3} & \\ \omega^{2}= & a d x^{2} & & \\ \omega^{2}= & a b_{3} d x^{3}, & \\ \omega^{4}= & & & -a b_{3} d x^{4} .\end{array}\right.$

Putting $\theta_{2}=p_{i} d x^{i}, \theta_{3}=q_{i} d x^{i}, \theta_{4}=r_{i} d x^{i}$ and substituting these and (3.7) in (3.3), we get after long but straightforward calculations,

$$
\begin{equation*}
p_{1}=\frac{\partial \log a}{\partial x^{2}}, p_{2}=-\frac{\partial \log a}{\partial x^{1}}, p_{3}=\frac{\partial \log a}{\partial x^{4}}, p_{4}=-\frac{\partial \log a}{\partial x^{3}} ; \tag{3.8}
\end{equation*}
$$

(3.9) $\left\{\begin{array}{l}q_{1}=r_{2}=\frac{1}{b_{3}}\left(b_{1} \frac{\partial \log a}{\partial x^{1}}-\frac{\partial \log a}{\partial x^{3}}\right)=0, \\ a_{3}=r_{1}=\frac{1}{b_{3}}\left(b_{1} \frac{\partial \log a}{\partial x^{2}}-\frac{\partial \log a}{\partial x^{4}}\right)=0 ;\end{array}\right.$
(3.10) $\left\{\begin{array}{l}q_{3}=-\frac{c}{b_{3}}-b_{3} \frac{\partial \log a}{\partial x^{1}}=-r_{4}=b_{3} \frac{\partial \log a}{\partial x^{1}}, \\ q_{4}=b_{3} \frac{\partial \log a}{\partial x^{2}}=r_{3}=-\frac{c^{\prime}}{b_{3}}-b_{3} \frac{\partial \log a}{\partial x^{2}} .\end{array}\right.$

From (3.9), we see that $\log a$ must be a solution of differential equations

$$
b_{1} \frac{\partial f}{\partial x^{1}}-\frac{\partial f}{\partial x^{3}}=0, \quad b_{1} \frac{\partial f}{\partial x^{2}}-\frac{\partial f}{\partial x^{4}}=0 .
$$

Solving these we find

$$
\log a=-\frac{1}{2} \log b_{3}
$$

as one of the solutions. This satisfies (3.10) and some other relations imposed to p_{i}, q_{i} and r_{i} by (3.3). Hence we find finally

$$
\left\{\begin{array}{l}
p_{1}=-\frac{c^{\prime}}{2 b_{3}^{2}}, p_{2}=\frac{c}{2 b_{3}^{2}}, p_{3}=-\frac{c^{\prime} b_{1}}{2 b_{3}^{2}}, p_{4}=\frac{c b_{1}}{2 b_{3}^{2}}, \\
q_{1}=q_{2}=r_{1}=r_{2}=0, \\
q_{3}=-r_{4}=-\frac{c}{2 b_{3}^{-}}, q_{4}=r_{3}=-\frac{c^{\prime}}{2 b_{3}} .
\end{array}\right.
$$

Consequently, the structural equations (3.3) are fulfilled by (3.7) and

$$
\left\{\begin{array}{l}
\theta_{2}=-\frac{1}{2 b_{3}^{2}}\left(c^{\prime} d x^{1}-c d x^{2}+c^{\prime} b_{1} d x^{3}-c b_{1} d x^{4}\right) \\
\theta_{3}=-\frac{1}{2 b_{3}}\left(c d x^{3}+c^{\prime} d x^{4}\right) \\
\theta_{4}=-\frac{1}{2 b_{3}}\left(c^{\prime} d x^{3}-c d x^{4}\right)
\end{array}\right.
$$

where

$$
\begin{gathered}
a=b_{3}^{-\frac{1}{2}}=\left\{2\left(c x^{1}+c^{\prime} x^{2}\right)+\left(c x^{3}+c^{\prime} x^{4}\right)^{2}\right\}^{-\frac{1}{4}} \\
l_{1}=c x_{3}+c^{\prime} x^{4}, \quad b_{3}=\left\{2\left(c x^{1}+c^{\prime} x^{2}\right)+\left(c x^{3}+c^{\prime} x^{4}\right)^{2}\right\}^{\frac{1}{2}}
\end{gathered}
$$

Furthermore, from (3.4) we see that

$$
\Omega^{1}, \ldots 0, \Omega_{3}^{1} \neq 0, \Omega^{1}{ }_{4} \neq 0,
$$

for non-zero c, c^{\prime}. Therefore, we consider each domain of the 4 -dimensional number space separated by a 3 -dmensional cylindrical surface

$$
2\left(c x^{1}+c^{\prime} x^{2}\right)+\left(c x^{3}+c^{\prime} x^{4}\right)^{2}=0 .
$$

Then

$$
\begin{gathered}
d s^{2}=a^{3}\left[\left(d x^{1}\right)^{2}\right. \\
+\left(d x^{2}\right)^{2}+2\left\{c x^{1}+c^{\prime} x^{2}+\left(c x^{3}+c^{\prime} x^{4}\right)^{2}\right\}\left\{\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right\} \\
\\
\left.+2\left(c x^{3}+c^{\prime} x^{4}\right)\left(d x^{1} d x^{3}+d x^{2} d x^{4}\right)\right] \\
\left(a=\left\{2\left(c x^{1}+c^{\prime} x^{2}\right)+\left(c x^{3}+c^{\prime} x^{4}\right)^{2}\right\}^{-\frac{1}{4}}, c \cdot c^{\prime} \neq 0\right)
\end{gathered}
$$

gives an example of an analytic Riemannian metric which defines a Euclidean connection with homogeneous holonomy group $S p(1)$ in such domain.
4. Root spaces. The characteristic roots of the equation $|\stackrel{(1)}{F}-\rho E|=0$ (E : unit matrix of order $4 n$) for $\stackrel{(1)}{F}=\left(\stackrel{(1)}{(1)}_{j}\right)$ baing i and $-i$ (multiplicity $2 n$) respectively, there exist two $2 n$-dimensional imaginary root spaces $L(F)$ and $\bar{L}(F)$ corresponding to the two characteristic roots i and $-i$ respectively. A vector x in the tangent space at a point of $V_{4 b}$ belongs to $L(\underset{F}{(1)}$ at the point if and only if

$$
\left({ }^{(1)}-i E\right)^{\nu} x=0 \quad(1 \leqq \nu \leqq 2 n),
$$

but this condition is equivalent to

$$
\stackrel{(1)}{F}-i E) x=0
$$

by virtue of $\stackrel{(1)}{F^{2}}=-E$.
There exist also root spaces $\left.L \stackrel{(2)}{F}), \bar{L}(\stackrel{(2)}{F})(\stackrel{(2)}{F}=(\stackrel{(2)}{F})) ; L(\stackrel{(3)}{F}), \bar{L}\left(\frac{(3)}{F}\right)\left(\stackrel{(3)}{F}=(\stackrel{(3)}{F})_{j}^{i}\right)\right)$; $L\left(\frac{(2)}{F}\right), L\left(\frac{(3)}{F}\right)$ corresponding to characteristic roots i and $\bar{L}(F), \bar{L}(F)$ to $-i$.

These root spaces form (imaginary) parallel fields of $2 n$-dimensional planes respectively which is easily verified from the fact that $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F}$ are covariant constant and from the above remark.

These $2 n$-planes have no intersections in common except the origin, for, if, for example, $L \stackrel{(1)}{F})$ and $L \stackrel{(2)}{F})$ contain a vector x in common, we have

$$
\stackrel{(1)}{F} x=\stackrel{(2)}{F} x,
$$

from $\stackrel{(1)}{F x}=i x, \stackrel{(2)}{F x}=i x$. Operating $\stackrel{(1)}{F}$ to the above equation from the left and taking account of $\stackrel{(1)}{F^{2}}=-E, \stackrel{(1)(2)}{F F}=\stackrel{(2)}{F}$, we get

$$
-x=\stackrel{(3)}{F} x .
$$

This means that $\stackrel{(3)}{F}$ have a characteristic root -1 , which is a contradiction.
Next, consider a vector $x \in L \stackrel{(1)}{F})$ and operating $\stackrel{(2)}{F}$ to $\stackrel{(1)}{F} x=i x$ from the left we have

$$
-\stackrel{(3)}{F x}=i F x \quad \text { or } \quad \stackrel{(2)}{F} x=i F x \text {. }
$$

From this and from $\stackrel{(1)}{F} \stackrel{(2)}{F} \stackrel{(3)}{F}$, we see that

$$
\stackrel{(1)}{F}(\stackrel{(2)}{F x})=\stackrel{(3)}{F} x=-i \stackrel{(2)}{F x},
$$

that is, for a vector $x \in L(\stackrel{(1)}{F}), \stackrel{(2)}{F x}$ is a vector in $L(\stackrel{(1)}{F})$. This means that

$$
\stackrel{(1)}{F}(\stackrel{(1)}{L}(\underset{F}{F}))=\widetilde{L}\left(\frac{1}{F}\right) .
$$

We can see analogously that $\stackrel{(3)}{\left.F(L)\left({ }_{F}\right)\right)}=\bar{L}\left({ }^{(1)}\right)$ and so on. Accordingly, we get
the following
Theorem 4.1. Let $L(\stackrel{(1)}{F}), \bar{L}(\stackrel{(1)}{F}) ; L(\stackrel{(1)}{F}), \bar{L}(\stackrel{(1)}{F}) ; L(\stackrel{(3)}{F}), \bar{L}_{(F)}^{(F)}$ be $2 n$-dimensional not spaces determined by $\stackrel{(1)}{F}, \stackrel{(2)}{F}, \stackrel{(3)}{F} ; L(\stackrel{(1)}{F}), L(\stackrel{(2)}{F}), L\left(\frac{(3)}{F}\right)$ corresponding to the characteristic root i and $\bar{L}(\underset{F}{(1)}), \bar{L}(\stackrel{(1)}{L}), \bar{L}\left({ }^{(3)}\right)$ to $-i$. These are imaginary parallel fields of $2 n$-planes which have no point in common except the origin and the following relations hold good:
where $\stackrel{(2)}{F}(L(\stackrel{(1)}{F}))$ designates the $2 n$-plane obtained from $L(\stackrel{(1)}{F})$ by operating the collineation $\stackrel{(2)}{F}=\left(\stackrel{(2)}{F_{j}}\right)$, eic.
5. Connection in complex form. For each point of our $V_{4 n}$, associate an orthogonal frame of reference [e_{l}], then the connection in $V_{4 n}$ is given by

$$
\begin{equation*}
d P=\boldsymbol{\omega}^{i} \boldsymbol{e}_{i}, d e_{j}=\omega_{j}^{i} \boldsymbol{e}_{\iota}, \quad\left(\boldsymbol{\omega}_{j}^{i}=-\boldsymbol{\omega}_{i}^{i}\right) \tag{5.1}
\end{equation*}
$$

where the matrix $\left(\omega_{f}^{\prime}\right)\left(=-\omega_{l}^{\prime}\right)$ is of the form

$$
\left(\omega_{j}^{c_{j}}\right)=\left(\begin{array}{cccc}
\omega & -\omega^{*} & -\widetilde{\omega} & -\widetilde{\boldsymbol{\omega}}^{*} \tag{5.2}\\
\omega^{*} & \omega & -\widetilde{\omega} & \widetilde{\omega}^{\boldsymbol{\omega}} \\
\widetilde{\omega} & \widetilde{\omega}^{*} & \omega & -\omega^{*} \\
\widetilde{\omega}^{*} & -\widetilde{\omega} & \omega^{*} & \omega
\end{array}\right),
$$

$\omega, \omega^{*}, \widetilde{\omega}, \widetilde{\omega}^{*}$ being matrices of order n. Hence, of course, wè see that

$$
\begin{equation*}
\omega_{\beta}^{\alpha}=\omega^{\bar{\alpha}_{\bar{\beta}}}, \quad \omega^{\bar{\alpha}_{\beta}}=-\omega^{\alpha}{ }_{\beta} \tag{5.3}
\end{equation*}
$$

If we perform an imaginary transformation for the base [e_{i}]:

$$
e_{\alpha}^{\prime}=\left(e_{\alpha}-i e_{\bar{\alpha}}\right) / \sqrt{2}, e_{\bar{\alpha}}^{\prime}=\left(e_{\alpha}+i e_{\bar{\alpha}}\right) / \sqrt{2},
$$

and we write again $\left[e_{l}\right]$ instead of [$\left.e_{t}^{\prime}\right]$, then (5.1) can be written as

$$
\begin{equation*}
d P=\pi^{\alpha} e_{\alpha}+\pi^{\bar{\alpha}} e_{\bar{\alpha}}, d e_{j}=\pi^{i}{ }_{j} e_{\imath}, \quad \text { (and compl. conj.) } \tag{5.4}
\end{equation*}
$$

where we have put

$$
\left\{\begin{array}{l}
\pi^{\alpha}=\left(\omega^{\alpha}+i \omega^{\alpha}\right) / \sqrt{2}=\bar{\pi}^{\bar{\alpha}}, \\
\pi^{\alpha}{ }_{\beta}=\omega^{\alpha}{ }_{\beta}+i \omega^{\bar{\alpha}}{ }_{\beta}=\omega^{\alpha}{ }_{\beta}-i \omega_{\beta}^{\alpha}=\bar{\pi}_{\overline{\alpha_{B}}}, \\
\pi^{\alpha_{\beta}}=\pi^{\alpha_{\bar{\beta}}}=0 .
\end{array}\right.
$$

From (1.2) of $\S 1$, the matrix $\left(\pi^{\alpha}{ }_{\beta}\right)$ have the form

$$
\left(\pi_{\beta}^{\alpha}\right)=\left(\begin{array}{rr}
\pi & -\overline{\bar{\pi}} \tag{5.5}\\
\bar{\pi} & \bar{\pi}
\end{array}\right)=\left(\bar{\pi}^{\bar{\alpha}}{ }_{\bar{\beta}}\right),
$$

where $\pi, \widetilde{\pi}$ denote matrices of order $n: \pi=\left(\pi^{a_{b}}\right), \tilde{\pi}=\left(\widetilde{\pi}_{b}{ }_{b}\right.$ and $\left(\pi^{\alpha}{ }_{\beta}\right)$ being
unitary, we have

$$
\begin{equation*}
\pi^{a}{ }_{b}+\bar{\pi}^{b}{ }_{a}=0, \quad \widetilde{\pi}^{x_{b}}-\bar{\pi}^{b}{ }_{a}=0 . \tag{5.6}
\end{equation*}
$$

The tundamental form is given by
where

$$
\begin{gathered}
d s^{2}=\varepsilon_{i j} \pi^{i} \pi^{j}=2 \pi^{\alpha} \pi^{\bar{\alpha}}, \\
\left(\varepsilon_{i j}\right)=\left(\begin{array}{cc}
0 & E_{2 n} \\
E_{2 n} & 0
\end{array}\right) .
\end{gathered}
$$

Now, if we put

$$
d \pi^{i}{ }_{j}=\pi^{k}{ }_{j} \wedge \pi^{i}{ }_{k}-\Omega^{i}{ }_{j}
$$

then $\Omega^{i}{ }_{j}$ satisfies the following relations similar to (5.5):

$$
\left\{\begin{array}{l}
\Omega^{\overline{\alpha_{\beta}}}=\Omega^{\alpha_{\bar{\beta}}}=0, \tag{5.7}\\
\left(\Omega^{a}{ }_{\beta}\right)=\left(\begin{array}{lr}
\Omega & -\overline{\widetilde{\Omega}} \\
\widetilde{\Omega} & \bar{\Omega}
\end{array}\right)=\left(\bar{\Omega}^{\bar{\alpha}_{\bar{\beta}}}\right),\left(\Omega=\left(\Omega^{a}{ }_{b}\right), \widetilde{\Omega}=\left(\widetilde{\Omega}^{a}{ }_{b}\right)\right) \\
\Omega^{v_{b}}+\bar{\Omega}^{b}{ }_{a}=0,{\widetilde{\Omega^{a}}}_{b}-\overline{\widetilde{\Omega}}^{b}{ }_{a}=0 .
\end{array}\right.
$$

A manifold with pseudo-kaehlerian connection (5.4) have $S p(n)$ as its restricted homogeneous holonomy group if and only if ($\pi^{\alpha}{ }_{\beta}$) be of the form (5.5) with (5.6). Then the curvature form $\Omega^{\prime}{ }_{j}$ satisfies (5.7). We have especially

$$
\begin{equation*}
\Omega^{\alpha}{ }_{a}=\Omega^{\tau}{ }_{a}+\mathbf{\Omega}^{\bar{a}}{ }_{a}=0 \tag{5.8}
\end{equation*}
$$

and the structural equation becomes

$$
\left\{\begin{array}{l}
d \pi^{\alpha}=\pi^{\beta} \wedge \pi^{\alpha}{ }_{\beta} \tag{5.9}\\
d \pi^{\alpha}{ }_{\beta}=\pi^{\gamma_{\beta}} \wedge \pi^{\alpha}{ }_{\gamma}+\Omega^{\alpha}{ }_{\beta}
\end{array}\right.
$$ (and compl. conj.)

under the condition (5.5), (5.6) and (5.7).
If we put

$$
\Omega_{\beta}^{\alpha}=R_{\beta k h}^{\alpha} \pi^{k} \wedge \pi^{h}(\text { conj. }), R_{k h}=R_{k h i}^{t},
$$

it is easily verified that the non-zero components of $R^{\alpha}{ }_{\beta k h l}$ are $R^{\alpha}{ }_{\beta \gamma \delta \delta}(=$ $\left.-R^{\alpha}{ }_{\beta \delta \gamma}\right)$ and appearently non-zero components of the Ricci tensor $R_{\beta \bar{\gamma}}$ are zero by virtue of $R_{\beta \bar{\gamma}}=R^{a}{ }_{\beta \bar{\gamma} \alpha}=-R^{a}{ }_{\alpha_{\beta} \bar{\gamma}}=0$ and (5.8). So $V_{4 n}$ is of Ricci tensor zero, which is also verified from the fact that $S p(n) \subset S U(2 n)$.
6. Sectional curvatures. Return to the real natural frame of reference,
 covariant differentiation with respect to the Christoffoel symbols obtained from $g_{i j}$. From the Ricci's identity, we have ${\stackrel{(1)}{F_{l}^{i}} R_{j c h}^{l}}_{l^{\prime}}^{(1)}{ }_{j} R_{l k h}^{t}$ or $\stackrel{(1)}{F}_{F_{i}^{l}} R_{l j k h}=$ ${ }_{F_{j}^{\prime}}^{(1)} R_{i k k h}$ and hence

$$
\begin{equation*}
\stackrel{(1)}{F}_{l}^{l} \stackrel{(1)}{F}_{j}{ }_{j} R_{l m b l h}=R_{i j k l l} \tag{6.1}
\end{equation*}
$$

(Sasaki, [1]; Yano, K and I. Mogi, [2]). Let x^{d}, y^{4} be components of two arbitrary vectors. Then the sectional curvature K with respect to the 2 -plane π spanned
by x^{d} and y^{b} is given by

$$
K=-\frac{R_{i j k h} x^{\prime} y^{i} x^{k} y^{k}}{\left(g_{i k} g_{j h}-g_{i h} g_{j k}\right) x^{k} y^{j} x^{k} y^{h}} .
$$

This quantity being independent from the choice of two vectors in π, we choose especially two orthogonal unit vectors x^{i}, y^{i} in π, then K is given by

$$
\begin{equation*}
K=-R_{, j t_{h} h} x^{k} y^{j} x^{k y^{k}} . \tag{6.2}
\end{equation*}
$$

For two orthogonal unit vectors x^{h}, y^{d}, we have again orthogonal unit vectors ${ }_{F}^{(1)}{ }^{{ }^{\imath}}, x^{j},{ }_{F}^{(1)} F_{j}^{\prime} y^{j}$ and the sectional curvature with respect to the plane spanned by $\stackrel{(1)}{F^{i}, x^{j}, \stackrel{(1)}{F^{i}} y^{j}}$ is equal to K, which is easily seen from (6.1) and (6.2). Thus we get

Lemma 6.1. Let $V_{2 m}$ be a psevdo-kaehlerian manifold with pseudo-kahlerian structure $F=\left(F_{j}^{t_{j}}\right)$, then the sectional curvature with respect to an arbitrary 2plane π is equal to the one with respect to 2 -plane $F(\pi)$.

Now, in our $V_{4 n}$, there exist three covariant constant tensors $\stackrel{(1)}{F}=\left({ }^{(1)}{ }^{l_{j}}\right)$, $\stackrel{(2)}{F}=\left({ }_{(2)}^{F_{j}}\right), \stackrel{(3)}{F}=\left({ }_{\left(F^{i} i_{j}\right.}\right)$ and hence if a vector x^{i} is given, we can determine a 4 dimensional linear space $L_{4}(x)$ spanned by mutually orthogonal four vectors $x^{i}, \stackrel{(1)}{F_{j}^{i}} x^{j}, \stackrel{(2)}{F_{j}^{i}} x^{j}$ and $\stackrel{(3)}{F_{j}} x^{j}$. An arbitrary vector y^{i} in $L_{f}(x)$ being given in the form

$$
y^{i}=\alpha x^{j}+\beta \stackrel{(1)}{F^{i}{ }_{j} x^{j}}+\gamma{ }^{(2)} F_{i}^{j} x^{j}+\delta \stackrel{(3)}{F_{j}{ }_{j} x^{j}} \quad(\alpha, \beta, \gamma, \delta: \text { scalar functions). }
$$

Hence if we perform a collineation $\stackrel{(1)}{F}$ to $x^{\dot{b}}$, then we have

$$
\stackrel{(1)}{F^{k}} y^{i}=\alpha \stackrel{(1)}{F^{k}}{ }_{i} x^{i}-\beta x^{k}+\gamma{\stackrel{(3)}{F^{k}}{ }_{i} x^{d}--\delta F^{(2)}{ }_{i} x^{d}, ~}_{\text {. }}
$$

by virtue of (III) of (2.1). This means that if a vector $y \in L_{4}(x)$, then $\stackrel{(1)}{F(y)}$ $\in L_{4}(x)$ and we get similar properties for $\stackrel{(2)}{F}, \stackrel{(3)}{F}$.

Theorem 6.1. Let x be an arỏitrary vector and $L_{4}(x)$ be a 4-dimensional linear space spanned by mutually orihogonal four vectors $x, \stackrel{(1)}{F}(x), \stackrel{(2)}{F}(x), \stackrel{(3)}{F}(x)$. If π is an arbitrary 2-planed in $L_{4}(x)$, then $\stackrel{(1)}{F(\pi)}, \stackrel{(2)}{F(\pi)}, \stackrel{(3)}{F(\pi)}$ are also in $L_{4}(x)$, furthermore the sectional curvatures with respect to $\pi, \stackrel{(1)}{F}(\pi), \stackrel{(2)}{F}(\pi)$, and $\stackrel{(3)}{F(\pi)}$ are all equal.

Using (III) of (2.1), we can see that if π is a 2 -plane spanned by any two of $x, \stackrel{(1)}{F}(x), \stackrel{(2)}{F}(x)$ or $\stackrel{(2)}{F}(x)$ and π^{\prime} is the one spanned by the other two, then, the 2 -plane obtained from π by operating $\stackrel{(1)}{F}, \stackrel{(2)}{F}$ or $\stackrel{(3)}{F}$ is π itself or π^{\prime}.

Corollary 6.1. Let x be an arbitrary vector and π the plane spanned by any two of $x, \stackrel{(1)}{F}(x), \stackrel{(1)}{F}(x), \stackrel{(1)}{F}(x)$ and π^{\prime} the one spanned by the other two. Then,
the plane obtained from π by operating $\stackrel{(1)}{F}, \stackrel{(2)}{F}$ or $\stackrel{(2)}{F}$ is π itself or π^{\prime} and the sectional curvatures with respect to π and π^{\prime} are equal.

PART II

7. Preliminary Remarks. Let V_{N} be an N-dimensional Riemannian manifold whose class of differentiability is assumed sufficiently high (so far as the Hodge's theorem concerning the harmonic integrals of Riemannian manifolds be true).

The indices run from 1 to N unless otherwise stated and the summation convention is adopted.

To a p-form

$$
\varphi=\frac{1}{p!} \varphi_{i_{1} \ldots i p} d x^{i_{1}} \ldots d x^{i_{p}}=\varphi_{h_{1} \ldots k_{p}} d x^{k_{1}} \ldots d x^{k_{p^{2]}}} \quad\left(k_{1}<\ldots<k_{p}\right)
$$

of the manifold V_{N} we introduce the following operators.
d : exterior differentiation.

$$
(d \varphi)_{2_{1} \ldots i_{p+1}}=\sum_{\alpha=1}^{p+1}(-1)^{\alpha} \varphi_{i_{1} \ldots i_{\alpha \ldots . .} i_{p+1},{ }_{c}}
$$

where ($i_{i_{1} \ldots i_{p+1}}$ denotes the components of the $(p+1)$-form in the parenthesis and the semi-colon denotes the covarinnt differentiation and Λ the absence of the undermentioned component.
*: adjoint operator.

$$
\begin{aligned}
(* \varphi)_{j_{1}, . j_{n-p}} & =\sqrt{g} \varepsilon_{i_{1}, . . i_{p} j_{1} \ldots j_{n-p}} \varphi^{i_{1 . .} i_{p}} \\
& =\sqrt{g} \varepsilon_{i_{1} \ldots i_{p} j_{1} \ldots i_{n-p}} g^{i_{1} k_{1}} \ldots g^{i_{p} k_{p}} \varphi_{k_{11} . k_{p}} \\
\left(i_{1}<\ldots .\right. & \left.<i_{p} ; \text { not summed with these indices }\right)
\end{aligned}
$$

where $\varepsilon_{i_{1} . . i_{p} j_{1} \ldots j_{n-p}}$ equals to +1 if $i_{1} \ldots i_{p} j_{1} \ldots j_{n-p}$ is an even permutation of $1 \ldots . N$ and equals to -1 if it is an odd permutation and equals to zero if otherwise.

With repect to this $*$-operation, we see that the relation

$$
* *=(-1)^{(N-p) p}
$$

holds true.

$$
\begin{align*}
& \delta=(-1)^{N p+N+1} * d *: \\
& (\delta \varphi)_{i_{1} \ldots i_{p-1}}=(-1)^{p} g^{j k} \varphi_{i_{1} \ldots i_{p-1} j ; k} \\
& \Delta=d \delta+\delta d: \\
& (\Delta \varphi)_{i_{1} \ldots i_{p}}=-g^{j k} \varphi_{i_{1} . i_{p} ; j ; k}+\sum_{s=1}^{p} R^{j_{i}} \boldsymbol{\varphi}_{\iota_{1} \ldots i_{4}-1 \jmath_{\mu}+1 \ldots i_{p}} \tag{7.1}\\
& +\sum_{s<t}^{p} R^{j k_{i i_{4}}} \varphi_{t_{1} \ldots i_{s-1} j i_{++1} \ldots i_{t-1} k i_{t+1} \ldots i_{p}},
\end{align*}
$$

[^1] the Ricci tensor.

If $\Delta \varphi=0$, the p-form φ is called a harmonic form and the coefficients $\varphi_{i_{1} \ldots i_{p}}$ are called components of a harmonic tensor. If the support of φ is compact, the condition $\Delta \rho=0$ is equivalent to the following two conditions:

$$
d \varphi=0, \delta \varphi=0
$$

or

$$
\varepsilon_{i_{1 \ldots i_{p+1}}^{i_{1} j_{p+1}^{+1}}}^{f_{f_{1} \ldots f_{p ; j p+1}}=0, g^{j_{k} k} \varphi_{i_{1} \ldots h_{p-1} j j, k i}=0,}
$$

where $\varepsilon_{i_{1} \ldots i_{p+1}}^{i_{1} \ldots+1}$ equals to +1 if $\left(j_{1} \ldots j_{p+1}\right)$ is an even permutation of $\left(i_{1} \ldots\right.$. i_{p+1}) and equals to -1 if it is an odd permutation and otherwise equals to zero.

If especially V_{N} is orientable, we can define an inner product ($\phi^{p}, \boldsymbol{\psi}^{p}$) of two p-forms φ^{p} and ψ^{p} whose supports are compact by

$$
\begin{equation*}
\left(\boldsymbol{P}^{p}, \boldsymbol{\psi}^{p}\right)=\int \varphi^{p} * \boldsymbol{\psi}^{p}=\int<\psi^{p}, \boldsymbol{\psi}^{p}>d V \tag{7.2}
\end{equation*}
$$

where the integral be extended over the whole manifold and

$$
\begin{gathered}
<\boldsymbol{\varphi}^{p}, \boldsymbol{\psi}^{p}>=\varphi_{i_{1} \ldots i_{p}} \psi^{i_{1} \ldots i_{p}}, \\
d V=\sqrt{ }, \\
g \\
\\
x^{i_{1}} \ldots . . d x^{i_{p}} .
\end{gathered}
$$

($\boldsymbol{\varphi}^{p}, \boldsymbol{\psi}^{p}$) possesses the all properties as an inner product, that is,

$$
\left\{\begin{array}{l}
\left(c_{1} \varphi_{1}^{p}+c_{2} \varphi_{2}^{p}, \boldsymbol{\psi}^{p}\right)=c_{1}\left(\phi_{1}^{p}, \boldsymbol{\psi}^{p}\right)+c_{2}\left(\varphi_{2}^{p}, \boldsymbol{\psi}^{p}\right), \quad\left(\boldsymbol{c}_{1}, c_{2}: \text { constants }\right), \\
\quad\left(\boldsymbol{\varphi}^{p}, \psi^{p}\right)=\left(\boldsymbol{\psi}^{p}, \varphi^{p}\right), \\
\quad\left(\boldsymbol{\varphi}^{p}, \boldsymbol{\varphi}^{p}\right) \geqq 0, \\
\quad\left(\boldsymbol{\varphi}^{p}, \boldsymbol{\varphi}^{p}\right)=0 \rightarrow \boldsymbol{\varphi}^{p}=0 .
\end{array}\right.
$$

Furthermore, if $N=2 m$ and $V_{2 m}$ is a $2 m$-dimentional pseudo-kaehlerian manifold, we can introduce the following important operators where $F_{i j}$ are the components of the pseudo-kaehlerian structure of $V_{2 m}$ and

$$
F^{i}{ }_{j}=g^{i k} F_{k j}, \quad F^{v j}=g^{j k} F_{k,}^{v},
$$

the indices runing from 1 to 2 m .
L : the exterior multiplication of $\Omega=\frac{1}{2} F_{i j} d x^{i} d x^{j}$ to an arbitrary form.
$\Lambda: *^{-1} L *=(-1)^{p(2 m-p)} * L *=(-1)^{p} * L *$, where p is the degree of the operated form. We can see that

$$
\begin{equation*}
\left(\Lambda \varphi^{\eta}\right)_{i_{1} \ldots i_{p-2}}=\frac{1}{2} F^{j k} \varphi_{l_{1} \ldots i_{p-2} j k} \tag{7.3}
\end{equation*}
$$

for a p-form

$$
\varphi^{p}=\frac{1}{p!} \varphi_{i_{1} \ldots i_{p}} d x^{i_{1}} d x^{i_{p}}
$$

and the following theorem is known:
Theorem I. L and Λ transform harmonic forms into harmonic forms.
This theorem is showed by the relations

$$
L \Delta=\Delta L, \quad \Lambda \Delta=\Delta \Lambda
$$

which are proved as follows. ${ }^{3)}$
At first, we can easily see that

$$
\begin{equation*}
d L=L d \tag{7.4}
\end{equation*}
$$

by virtue of the property : $d \Omega=0$. Then if we define an operator \tilde{d} by

$$
\widetilde{d} \varphi^{p}=\frac{1}{(p+1)!} F_{k}^{j} \varphi_{i_{1} \ldots i_{p} ; j} d x^{k} d x^{i_{1}} \ldots d x^{s_{p}}
$$

for a p-form $\varphi^{p}=\frac{1}{p!} \varphi_{i_{1} \ldots i_{p}} d x^{i_{1}} \ldots . d x^{i_{p}}$, we have

$$
\begin{align*}
(d \tilde{d}+ & \widetilde{d} d) \varphi^{p}
\end{aligned} \begin{aligned}
(p+2)! & F_{k}^{j} \varphi_{i_{1},, i_{p} ; j ; h} d x^{h} d x^{k} d x^{i_{1}} \ldots d x^{b_{p}} \\
& +\frac{1}{(p+2)!} F^{\jmath}{ }_{k} \varphi_{i_{1} \ldots i_{p} ; h, j} d x^{k} d x^{h} d x^{i_{1}} \ldots d x^{i_{p}} \tag{7.5}\\
& =\frac{1}{(p+2)!} F_{k}^{j_{k}}\left(\varphi_{\iota_{1} \ldots i_{p} ; j ; h}-\varphi_{i_{1} \ldots i_{p} ; h ; j}\right) d x^{h} d x^{k} d x^{i_{1}} \ldots d x^{i_{p}}=0
\end{align*}
$$

Cosider a normal coordinate system with center P_{0}, we see that

$$
\left(\delta L \varphi^{p}\right)_{P_{0}}=\left(L \delta \varphi^{p}-\widetilde{d} \varphi^{\nu}\right)_{P_{0}}
$$

thesefore, at each point of the manifold

$$
\begin{equation*}
\delta L=L \delta-\widetilde{d} \tag{7.6}
\end{equation*}
$$

holds good.
By (7.4), (7.5) and (7.6) we can verify the equality

$$
L \Delta=\Delta L
$$

The latter equality $\Lambda \Delta=\Delta \Lambda$ is proved by using the former and relations

$$
* \Delta=\Delta *, \quad * L=L *, * \Lambda=L *
$$

Let L^{r} be the iteration of $L r$ times, then we have

$$
\left.\Lambda L^{r}=L^{r} \Lambda+r^{\prime} m-p-r+1\right) L^{r-1}, \quad(p \leqq m-2 r)
$$

especally if $r=1$, we have

$$
\begin{equation*}
\Lambda L=L \Lambda+(m-p) E \tag{7.8}
\end{equation*}
$$

where E denotes the identity operation.
A p-form $\boldsymbol{\rho}^{p}$ is called effective or of class 0 or primitive if

$$
\Lambda \varphi^{p}=0
$$

A p-form $L^{h} \varphi_{0}^{p-2 h}$ is called of class h, where $\varphi_{0}^{p-2 h}$ is an effective $(p-2 h)$ form.

Then, the following decomposition theorems hold good, which are proved by Hodge for Kählerian manifold for the first time and extended by Lichnerowicz to pseudo-kaehlerian manifolds (Hodge, [1]; Lichnerowicz, [3]).

Theorem II. An arbitrary p-form \boldsymbol{q}^{p} can be decomposed uniquely in the
3) For example, see Guggenheimer, [3] Anhang.
following form :

$$
\varphi^{p}=\varphi_{0}^{\eta}+L \varphi_{0}^{p-2}+\ldots+L^{h} \varphi_{0}^{p-2 h} \quad\left(h \leqq\left[\frac{p}{2}\right]\right)
$$

where $\varphi_{0}^{p}, \ldots, \varphi_{0}^{p-2 h}$ are effective forms.
From this theorem, we have
Theorem III. ΛL is an isomorphism of the linear vector space Φ^{p} spanned by all p-forms $(p \leqq m-2)$. And therefore L is an isomorphism from Φ^{p} into $\Phi^{p+2}(p \leqq m-2)$.

Cosequently, if $\varphi^{p} \neq 0$, then $L \phi^{p} \neq 0(p \leqq m-2)$. Since L and Λ transform harmonic forms into harmonic forms, Theorem II turns into the decomposition theorem of the p-th cohomology group (coefficients real), if $V_{2 m}$ is compact and orientable.

Theorem IV. If $V_{2 n}$ is compact, orientable, the p-th cohomology group H^{p} ($p \leqq m$) can be decomposed into the form:

$$
H^{p}=H_{0}^{p}+L H_{0}^{p-2}+\ldots+L^{h} H_{0}^{p-2 h}, \quad\left(h \leqq\left[\begin{array}{c}
p \\
2
\end{array}\right]\right)
$$

where $H_{i,}^{p}, \ldots, H_{0}^{p-2 h}$ are subgroups generated by $p-, \ldots \ldots$, and $(p-2 h) \cdot t h$ effective cohomology classes respectively.

The products mean the cup products. From this theorem, we have
Theorem V. Let d_{0}^{p} be the dimension of the linear vector space spanned by all effective harmonic p-forms and B_{p} be the p-th Betti number, then

$$
d_{0}^{p}=B_{p}-B_{p-2} \geqq 0 \quad(p \leqq m)
$$

And the odd dimensional Betti numbers are even and the even dimensional Betti numbers are $\geqq 1$.

Using the above theorems, we treat differential forms in our $V_{4 n}$, which is orintable but not necessarily compact unless o'herwise stated.
8. Harmonic forms of degree odd. In this section, the indices i, j, k, run over $1, \ldots ., 4 n$.
Since the three pseudo-kaehlerian structures

$$
\stackrel{(u)}{F}=\left(\stackrel{(u)}{F^{4}}\right) \quad(u=1,2,3)
$$

are covariant constant, the integrability conditions are given by

$$
R_{l m k_{h} h}{\stackrel{(u)}{F_{i}}{ }^{(u)}{ }_{j}^{m}}^{\prime}=R_{i j k l}
$$

$$
(u=1,2,3 ; \text { not summed })
$$

or

$$
R^{l m}{ }_{k h} \stackrel{(n)}{F_{l}^{i}}{ }_{l}^{\left.()^{\prime}\right)}{ }_{m}=R^{i j_{k h}} \quad(u=1,2,3 ; \text { not summed })
$$

And furthermore

$$
\begin{equation*}
R^{i j}{\stackrel{\left(\stackrel{i n}{F^{\prime}}\right.}{k}}^{(u)} \stackrel{(u)}{ }^{h}=R^{i j}{ }_{k h} \tag{8.2}
\end{equation*}
$$

$$
\begin{equation*}
R_{i}^{a_{i}} \stackrel{(n)}{F_{a}^{j}}=R_{a}^{j_{a}}{ }_{F_{i}^{(n)}}^{i} \tag{8.3}
\end{equation*}
$$

$$
(u=1,2,3 ; \text { not summed })
$$

hold good.
Let \mathfrak{S}^{p} be the linear vector space spanned by all harmonic p-forms of $V_{4 n}$ and put

$$
\begin{equation*}
\stackrel{(u)}{F^{2} 1_{1}} \ldots . \stackrel{(u)}{F^{i} p_{p_{p}}}=\stackrel{(u)}{F^{i_{1} \ldots i_{p_{1}} \ldots j_{p}} \quad(u=1,2,3 ; \text { not summed }) . ~} \tag{8.4}
\end{equation*}
$$

For a harmonic p-form $\varphi^{p}=\frac{1}{p!} \varphi_{t_{1} \ldots i_{p}} d x^{i_{1}} \ldots . d x^{x^{p}} \in \mathscr{S}^{p}$, we define a p-tensor

$$
\begin{equation*}
{\stackrel{(u)}{\varphi_{i_{1} \ldots i_{p}}}=\stackrel{(u)}{F נ_{1} \ldots j_{i_{1} \ldots i_{p}}} \varphi_{n_{1} \ldots j_{p}} \quad(u=1,2,3)}^{u} \tag{8.5}
\end{equation*}
$$

and consider the transformations

$$
\begin{equation*}
\stackrel{(u)}{\mathscr{V}}: \phi_{p} \rightarrow \stackrel{(u)}{\phi^{p}}=\frac{1}{p!} \stackrel{(u)}{\varphi_{i_{1} \ldots i_{p}}} d x^{i_{1}} \ldots d x^{4_{p}} \quad(u=1,2,3) \tag{8.6}
\end{equation*}
$$

Lemma 8.1. The transformations $\stackrel{(u)}{\underset{\sim}{(})(u=1,2,3) \text { are automorphisms of the }}$ linear vebtor space \mathfrak{S}^{p} spanned by all harmonic p-forms of $V_{4 n}$. That is to say, if $\varphi_{i_{1} \ldots i_{p}}$ is a non-zero harmonic p-tensor, then the p-tensors ${\stackrel{(u)}{\rho_{l_{1} \ldots i_{p}}}(u=1,2,3)}_{(u)}$ are also non-zero harmonic p-tensors.

Proof. Using (7.1), (8.5) and the equation

$$
{\stackrel{(l)}{F})_{1} \ldots j_{p_{1} \ldots i_{p} ; k}}=0, \quad(u=1,2,3)
$$

we can see that

$$
\begin{aligned}
& \left(\Delta^{(u)}{ }^{(u)}\right)_{i_{1} . . i_{p}}=-g^{\left.k h F^{\mu}\right)^{(u)} . j_{p_{11} \ldots i_{p}}} \varphi_{j 1 \ldots j_{p ; k ; h}} \\
& +\sum_{s=1}^{p} R^{k}{ }_{i_{s}}{ }^{(u)}{ }^{j_{1} \ldots j_{p_{1}} \ldots i_{s}-1 i_{s+1} \ldots i_{p}} \varphi_{j 1 \ldots j_{p}} \\
& +\sum_{s<t}^{p} R^{k h}{ }_{i_{s} i_{l}}{ }^{(u)}{ }^{j_{1} \ldots j_{p_{i}} \ldots i_{s}-1}{ }^{k} i_{t}+\ldots i_{t}-1 h i_{t}+\ldots i_{p} \varphi_{j_{1} \ldots f_{p}} .
\end{aligned}
$$

By virtue of (8.1) and (8.2), we have
therefore, we get

$$
\begin{aligned}
& =R^{i s j_{k h}} \stackrel{(u)}{F}{ }^{(u)} \ldots \ldots \ldots \ldots s_{i_{1} \ldots i_{t}-1 i_{s} i_{t}+1 \ldots i_{t}-1 i_{t} i_{t+1} \ldots i_{p}} \boldsymbol{\varphi}_{j 1 \ldots j_{p}} \quad(u=1,2,3) \\
& =R^{k h_{j_{s}} j_{t} F_{1}^{(u)} \mathcal{F}_{1} \ldots \boldsymbol{j}_{p_{1} \ldots i_{p}} \varphi_{j_{1}} \ldots k \ldots h \ldots j_{p}}
\end{aligned}
$$

from (8.4). And we also have

$$
\begin{aligned}
& =R^{i_{k}{ }_{k}{ }^{(u)}{ }^{j_{1} \ldots k \ldots j_{\rho_{i_{1}} \ldots i_{s}-1} i_{i} i_{s}+\ldots i_{p}} \varphi_{j_{1} \ldots j_{p}}} \quad(u=1,2,3) \\
& =R^{k_{j}}{ }_{j_{s}}{ }^{(n)}{ }^{\xi_{1} \ldots j_{p_{1}} \ldots i_{p}}{ }_{\phi_{j_{1} \cdots k \cdots j_{p}}} .
\end{aligned}
$$

Consequently, it becomes that

$$
\begin{aligned}
& \left(\Delta \stackrel{\varphi}{\varphi}^{(u)}\right)_{i_{1} . . i_{p}} \\
& =\stackrel{(n)}{F^{j_{1} \ldots j_{p}}}{ }_{i_{1} \ldots i_{p}}\left[-g^{k h} \varphi_{j_{1} \ldots j_{p} ; k ; h}+\sum_{s=1}^{p} R_{j_{s}} \varphi_{j_{1} \ldots . j_{s}-1 k j_{s}+1 \ldots j_{p}}\right. \\
& \left.+\sum_{s<t}^{p} R^{k h} h_{j_{s} j_{t}} \varphi_{j_{1} \ldots j_{s}-1^{k} j_{s}+1 \ldots j_{t}-1 h j_{t}+1 \cdots j_{p}}\right] \\
& =\stackrel{(u)}{F^{j_{1} \ldots j_{p_{1}}}{ }_{i_{1} \ldots i_{p}}\left(\Delta \varphi^{v}\right)_{j_{1} \ldots j_{p}}, \quad(u=1,2,3), ~(u) ~}
\end{aligned}
$$

from which we see that

$$
\Delta \varphi^{p}=0 \rightarrow \Delta \stackrel{(u)}{\varphi}_{p}=0 \quad(u=1,2,3)
$$

The transformation $\stackrel{(u)}{\underset{\sim}{*}}$ are non-singular, that is, if $\stackrel{(u)}{\varphi}^{p}=0$, then $\varphi^{p}=0(u=$ $1,2,3$), which is easily seen from the definition.
q.e.d.

We consider the case in which p is odd and for the sake of brevity, we put

$$
\stackrel{(u)}{F}^{\imath_{1} \ldots i_{p}}{ }_{\mathfrak{l}_{1} \ldots j_{p}}=\stackrel{(u)}{F}_{\eta} \quad(u=1,2,3)
$$

where $\xi=\left(i_{1} \ldots i_{p}\right), \quad \eta=\left(j_{1} \ldots j_{p}\right)$. And similarly, we put

$$
\begin{aligned}
& g_{i_{1} j_{1}} \ldots g_{i_{p} j_{p}}=G_{i_{1} \ldots i_{p}, j_{1} \ldots j_{p}}=G_{\xi, \eta}, \\
& g^{i_{1}^{\prime} 1} \ldots . g^{i_{p} j_{p}}=G^{i_{1} \cdot i p, s_{1} \ldots j p}=G^{\xi, \eta},
\end{aligned}
$$

where $\xi=\left(i_{1} \ldots i_{p}\right), \quad \eta=\left(i_{1} \ldots j_{p}\right)$ as in the above. Then, we can easily see that

$$
G_{\xi \eta} G^{\eta \zeta}=\delta_{\xi}^{\zeta}
$$

where δ_{ξ}^{ζ} is the Kronecker's delta. Since p is odd, by the definition of $\stackrel{(u)}{F_{\eta}^{\xi}}=$ $F^{i_{1} \ldots 2 p}{ }_{j_{1} . . j p}$ and by (2.1) of $\S 2$, we see that

where $\varepsilon_{u v w}$ is equal to +1 if $(u v w)$ is an even permutation of (123) and -1 if it is an odd permutation.

If we put

$$
G_{\xi \eta}{\stackrel{(u)}{F}{ }_{\zeta}^{\eta}}_{=}={\stackrel{(u)}{F_{\xi \zeta}},} \quad(u=1,2,3)
$$

then from the first two equations of (8.7), we see that $F_{\xi \zeta}$ is anti-symmetric with respect to ξ and ζ. We say two differential forms ϕ^{p}, ψ^{p} whose supports are compact to be orthogonal, if

$$
\left(\varphi^{p}, \boldsymbol{\Psi}^{p}\right)=\int<\varphi^{p}, \psi^{p}>d V=0
$$

where $d V$ is the volume element of the manifold.
It is easily verified that non-zero mutually orthogonal p-forms are linearly independent in real constant coefficients.

Lemma 8.2. In $V_{4 n}$ (of class $C^{r}, r \geqq 1$), if ϕ^{p} is a differential p-form where p is odd and if the support of φ^{p} is compact, then $\varphi^{p}, \stackrel{(1)}{\Downarrow} \varphi^{p}, \stackrel{(2)}{\sim} \varphi^{p}$, and $\stackrel{(3)}{\sim} \varphi^{p}$ are mutually orthogonal.

Proof. For brevify, put

$$
\varphi_{l_{1} \ldots i p}=\varphi_{\dot{\xi}} \quad, \quad \varphi^{\xi}=G^{\xi \eta} \varphi_{\eta}
$$

then we have

$$
\left(\stackrel{(u)}{\left.\mathfrak{\vartheta} \varphi^{p}\right)_{i_{1} \ldots p} \equiv\left(\stackrel{(u)}{\left(\widetilde{\mathfrak{\gamma}} \varphi^{p}\right.}\right)_{\xi}=\stackrel{(u)}{F^{\eta}}{ }_{\xi} \varphi_{\eta} \quad(u=1,2,3) .}\right.
$$

where $\xi=\left(i_{1} \ldots i_{p}\right)$.
Using (8.7) and in the similar way as the proof of Lamma of §2, we get

$$
\begin{aligned}
& =\varepsilon \int\left(\stackrel{(w)}{F_{\xi_{\eta}}} \varphi^{\xi} \varphi^{\eta}\right) d V=0, \\
& (u, v, w=1,2,3 ; u \neq v \neq w ; \varepsilon=+1 \text { or }-1)
\end{aligned}
$$

which is to be proved.
Lemma 8.3. In $V_{4 n}$ (of class $C^{r}, r \geqq 1$), let \mathscr{P}^{p} be a non-zero differential p-form with conbact suppori ant $\psi^{\prime \prime}$ b? a non-zero differential p-form with compact support which is orthogonal to four p-forms $\varphi^{p} \stackrel{(u)}{\mho} \varphi^{p}(u=1,2,3)$, where
 to the four p-forms $\varphi^{p}, \stackrel{(u)}{\underset{\sim}{*}} \varphi^{p}(u=1,2,3)$.

PRoof. The orthogonality of any two of $\psi^{p}, \stackrel{(u)}{\widetilde{\sim} \psi^{p}}(u=1,2,3)$ is already proved by Lemma 8.2.

Since ψ^{p} is orthogonal to φ^{p} and $\stackrel{(u)}{\overbrace{\mathscr{\varphi}}}{ }^{p}(u=1,2,3)$, we have

$$
\begin{aligned}
& \left(\varphi^{\eta}, \psi^{p}\right)=\int\left(G_{\xi \eta} \varphi \psi^{\eta}\right) d V=0 \\
& \left(\stackrel{(u)}{\vartheta\left(\varphi^{p},\right.} \psi^{p}\right)=-\left(\stackrel{(u)}{F_{\xi \eta}} \varphi^{\xi} \psi^{\eta}\right) d V=0
\end{aligned}
$$

From these relations, we see that

$$
\left(\Phi^{p}, \stackrel{(u)}{\ulcorner } \boldsymbol{\psi}^{p}\right)=\int\left(G^{\xi \eta} \varphi_{\xi} \stackrel{(u)}{F_{\eta}} \psi_{\zeta}\right) d V=\int\left(\stackrel{(u)}{\xi}_{\xi_{\eta}} \varphi^{\xi} \psi^{\eta}\right) d V=0
$$

which proves the Lemma.
From Lemma 8.2 and Lemma 8.3, we have
Theorem 8.1. In our $V_{4 n}$ (of class $C^{r}, r \geqq 4$), if the number of linearly independent (in real coefficients) harmonic forms with compact suppotrs of odd degree is finite, then it is $\equiv 0(\bmod 4)$.
 $\stackrel{(3)}{\approx} \varphi^{\nu}$ are also harmonic by Lemma 8.1. And these are mutually orthogonal by Lemma 8.2, and so linearly independent in real coefficients.

If furthermore there exists another harmonic p-form ψ^{p} linearly independent from the four p-forms mentioned above, we can find a harmonic p-form orthogonal to them. Then we can find 8 mutually orthogonal and hence 8 linearly independent harmonic p-forms by Lemma 8.3. Repeating similar process we get the conclusion of the theorem.

If especially $V_{4 n}$ is compact and the class of differentiability is sufficiently high ${ }^{4}$, this theorem can be lead to the following Corollary.

Corollary 8.1. Let $V_{4 n}$ be compact and the class of differentiability be sufficiently high ${ }^{4)}$ and let $B_{2 q+1}$ be the odd dimensional Betti numbers of $V_{4 n}$, then

$$
B_{2 q+1} \equiv 0 \quad(\bmod 4)
$$

For the 1-dimensional Betti number we can study more precisely, if $V_{4 n}$ is compact.

The following theorem is known.
Theorem. In a compact Riemanian manifold, in order that a harmonic vector φ^{i} satisfy

$$
R_{f k} \varphi^{j} \varphi^{k} \geqq 0
$$

it is necessary and sufficient that φ^{i} is a parallel vector field, that is φ^{6} satisfy $\phi^{i} ; j=0$ (for ex. Yano, [1]).

Since $R_{f 0}=0$ in our $V_{4 n}$, the above theorcm is applicable if $V_{4 n}$ is compact, and hence a vector ϕ^{4} is harmonic if and only if it is parallel vector field. Then from Corollary 8.1, we get

$$
B_{1}=4 r \quad(r \geqq 0)
$$

for the 1-dimensional Betti number B_{1}.

[^2]The linear vector space \mathfrak{F}^{1} of all harmonic 1-forms is spanned by $4 r$ linearly independent (in real coefficients) harmonic forms whose coefficients are components of a harmonic vectors. These $4 r$ vectors $\varphi_{(1) i}, \ldots, \phi_{(4 r) i}$ are linearly independent with respect to coefficients of scalar functions. For, if otherwise, we can put without any loss of generality,

$$
\left\{\begin{array}{l}
\varphi_{\left(r^{\prime}+1\right) i}=\alpha_{(1)} \varphi_{(1) i}+\ldots+\alpha_{\left(r^{\prime}\right)} \varphi_{\left(r^{\prime}\right),}, \tag{8.8}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots+\omega_{\left(r^{\prime}\right)} \varphi_{\left(r^{\prime}\right) i},
\end{array} \quad\left(r^{\prime}<4 r\right)\right.
$$

where $\alpha_{(1)}, \ldots, \alpha_{\left(r^{\prime}\right)}, \ldots, \rho_{(1)}, \ldots, \rho_{\left(r^{\prime}\right)}$ are scalar functions and $\varphi_{(1) 2}, \ldots .$, $\phi_{\left(r^{\prime}\right) i}$ are lenearly independent with respect to coefficients of scalar functions. Since $\varphi_{()}, \ldots, \varphi_{(t r)!}$ are harmonic and hence parallel vector fields, by differentiating (8.8) covariantly, we get

$$
\left\{\begin{array}{l}
0=\alpha_{(1), j} \varphi_{(1) i}+\ldots .+\alpha_{\left(r^{\prime}\right), j} \varphi_{\left(r^{\prime}\right) i}, \\
\ldots \ldots \ldots \ldots \ldots \ldots+\rho_{\left(r^{\prime}\right), j} \varphi_{\left(r^{\prime}\right)} \\
0=\rho_{(1), j} \varphi_{(1) i}+\ldots \ldots
\end{array} \quad\left(\alpha_{(1), j}=\frac{\partial \alpha^{(1)}}{\partial x^{\prime}}, \rho_{(1), j}=\frac{\partial \rho_{(1)}}{\partial x^{j}}, \text { etc. }\right)\right.
$$

Multiplying an arbitrary vector v^{j} and contracting, these become

$$
\left\{\begin{array}{l}
0=\widetilde{\alpha}_{(1)} \varphi_{(1)}+\ldots \ldots+\widetilde{\alpha}_{\left(r^{\prime}\right)} \varphi_{\left(r^{\prime}\right)}, \\
\cdots \cdots \cdots \cdots+\cdots \cdots+\widetilde{\rho}_{\left(r^{\prime}\right)} \varphi_{\left(r^{\prime}\right) \ell} \\
0=\widetilde{\rho}_{(1)} \varphi_{(1) t}+\ldots \ldots
\end{array}\right.
$$

where $\widetilde{\alpha}_{(1)}=\alpha_{(1), j} v^{j}, \ldots, \widetilde{\alpha}_{\left({ }^{\prime}\right)}=\alpha_{\left(r^{\prime},\right) ;} v^{j}, \ldots . \widetilde{\rho}_{(1)}=\rho_{(1), j} v^{j}, \ldots, \widetilde{\rho}_{\left(r^{\prime}\right)}=\rho_{\left(r^{\prime}\right), j}$ v^{j} are scalar functions. Since $\varphi_{(1) i} \ldots, \phi_{\left(r^{\prime}\right) i}$ are linearly independent in scalar functions, we have

$$
\widetilde{\alpha}_{(1)}=0, \ldots, \widetilde{\alpha}=0, \ldots, \widetilde{\rho}_{(1)}=0, \ldots, \widetilde{\rho}_{\left(r^{\prime}\right)}=0,
$$

that is

$$
\alpha_{(1), j} v^{j}=0, \ldots, \quad \alpha_{\left(r^{\prime}\right), j} v^{j}=0, \ldots, \quad \rho_{(1), j} v^{j}=0, \ldots, \quad \rho_{\left(r^{\prime}\right), j} v^{j}=0 .
$$

As v^{b} is arbitrary, we get $\alpha_{(1), j}=0, \ldots, \alpha_{\left(r^{\prime}\right), j}=0, \ldots, \rho_{(1), j}=0, \ldots, \rho_{\left(r^{\prime}\right), j}$ $=0$ and hence $\alpha_{(1)}=$ const., $\ldots ., \alpha_{\left(r^{\prime}\right)}=$ const $^{\dagger} ., \ldots, \rho_{(1)}=$ const., $\ldots, \rho_{\left(r^{\prime}\right)}=$ const., which contradicts by (8.8) to the fact that $\varphi_{(1) i}, \ldots, \varphi_{\left(4^{*}\right) i}$ are linearly independent in constant coefficients.

Consequently, $V_{4 n}$ admits $4 r$ linearly independent perallel vector fields, hence $V_{4 n}$ decomposes locally into the form

$$
V_{4 n}=E_{r} \times V_{4(n-r)}
$$

where $E_{4 r}$ is a $4 r$-dimensional compact flat manifol and $V_{4(n-r)}$ is a Riemannian manifold whose resricted homogeneous holonomy group is $S p(n-r)$ or one of its subgroups which does not fix any directions. If otherwise, $V_{4(n-r)}$ admits a parallel and hence harmonic vector fields, hence there are more than $4 r$ harmonic vector fields, contradictorily to the fact that $B_{1}=4 r$.

Conversely, if $V_{4 n}$ decomposes into the above form locally, then we can easily see that $B_{1}=4 r$.

Theorem 8.2. Let $V_{4 n}$ in consideration be compact and denote the 1 -dimen.
sional Betti number by B_{1}, then

$$
B_{1}=4 r \quad(r: \text { non-negative integers })
$$

Furihermore, $V_{4 n}$ decomposes locally into the direct product :

$$
V_{4 n}=E \times V_{4(n-r)}
$$

where $E_{4 n}$ is a 4r-dimensional compact flat manifold and $V_{4(n-r)}$ is a compact Riemannian manifold whose restricted homogeneous holonomy group is $\operatorname{Sp}(n-r)$ or one of its subgroups which does hot fix any directions. The converse is also irue.

We see therefore that $B_{1} \leqq 4 n$. And if $V_{4 n}$ is irreducible, then $B_{1}=0$.
9. Harmonic forms of degree even. Let R be the Grassmann ring of differential forms of $V_{4 n}$. For a suitably chosen orthogonal frame of reference, we can take

$$
(\stackrel{(1)}{F}, j)=\left(\begin{array}{cccc}
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0 \\
0 & 0 & 0 & -E_{n} \\
0 & 0 & E_{n} & 0
\end{array}\right), \quad\left(\stackrel{(1)}{F_{i j}}\right)=\left(\begin{array}{cccc}
0 & 0 & E_{n} & 0 \\
0 & 0 & 0 & E_{n} \\
-E_{n} & 0 & 0 & 0 \\
0- & -E_{n} & 0 & 0
\end{array}\right), \quad(\stackrel{(3)}{F} j)=\left(\begin{array}{cccc}
0 & 0 & 0 & E_{n} \\
0 & 0 & -E_{n} & 0 \\
0 & E_{n} & 0 & 0 \\
-E_{n} & 0 & 0 & 0
\end{array}\right) .
$$

In this section the range of indices are set forth as follows:

$$
\left\{\begin{array}{l}
a, b, c, \ldots=1,2, \ldots, n \\
a^{*}, b^{*}, c^{*}, \ldots=a+n, b+n, c+n, \ldots(\leqq 2 n) \\
\bar{a}, b, c, \ldots=a+2 n, b+2 n, c+2 n, \ldots \quad(\leqq 3 n) \\
\bar{a}^{*}, b^{*}, c^{*}, \ldots=a+3 n, b+3 n, c+3 n, \ldots(\leqq 4 n)
\end{array}\right.
$$

Then, $\stackrel{(1)}{\Omega}=\frac{1}{2} \stackrel{(1)}{F} i j \omega^{i} \omega^{j}, \stackrel{(2)}{\Omega}=\frac{1}{2} \stackrel{(2)}{F}\left(j \omega^{i} \omega^{j}, \stackrel{(3)}{\Omega}=\frac{1}{2} \stackrel{(3)}{F}_{i j} \omega^{i} \omega^{j}\right.$ can be written in the following form

$$
\left\{\begin{array}{l}
\stackrel{(1)}{\Omega}=\stackrel{(1)}{F}_{a u} * \omega^{a} \omega^{a *}+\theta_{1}=\sum_{a} \omega^{a} \omega^{c *}+\theta_{1} \tag{9.1}\\
\stackrel{(1)}{\Omega}=\stackrel{(2)}{F_{a a}} \omega^{n} \omega^{a}+\theta_{2}=\sum_{a} \omega^{a} \omega^{a}+\theta_{2} \\
\stackrel{(3)}{\Omega}=\stackrel{(3)}{F_{a \bar{l}}} * \omega^{\boldsymbol{j}} \omega^{a^{*}}+\theta_{3}=\sum_{a} \omega^{a} \omega^{u^{*}}+\theta_{3}
\end{array}\right.
$$

where $\theta_{1}, \theta_{2}, \theta_{3}$ are the sum of the terms which do not contain $\omega^{a}(a=1$,, n).

Consider the $2 r$-form of the type

$$
\begin{equation*}
\varphi^{2 r}=\stackrel{(1)}{\Omega^{\lambda}} \stackrel{(1)}{\Omega}^{\mu} \stackrel{(3)}{\Omega}^{\nu}, \quad(\lambda+\mu+\nu=r) \tag{9.2}
\end{equation*}
$$

where $\stackrel{(u)}{\Omega^{\lambda}}(u=1,2,3)$ designate the exterior product of $\stackrel{(\mu)}{\Omega} \lambda$ times and $r \leqq n$. There are ${ }_{3} H_{r}$. different forms of the type (9.2), where ${ }_{3} H_{r}=\binom{r+2}{r}$. We denote the set of such forms by $\Phi^{2 r}$. In $P^{2 r}$ the sum of the terms which contain just r of $\omega^{x}(a=1, \ldots, n)$ is given by

$$
\sum \omega^{a_{1}} \ldots \omega^{a_{\lambda}} \omega^{a_{1}} \ldots \omega^{3 \mu} \omega^{c_{1}} \ldots \omega^{c_{\nu}}\left(\omega^{a_{1}^{*}} \ldots \omega^{a^{*}} \omega^{\bar{h}_{1}} \ldots \omega^{\bar{b}_{\mu}} \omega^{\bar{c}_{1} *} \ldots \omega^{\bar{c}_{\nu}}\right)
$$

$\left(a_{1}, \ldots, a_{\lambda}, b_{1}, \ldots, b_{\mu}, c_{1}, \ldots, c_{\nu}=1, \ldots, n\right.$; any two of them are not equal).
Next, let

$$
\psi^{2 r}=\stackrel{(1)}{\Omega^{\lambda^{\prime}}} \cdot \stackrel{(2)}{\Omega^{\mu^{\prime}}} \cdot \stackrel{(3)}{\Omega^{\prime}} \quad\left(\lambda^{\prime}+\mu^{\prime}+\nu^{\prime}=r\right)
$$

be a form in $\Phi^{2 r}$ different from $\varphi^{2 r}$. In $\psi^{3 r}$ the sum of the terms which contain just r of $\omega^{a}(a=1, \ldots, n)$ is given by

$$
\sum \omega^{a_{1}} \ldots \omega^{a \lambda^{\prime}} \omega^{b_{1}} \ldots \omega^{b \mu^{\prime}} \omega^{c \mathrm{~L}} \ldots \omega^{c \nu^{\prime \prime}}\left(\omega^{r_{1}} \ldots \ldots \omega_{\lambda}^{a_{\lambda}^{*}} \omega^{\bar{b}_{1}} \ldots \omega^{\bar{弓}_{\mu^{\prime}}} \omega_{1}^{\bar{c}_{1}^{*}} \ldots \omega_{\nu}^{\overline{\bar{\sigma}_{\nu}^{*}}}\right)
$$

$\left(a_{1} \ldots, a_{\lambda^{\prime}}, b_{1}, \ldots, b_{\mu^{\prime}}, c_{1}, \ldots, c_{\nu^{\prime}}=1, \ldots, n\right.$; any two of them are not equal). Since $\varphi^{2 r}$ and $\psi^{2 r}$ are different, at least one of the pairs $\left(\lambda, \lambda^{\prime}\right),\left(\mu, \mu^{\prime}\right),\left(\nu, \nu^{\prime}\right)$ is not equal, for example, $\lambda \neq \lambda^{\prime}$. Therefore, In $\Phi^{2 r}$, there are no forms which contain just λ of $\omega^{a^{*}}, \mu$ of $\omega^{\bar{j}}, \nu$ of $\omega^{\bar{*} *}$ other than $\phi^{2 r}$. In other words, a form in $\Phi^{2 r}$ contains some bases of R which are not contained in any other forms in $\Phi^{2 r}$. Consequently, the forms in $\Phi^{2 r}$ ara linearly independent with respect to constant coefficients.

And all forms in $\Phi^{2 r}$ are non-zero harmonic by Theorem I and Theorem III of §7. Therefore we have

Theorem 9.1. In $V_{4 n}$ (of class $C^{r}, r \geqq 4$), let $h_{2 r}$ be the number of linearly independent (in real constant coefficients) harmonic $2 r$-forms. Then, $h_{2 r} \geqq{ }_{3} H_{r}$ $=\binom{r+2}{r}$.

Corollary 9.1. If the $V_{4 n}$ is compact, orientable and the class of differentiability is sufficiently high, then the $2 r-t h(r \leqq n)$ Betti number $B_{2 r}$ satisfies the inequblity:

$$
B_{2 r} \geqq{ }_{3} H_{r}=\binom{r+2}{r} .
$$

10. Decomposition theorem. In the similar way to pseudo-kaehlerian case, we introduce the following operators for a p-form $\varphi^{p}=\frac{1}{p!} \varphi_{i_{1} \ldots, p} d x^{i_{1}}$ $\ldots . . d x^{t_{p}}$

$$
\begin{aligned}
& L_{(1)} \text { : exterior multiolication by } \stackrel{(1)}{\Omega}=\frac{1}{2} \stackrel{(1)}{F} d x^{i} d x^{j} \\
& \begin{cases}L_{(2)}:- & \text { by } \dot{!}_{\Omega}=\frac{1}{2} \stackrel{(2)}{F_{i j}} d x^{i} d x^{0} \\
L_{(3)}:- & \text { by } \stackrel{(3)}{\Omega}=\frac{1}{2} \stackrel{(3)}{F}_{1 j} d x^{i} d x^{j},\end{cases} \\
& \left\{\begin{array}{l}
\Lambda_{(1)}: *^{-1} L_{(1)} *=(-1)^{p} * L_{(1)} * \\
\Lambda_{(2)}: *^{-1} L_{(2)} *=(-1)^{\nu} * L_{(2)} * \\
\Lambda_{(3)}: *^{-1} L_{(3)} *=(-1)^{\nu} * L_{(3)} *,
\end{array}\right.
\end{aligned}
$$

then, we can see that

$$
\begin{gather*}
\quad\left(\Lambda_{(u)} \varphi^{p}\right)_{i_{1} . i_{p-2}}=\frac{1}{2}{\stackrel{(u)}{F} F^{k h}}_{\varphi_{i_{1} . . i_{p-2} \iota h}} \tag{10.1}\\
\Lambda_{(u)} L_{(u)}^{r} \varphi^{p}=L_{(u)}^{r} \Lambda_{(u)} \varphi^{p}+\eta(2 n-p-r+1) L_{(u)}^{r-1} \varphi^{p}, \tag{10.2}
\end{gather*}
$$

analogously to the pseudo-kaehlerian case.
And since the linear combination $\alpha \stackrel{(1)}{F}+\beta{ }^{(2)}+\gamma\left(\frac{(3)}{F}(\alpha, \beta, \gamma\right.$: scalar functions; $\alpha^{2}+\beta^{2}+\gamma^{2}=1$) is also a pseudo-kaehlerian structure, we can introduce the operators

$$
\left\{\begin{array}{ll}
L: \alpha L_{(1)}+\beta L_{(2)}+\gamma L_{(3)} \tag{10.3}\\
\Lambda: \alpha \Lambda_{(1)}+\beta \Lambda_{(2)}+\gamma \Lambda_{(3)}
\end{array} \quad\left(\alpha^{2}+\beta^{2}+\gamma^{2}=1\right)\right.
$$

The operators $L, L_{(u)}, \Lambda, \Lambda_{(u)}$ transform harmonic forms into harmonic forms. We call a p-form ϕ^{p} such as

$$
\Lambda_{(u)} \varphi^{p}=0
$$

$\Lambda_{(u)}$-effective and call Λ-effective if $\Lambda \varphi^{\nu}=0$.
An arbitrary p-form $\phi^{p}(p \leqq 2 n)$ decomposes in the following three manners:

$$
\left\{\begin{align*}
\varphi^{p} & =\psi_{(1)}^{p}+L_{(1)} \psi_{(1)}^{p-2}+\ldots+L_{(1)}^{q_{1}} \psi_{(1)}^{p-2 q_{1}} & & \left(q_{1} \leqq\left[\frac{p}{2}\right]\right) \tag{10.4}\\
& =\psi_{(2)}^{p}+L_{(2)} \psi_{(3)}^{p-2}+\ldots+L_{(2)}^{q_{2}} \psi_{(2)}^{p-2 q_{2}} & & \left(q_{2} \leqq\left[\frac{p}{2}[)\right.\right. \\
& =\psi_{(3)}^{p}+L_{(3)} \psi_{(3)}^{p-2}+\ldots+L_{(3)}^{q_{2}} \psi_{(3)}^{p-2 q_{2}} & & \left(q_{3} \leqq\left[\frac{p}{2}\right]\right)
\end{align*}\right.
$$

where $\psi_{(1)}^{p-2 h}\left(h=0, \ldots, q_{1}\right), \psi_{((2)}^{p-2 h}\left(h=0, \ldots, q_{2}\right)$ aud $\psi_{(3)}^{p-2 h}\left(h=0, \ldots, q_{3}\right)$ are $\Lambda_{(1)-}, \Lambda_{(2)^{-}}, \Lambda_{(3)}$-effective ($p-2 h$)-forms respectively.

We also have the decomposition with respect to L :

$$
\begin{equation*}
\varphi^{p}=\psi^{p}+L \psi^{p-2}+\ldots+L^{q} \psi^{p-2 q} \quad\left(q \leqq\left[\frac{p}{2}\right]\right) \tag{10.5}
\end{equation*}
$$

where $\psi^{p-2 h}(h=0,1, \ldots, q)$ is a Λ-effective $(p-2 h)$-form.
We call such a form as $L_{(u)}^{s} \psi_{(u)}^{r}$ where $\psi_{(u)}^{r}$ is $\Lambda_{(u)}$-effective to be of $L_{(u)-}$ class s.

If \mathfrak{S}^{p} is the linear vector space of all harmonic \boldsymbol{p}-torms, then \mathfrak{S}^{p} decomposes in following three manners:
where $L_{(u)}^{h} \mathfrak{g}_{(u)}^{p-2 h}\left(u=1,2,3 ; h=1, \ldots, q_{u}\right)$ are linear vector sub-spaces of all harmonic p-forms of $L_{(u)}$-class h.

Now, let

$$
\Psi_{(u)}=\frac{1}{r!} \psi_{(u)_{1} \ldots i_{p}} d x^{i_{1}} \ldots d x^{i p} \quad(u=1,2,3)
$$

be a $\Lambda_{(u)}$-effective r-form and consider the operations $\stackrel{(\underset{\sim}{v}}{\underset{\sim}{v}}(v=1,2,3)$ of $\S 8$, that is
or in tensor forms

These operations are non-singular and taking account of the fact that $\psi_{(u)}^{*}$ is $\Lambda_{(u)}$-effective, we see that

That is to say, $\stackrel{(v)}{\widetilde{\sim}} \stackrel{\dot{(})}{(v=1,2,3)}$ transforms $\Lambda_{(u)}$-effective forms $(u=1,2,3)$ again into $\Lambda_{(u)}$-effective forms.

Next, consider a form of $L_{(u)}$-class $s(u=1,2,3)$:

$$
\begin{aligned}
& \text { (} u=1,2,3 \text {) }
\end{aligned}
$$

where $\psi_{(u)}^{r}$ is $\Lambda_{(\imath)}$-effective. Then, we see that

$$
\begin{aligned}
& =c\left(L_{(u)}^{s} \stackrel{(v)}{\mho^{*}} \boldsymbol{\psi}_{(u)}^{r}\right) \quad(c: \text { non-zero const. }) .
\end{aligned}
$$

Since $\boldsymbol{\psi}_{(u)}^{r}$ is $\Lambda_{(u)}$-effective, $\stackrel{(v)}{\mho_{\mathfrak{F}} \boldsymbol{\psi}_{(u)}^{r}}$ is also $\Lambda_{(u)}$-effective. From the above, we have

Theorem 10.1. The operations $\stackrel{(v)}{\underset{\sim}{5}}(v=1,2,3)$ are automorphisms of the linear vector space of all forms of $L_{(u)}$-class $s(s=0,1, \ldots, 2 n ; u=1,2,3)$.

Since $\stackrel{(v)}{\underset{\sim}{*}}$ transform harmonic forms into harmonic forms, we have
Corollary 10.1. The operations $\stackrel{(v)}{\underset{\sim}{w}}(v=1,2,3)$ are automorphisms of the linear vector spaces of all harmonic forms of $L_{(u)}$-class $s(u=1,2,3 ; s=0,1, \ldots$, $2 n$).

In particular, if p is odd and if the dimension of \mathfrak{W}^{ν} of all harmonic p forms whose supports are compact is finite, then we have three decompositions of the forms (10.4) for an arbitrary forms $\varphi^{p} \in \mathfrak{S}^{p}$. If there exists a non-zero harmonic p-form $L_{(u)}^{s} \psi_{(u)}^{n-2 s}$ of $L_{(u)}$-class s, then there exist in \mathfrak{g}^{p} four non-zero harmonic p-forms $L_{(\omega)} \boldsymbol{\psi}_{(u)}^{p-2 s}, \stackrel{(v)}{\vec{\vartheta}\left(\mathcal{V}_{(u)}\right.} \boldsymbol{\psi}_{(u)}^{p-2 s)}(v=1,2,3)$ by Corollary
10.1, these baing orthogonal with respect to the inner product and hence linearly independent. If there exists another harmonic p-form of $L_{(u)}$-class s independent from the above four, we can find 8 linearly independent forms in \mathfrak{J}^{p} in the similar way to $\S 8$.

Theorem 10.2. Let p be odd. If the dimension of $\mathfrak{S}^{\prime \prime}$ of all harmonic p forms with compact supporis is finite, then in exch decomposition (10.6) of $\mathfrak{J g}^{p}$ the dimension of $L_{(u)}^{h} \mathfrak{S}_{(u)^{p}-2 h}(u=1,2,3)$ is $\equiv 0$ ($m \circ d .4$).

If furthermore $V_{4 n}$ is compact the decomposition (10.6) of $\mathfrak{夕}^{p}$ turns into the decomsition of the p-th cohomology group H^{p} :

$$
\begin{align*}
H^{p} & =H_{(1)}^{p}+L_{(1)} H_{(1)}^{p-2}+\ldots+L_{(1)}^{q_{1}} H_{(1)}^{p-2 q_{1}} & & \left(q_{1} \leqq\left[\frac{p}{2}\right]\right) \\
& =H_{z}^{p}+L_{(2)} H_{(2)}^{p-2}+\ldots+L_{(2)}^{q_{2}} H_{(:)}^{p-q_{2}} & & \left(q_{2} \leqq\left[\begin{array}{c}
p \\
2
\end{array}\right]\right) \tag{10.7}\\
& =H_{(3)}^{p}+L_{(3)} H_{(3)}^{p-2}+\ldots+L_{(3)}^{q_{3}} H_{(3)}^{n-2 / 2} & & \left(q_{3} \leqq\left[\begin{array}{c}
p \\
2
\end{array}\right]\right) .
\end{align*}
$$

Let B_{r} and $B_{r-2}(r \leqq 2 n)$ be the r-th and $(r-2)$-th Betti numbers of $V_{4 n}$ and let $d_{(u)}^{r}$ be the dimension of the linear vector space of $\Lambda_{(u)}$ effective harmonic p-forms, then

$$
d_{(u)}^{\prime}=B_{r}-B_{r-2}, \quad(u=1,2,3)
$$

from which we see that the rank of the subgroups $L_{(1)}^{h} H_{(1)}^{(-2 h}, L_{(1)}^{h} H_{(2)}^{p-2 h}$ and $L_{(3)}^{h} H_{(3)}^{(-2 h}$ are equal for every $h \leqq\left[\frac{p}{2}\right]$ and $\equiv 0(\bmod 4)$ by the theorem.

Corollary 10.2. Let $V_{4 n}$ be compact. Then the p-th cohomology group H^{p} decomposes in three manners such as (10.7) and the rank of each corresponding subgroups $L_{(1)}^{h} H_{(1)}^{p-2 h}, L_{(2)}^{h} H_{(2)}^{p-2 h}$ and $L_{(3)}^{h} H_{(3)}^{p-2 h}$ are equal for every $h \leqq\left[\begin{array}{l}p \\ \frac{p}{2}\end{array}\right]$. If p is odd, these ranks are $\equiv 0$ (mod.4).

In the next place, let p be even and consider a harmonic p-form p^{p} whose support is compact. Then $L_{(1)}^{r} L_{(2)}^{2} L_{(8)}^{\prime 8} \varphi^{\nu}$ are harmonic 0 -forms, that is, constants for all non-negative integers $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$, and \boldsymbol{r}_{3} satisfying $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}$ $=p / 2$. Then the ${ }_{3} H_{p / 2}$ linear equations
have a unique solution for unknown constants $\sigma\left(r^{\prime} r^{\prime} r^{\prime} r^{\prime}\right)$. To show this, for
 ($\left.\boldsymbol{q}={ }_{3} H_{p / 2}\right)$, and $\sigma_{\left(r^{\prime} r^{\prime} r^{\prime} r^{\prime} r^{\prime}\right)}$ as $c_{\lambda}(\lambda=1, \ldots q)$. Then (10.8) can be written in the form

$$
\left\{\begin{array}{l}
c_{1}\left(v_{1}, v_{1}\right)+c_{2}\left(v_{2}, v_{1}\right)+\ldots .+c_{q}\left(v_{q}, v_{1}\right)=d_{1} \tag{10.9}\\
c_{1}\left(v_{1}, v_{2}\right)+c_{2}\left(v_{2}, v_{2}\right)+\ldots .+c_{q}\left(v_{q}, v_{2}\right)=d_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
c_{1}\left(v_{1}, v_{q}\right)+c_{2}\left(v_{2}, a_{q}\right)+\ldots .+c_{q}\left(v_{q}, v_{q}\right)=d_{q},
\end{array}\right.
$$

where c_{1}, \ldots, c_{q} are unknown constants and d_{1}, \ldots, d_{q} and $\left(v_{\lambda}, v_{\mu}\right)(\lambda, \mu=$ $1, \ldots, q)$ are known constants. The determinant

$$
\left|\begin{array}{cc}
\left(v_{1}, v_{1}\right) & \left(v_{2}, v_{1}\right) \ldots .\left(v_{q}, v_{1}\right) \\
\left(v_{1}, v_{2}\right) & \left(v_{2}, v_{2}\right) \ldots .\left(v_{q}, v^{2}\right) \\
\ldots \ldots \ldots \ldots . \\
\left(v_{1}, v_{q}\right) & \left(v_{2}, v_{q}\right) \ldots .\left(v_{q}, v_{q}\right)
\end{array}\right|
$$

is not zero, for if otherwise, there exist constants $c_{1}^{\prime}, \ldots, c_{q}^{\prime}$ which are not simultaneously equal to zero and satisfy

$$
\left\{\begin{array}{l}
c_{1}^{\prime}\left(v_{1}, v_{1}\right)+c_{2}^{\prime}\left(v_{2}, v_{1}\right)+\ldots \ldots+c_{q}^{\prime}\left(v_{q}, v_{1}\right)=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
c_{1}^{\prime}\left(v_{1}, v_{q}\right)+c_{2}^{\prime}\left(v_{2}, v_{q}\right)+\ldots \ldots+c_{q}^{\prime}\left(v_{q}, v_{q}\right)=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\left(c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\ldots \ldots+c_{q}^{\prime} v_{q}, v_{1}\right)=0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\left(c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\ldots \ldots+c_{q}^{\prime} v_{q}, v_{q}\right)=0
\end{array}\right.
$$

Since $c_{1}^{\prime} v_{1}+\ldots .+c_{q}^{\prime} v_{q}$ lies in the vector space spanned by linearly independent v_{1}, \ldots, v_{q}, we must have

$$
c_{1}^{\prime} v_{1}+\ldots+c_{q}^{\prime} v_{q}=0
$$

from which we get

$$
c_{1}^{\prime}=c_{2}^{\prime}=\ldots=c_{q}^{\prime}=0
$$

by virtue of the linear independence of v_{1}, \ldots, v_{q}. But this is a contradiction.
Consequently, ϕ^{v} decomposes uniquely into the following form:

$$
\begin{equation*}
\phi^{\nu}=\tau^{\nu}+\sum_{r_{1}+r_{2}+r_{3}=p / 2} \Omega^{(1)} \Omega^{r_{1}} \Omega^{(2)} \Omega^{(3)} \Omega^{(3)} \sigma_{\left(r_{r} r_{2} r_{3}\right)}, \quad\left(\sigma_{\left(r_{r} r_{2} r_{2}\right)}: \text { constants }\right) \tag{10.10}
\end{equation*}
$$

where τ^{p} satisfies the equations
for all r_{1}, r_{2} and r_{3} satisfying $r_{1}+r_{2}+r_{3}=p / 2$. These equations are equivalent to

$$
\begin{equation*}
\Lambda_{(1)}^{r_{1}} \Lambda_{(2)}^{r_{2}} \Lambda_{(5)}^{r_{3}} \tau^{p}=0 \tag{10.11}
\end{equation*}
$$

$$
\left(r_{1}+r_{2}+r_{3}=p / 2\right),
$$

since $\Lambda_{(1)}^{r_{1}} \Lambda_{(2)}^{r_{2}} \Lambda_{(\mathrm{s})}^{r} \tau^{\nu}$ are harmonic 0 -forms, that is, constants.
Theorem 10.3. Let p be even. If the dimension of the linear vector space \mathfrak{S}^{p} of all harmonic p-forms with compact supports is finite, then every p-form $\varphi^{p} \in \mathfrak{g}^{p}$ decomposes into the form
where τ^{ν} is a harmonic p-form satisfying

$$
\Lambda_{(1)}^{r_{1}} \Lambda_{(2)}^{r o} \Lambda_{(3)}^{r(} \tau^{p}=0,
$$

where r_{1}, r_{2} and r_{3} are non-negative integers satisfying $r_{1}+r_{2}+r_{3}=p / 2$.
Corollary 10.3. Let $V_{4 n}$ be compact and p be even. Then the $p-t h$ Betti number B_{p} can be given by

$$
B_{p}=\varepsilon_{p}+{ }_{3} H_{p \mid 2}
$$

where ε_{p} is the number of linearly independent harmonic p-forms satisfying $\Lambda_{(1)}^{r_{1}} \Lambda_{(2)}^{r_{2}} \Lambda_{(3)}^{r_{3}} \tau^{\nu}=0 \quad\left(r_{1}+r_{2}+r_{3}=p / 2\right)$.

References

Akizuki, Y.

[1] Theory of harmonic integrals, I, II (in Japanese). Tokyo (1955 and 1956)
Berger, M. :
[1] Sur les groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci., Paris, 237 (1953), 472-474.
[2] Sur les groupes d'holonomie des variétés riemanniennes non symétriques., C. R. Acad. Sci., Paries, 237 (1953), 1036-1038.
[3] Groupes d'holonomie des variétés riemanniennes. Applicàions. C. R. Acad. Paris, 238 (1954), 985-986.
Bochner, S.:
[1] Vector fields and Ricci curvature. Bull. A. M. S., 52 (1946), 776-797.
[2] Curvature in Hermitian metric. Bull. A. M. S., 52 (1946), 179-195.
[3] Curvature and Betti numbers, I. Ann. of Math., 49 (1948), 379-390.
[4] Curvature and Betti numbers, II. Ann. of Math., 50 (1949), 77-93.
Bidal, P. et G. de Rham:
[1] Les forms différentielles harmoniques. Comm. Math. Helv., 19 (1940), 1-49.
Calabi, E. And D.C.Spencer:
[1] Completely integrable almost complex manifolds. Bull. A.M.S., 57 (1951), 254-255.
Chern, S.S.:
[1] On Riemannian manifold of four dimensions. Bull. A. M. S., 51 (1945), 964971.
[2] Characteristic classes of Hermitian manifolds, Ann. of Math., 47 (1946), 85121.
[3] Topics in differential geometry. Princeton (1951),
Cartan, E.:
[1] Les groupes d’holonomie des espaces généralısées. Acta Math., 48(1926), 1-42.
DE RHAM, G.:
[1] Variétés différentiables: Act. Sci. et Indust. 1222., Paris (1955).
Eckmann, B.:
[1] Quelque prorriétés globales des variétés kähleriennes. C.R. Acal. Sci, Paris, 229 (1949), 577-579.
Eckmann, B. and H. GUGGEnheimer.:
[1] Formes différentielles et métrique hermitienne sans torsion. I., C. R. Acad. Sci., Paris 229 (1949), 464-496.
[2] Formes différentielles et métrique hermitienne sans to:sion. II. C. R. Acad. Sci., Paris, 229 (1949) 489-491.
[3] Sur les variétés cluses à métrique hermitienne sans torsion. C. R. Acad. Sci., Paris, 229 (1949), 503-505.
Ehresmann, C:
$[17$ Sur la théorie des espaces fibrés. Coll. Top. Alg. (1947).
[2] Sur les variétés presque complexes. Proc. Int. Congr.
Eisenhart, L. P. :
[1] Cotinuous groups of tran formations. 38, Princeton (1933).
FRÖlicher, A. :
[1] Sur l'intégrabilité de structures presque complexes. C. R. Acad. Sci., Paris, 232 (1951), 2284-2286.
GUGGENHEIMER, H. :
[1] Sur les variétés qui possèdent une forme exterieur quadıatique fermée. C. R. Acad. Sci., Paris, 232 (1951), 470-472.
[2] A note cn curva'nre and Betti numbers. Proc. Amer. Math. Soc., $2(1951)$, 807-870.
[3] Über komplex-analytische Mannigfaltigke.t mit Kählerscher Metrik. Commt. Math. Helv., 25(1951), 257-297.
[4] Über Kaihlersche und symplektische Differentialalgebren. Tôhoku Math. J., 4, No. 2, (1952), 157-171.
[5] Formes et vecteurs psexdo-analytiques. Ann. Mat. pura appl. (4), 36 (1954), 223-246.
[6] Variétés symplectiques. Coll. Top., Strasbourg, Janvier (1951).
HODGE, W.V.D.:
[1] Theory and Applications of harmonic integrals. Cambr. (1941). IWAMOTO, H.:
[1] On the structure of Riemannian spaces whose holonomy grou.s fix a null system, Tôhoku Math. J., 1, No. 2 (1950), 109-135.
Liebermann, P.:
[1] Sur les variéfés presque complexes $V_{2 n}$ munies d'un champ de n-elemen.s reels. C. R. Acad. Sci., Parıs, 233 (1951), 1971-1973.
[2] Formes différentielles sur une variété symlestique. C. R. Acad. Sci., Paris, 234 (1952), 395-397.
[3] Sur les structures presque quaternioniennes de deuxieme espèce. C. R. Acad. Sci., Paris, 234 (1952), 1030:1032.
[4] Sur le problème d'équivalence de certaines structures infinitésimales. Thèse (1953).

Lichnerowicz, A.:
[1] Un théorème sur les espaces homogènes complexes. Archiv. der Math., 5 (1954), 207-215.
[2] Théorème de réductibilité des variétés kähleriennes et applications. C. R. Acad. Sci., Paris, 231 (1950) 1280-1282.
[3] Généralisations de la géométrie kählerienne globale. Coll. geo. diff., Louvain (1951).
[4] Formes a dérivée covariante nulle sur une variété riemannienne. C. R. Acad. Sci., Parıs, 232 (1951), 146-147.
[5] Sur les variétés nemanniennes admettant une forme à dérivée covariante nulle. C. R. Acad. Sci., Paris, 232 (1951), 677-6i9.
[6] Sur les variétès symplectiques. C. R. Acad. Sci., Paris, 233(1951), 723-725.
[7] Sur les formes harmoniques des variétés riemanniennes localement réductibles. C. R. Acad. Sci., Paris, 232 (1951), 1634-1636.
[8] Espaces homogenes kähleriens. Coll. Inter. C. N. R.S., LII, Géométrie differentielle, Scrasbourg, 26 (1953).
[9] Un théorème sur les espaees homogènes complexes. Archiv. der Math., 5(1954), 207-215.
[10] Sur les gıoupes d'holonomie_des.variétés riemanniens et kähleriens. Edizioni

Cremonese della S. A. Perrela, Roma (1954).
Ótsuki, T.
[1] On some 4-dimensional Riemannian Spaces. I. II. Mem. Fac. Sci. Kyûshu Univ., Ser. A (Math), 4 (1949).
SASAKI, S.:
[1] On the real representations of spaces with Hermitian connection. Sci. Rep. Tôhoku Univ., ser. I, 33 (1949), 52-61.
Schouten, J. A.
[1] Ricci Calculus. Springer (1954).
Schouten, J. A. and K. Yano:
[1] On pseudo-Kählerian spaces admitting a continuous group of motions. Proc. Kon. Ned. Acad. Wet., Amsterlam, A. 54 (1951), 200-212.
Thomas, T. Y.:
[1] The decomposition of Riemann Spaces in the large. Monatsh. f. Math. Phys., 47 (1939).
WEIL, A. :
[1] Sur la théorie des formes différentielles attachées à une variété analytique complexe. Commt. Math. Helv., 20 (1947), 110-116.
Yano, K. :
[1] On harmonic and Killing vector fields. Ann. of Math., 55 (1952), 38-45.
Yano, K. and S. Bochner:
[1] Curvature and Betti numbers. Ann. of Math. Studies, Princeton (1953).
Yano, K. and I. Mogi:
[1] Sur les variétés pseudo-käehleriennes à courbure holomorphique constante. C R. Acad. Sci., Paris, 237 (1953), 962-964.
[2] On real representations of Kaehlerian manifolds. Ann. ot Math., 61(1955), 170-189.

FUKUSHIMA UNIVERSITY.

[^0]: 1) Prof.T.Otsuki set forth some examples of fundamental forms of 4 -dimensional Riemannian manifolds with homog. holonomy group $S p(1)$ (Otsuki, [61), but it seems to contain some errors. The details of his method should be referred to his paper.
[^1]: 2) In the following the products of differential forms designate the exterior products unless otherwise stated.
[^2]: 4) So far as the Hodge's theorem concerning the harmonic integrals of Riemannian manifolds be true.
