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0. In his book [1] C. Chevalley defined the replicas for any elements
of Lie algebras of algebraic groups of matrices which are defined over fields
of characteristic 0, and he characterized algebraic subalgebras as those
subalgebras of the general linear algebras which are closed with respect to
"replica operation" i. e. those which contain all replicas of any elements of
themselves. In this paper we shall define the replica in the case of any
algebraic groups defined over fields of characterestic 0 and show that the
same characterization of algebraic subalgebras is true in this case too.

1. Let G be a connected algebraic group0 let ί l (G) be the field of
rational functions on G where X2 is the universal domain; let k(G) be the
subfield of β(G) consisting of all rational functions defined over k where k
is a field of definition for G. Then β(G) is the union of k(G) for all fields k
of definition for G, and the mapping /->/(£) is a ^-isomorphism of k(G) onto
kip) where p is a generic point over k on G. Suppose that G is given by
[Voi, ι$a, Tβa], and let ξ u , ξv be the coordinate functions relative to VΛ,
i.e. ξi(p) =5 Xi, where (x) is the representative of p in Va. Then we have
β(G) = β(?) and k(G) = k(ξ).

For any p € G we denote by op the local ring of p on G. Let m;, be the
maximal ideal of op. By a tangent vector to G at p we mean an Ω-linear
mapping Xp of op into ί2 such that for/i,/2 € o2, we have

If k is a field of definition for G such that p is rational over k, then Xv

is said to be rational over k if Xp maps op f) Λ(G) into k. An Ω-derivation
D is said to be finite at p if D maps ô  into itself. In this case D induces a
tangent vector Dp to G at ί such that Dpf= (Df)(p) for f € o2,, which is
called the local component of D at p. If further D is defined over k and
maps m,, Π k{G) into itself, we have a ^-derivation X of k{p) such that A/(£)
= (Df) (p) for /(^) € kip), where / is an element of op Π Λ(G) such that f'(p)

Let p be a rational mapping of G into another connected algebraic group
G'. If /> is generically surjective, we get an Ω-isomorphism p* of ί2(Gr)into
β(G) such that p*f(x) ̂ f(p(x)) f o r / € Ω(Gr), where x is a generic point on G
over some field of definition for G, G', p, and /. For p € G let RP be the
right translation, let LP be the left translation, and let ιip) be the inner

1) As for the terminology and preliminary results, cf. Nakano [21 and Rosenlicht
[31, [41.
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automorphism x-±pxp~ι of G. Any Ω-derivation D of Ω(G) is called (right)
invariant if /?* Df= D 2?*/ for any ^ € G and / € Ω(G). Any invariant Ω-
derivation is everywhere finite and determined by the local component at
one point on G. The set of all invariant ίl-derivations of Ω(G) is called the
Lie algebra of G which is a Lie algebra over Ω with the bracket multiplic-
ation [D,D] = DD' — D'D. In the case of any algebraic group, the Lie
algebra of its component containing the unit element e is called the
Lie algebra of this algebraic group. In this paper we shall denote alge-
braic groups by G, G', H, , and their Lie algebras by g, g', ή, It is

known that if K is a field of definition for G, the Lie algebra Q of G has a
base consisting of n invariant Ω-derivations defined over K, where n is the
dimension of G. The set g( , K) of all those elements of g which are defined
over K is a Lie algebra over K, and g is the scalar extension of g( , ϋQ from
if to Ω.

Let /o be a rational homomorphism of G into G', then we have a hom-
omorphism dp of Q into g' such that ρ\dρ{D)f)(p) = (Zty*/) φ) for D € g, £ € G
and/60pp. Let Z7 be a connected algebraic subgroup of G, and let σ- be the
natural injection of H int> G, then rfσ-(ϊj) is a subalgebra of g which is Ω-
isomorphic to ή.In this paper we identify dσty) with t). Then an element D
of g is in t) if and only if D maps m Π k{G) into itself, where ŷ  is a field of
definition for G, H and D and m is the maximal ideal of the local ring of a
generic point over k on H. A subalgebra of g is called algebraic if it is the
Lie algebra of some connected algebraic subgroup of G.

Let k be a field of definition for G , let ΛΓ and y be independent generic
points over k on G let <p be the rational mapping of Va x Va into F« which
is induced by the group operation G x G ^ x x y-+xy ζ G let ψ\x,y) be the
ί-th coordinate of the representative of xy in Va let φHX, Y) be a suitable
rational expression in indeterminates (X; Y) with coefficients in k (e.g. if
the unit element e has a representative in Va we take such φ\X, Y) = P'CX",
F)/^(X, F) that Q'(β,β) Φ 0, where P\ Q< € k\X, Y]\ For any Ω-derivation
D of Ω(G), put Dfi = %,(?). Then D is determined by (χ/£), . . . . , χπ{ξ)). If
a point z of G has a representative in F α and D is finite at z, the local
component of Z) at z is determined by (%i(z), . . . . , % ^ ) ) . If D is defined
over k, Xi(ξ) is in k(ξ). And Z) is invariant if and only if

(1) M

If the unit element ^ has a representative in F«, we have

and therefore

(2) χ*(f) = 2 > !
Conversely if this relation holds for an Ω-derivation D defined over k such
that Dξi = Xι(ζ), then D is invariant.

In the following we often denote by the same letter x the point of G and
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its representative in some affine variety V.
Suppose that G is a connected algebraic subgroup of GL(n, Ω). Let « t J

and ft./ be the coordinate functions of GΠn, Ω) and G, respectively; let D
be an element of g defined over & let p be the prine ideal of k[u] associated
with G; put Dξi5 = χ f/f), then (2) implies that

where / is the unit matrix. Put

(3) Φ(D) = -(xtjil)),

then the' ̂ -derivation S(Φ(D)) of k[u] maps p into itself2). A simple calculation
shows that D -> Φ(£>) is a ^-isomorphism of g( , k) into gl(w, &) and that image
of fl( , k) by Φ is the Lie algebra of G defined by Chevalley [1] p. 128. Thus
we may imbed the Lie algebra of algebraic subgroup of GL{n,ίl) in gi(/i, Ω).

The next le.nma is usefull in the section 3.

L^MMA 1. Let s be a point on G let k be a field of definition for G. Then
for a k-deriυation X of k(s) there exists uniquely an element D of g, defined
ooer k(s), such that (Dξt)(s) = X sf, where ξt are coordimte functions relative
to V in which s has a representative.

PROOF. If we set X,f = (Xf(s)) for / € 0, f] k(G), weobtain a ^-linear
mapping X, of os[}k[G) into k(s) such that for/i,Λ € o* Π k(G)

(4) -

Let A" be any overfield of k(s). Then for any /*€ Jf[f] we may express / =

2 ι l i Λ/*» where Λ* € ^ and/i € £[£]. If we set Xs f = 2Γ=i aιX"f^ w e

obtain a iί-linear mapping X of ϋι[f] into iΓ with the analogous property

(4) forΛ, /2 € /£[£]. In fact; suppose that 2 t β i α ' / i = ^ Then we may sup-

pose that for some intger / <Ξ m a{, . . . . , at are linearly independent over k

and α< = ^'iml jijctj for some 7^ € £. The equation 2 ( B l
 a CA + 2 Z Π i

7J/J) = 0 implies ft + 2 > I M ^ ' ^ = °» s i n c e ^ a n d ^(f) a r ^ linearly disjoint

over k. Thus we have X/t + ΣΓ-i+i^ " ^ ^ = ° a n d *Σ" Σl

-̂i+ι = 0, and the mapping of ΛΓtf] into ϋΓ is defined. The linearity

is clear and the equation (4) holds for such forms ajx. a.2f2 that au a2 € K
axiάfiyft € k\ξ], Clearly Xs induces^,a tangent vector to G at 5 which we shall
denote by the same Xs. Taking K = k's), we see that Xs is rational over

Let f be an element of Ω(G) let Z b e a field of definition for G and /
over which s and Xs are rational let x be a generic point on G over K. Then

2) As for the definition of δ cf. [1] p. 126
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JR*-\f is in ΌS and rational overK(x\ soX/?J_iΓ / is a welldefined element of
K(x). Let f be the unique element of *(G)such that/'(#) = XZ?*_lχ/. It is
clear that /' depends only on G,/ and Xs. If we set £>/ = /', we obtain the
element D of g described above. In fact, D O = 0 and the linearity holds.
For /i, /2 € K(G)(D,//1)(x)=XsRU, (ΛΛ) = X (#?-i,/i ΛJ-i /Ί) - (D/iX*)/,(*)

Jffι(x)(Df2)(x). Taking K = £(s), we see that D is an ί2-derivation of Ω(G)
denned over k(s). If / € Ω(G), a € G, Z is a field of definition for G and /
over which a, s and Xs are rational, and x is generic for G over ϋf, we have
(R*Df)(x) = (Zy/aa) = XΛ*_ lχα/= XΛ*_ljrΛ / = (DΛ*/)(*). Thus D is invar-
iant. If ϋι is a field of definition for G over which 5 and Xs are rational,
and x is generic for G over HΓ, we have DJ = X/ζ*Llx/ for / € ϋί(G) and
therefore A = ΛiΛ*;^. By the invariance of D we have D« = DxR*^is = X
R* ixR*-ιs = X, and in paticular (Dξt)(s) = Xs, .

Since an invariant ίl-derivation of ί2(G) is determined by its local com-
ponent at one point of G, the uniqueness is clear. q. e. d.

In the following we shall denote by Dx the element of g which is dete-
rmined by X as described in this lemma.

Let D € g, then dι(x)D is in g for any * € G. Let F be an aίϊine variety
in which x has a representative, then

And we have that dι(x)D is defined over &(#) if D is defined over &. Further
we have

LEMMN 2. Let H be a connected algebraic subgroup of G with the Lie
algebra ϊ). Then for any h ζ H, dι{h) maps \) into itself.

PROOF. Let D € ϊj let k be a field of definition for G, H and Z) over
which h is rational let m be the maximal ideal of the local ring of a generic
point over k on H. Then for / € m Π k(G), L\f is in m f] k(G) and therefore
DLfJ is in m Π k{G)y since D € ί). So we have ' Z£., Z)Z*/€ m Π Λ(G), i.e.
dι(x)D is in ί). q.e.d.

Let Dι Dn be a base of g(, k\ k being a field of definition for G,

then for any generic point #.over k on G we may express• dι(x)Dt = ^ ] " :7ft
D ,̂ where yJt is in ίl. Put Di ξό = χtj(ξ) and dt{x)Dι ξ5 = χ/f), then χi4ff)
is in Mf) and Xj(ξ) is in k(x)(ζ) Since A, —., ft» is a base of g, a family
of vectors (%u(£), . . . . , Xιdζ))9 . .. ,(χm(f), ...... χ»^(f)) are linearly independent

over O. Therefore χ}(ξ) = 2 ί l i ^ f χ^(f) implies that γ t j is an element γί/^)

of &(*). If we denote by Ad(x) the matrix (yij(x)\ we have that x-+Ad(x) is
a rational mapping Arf of G into gί(w, Ω) defined over k. For independent
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generic points x and y over k on G, we have dt{x)dι(y) = d/(#y), so Ad(x)Ad(y)
And dι{x~ι) being the inverse of <&(#), we have that Arf(#) is in

Thus Ad is everywhere defined on G and the locus of Ad{x) over
& on GL(n, ί i) is a connected algebraic subgroup of G£(w, ί2) which is denoted
by Ad(G) (cf. proposition 2 of [1J p. 82). So #->Ad(>r) is a rational homom-
orphism of G onto Ad{G) defined over k.

Now for this rational homomorphism x-+Ad(x) of G onto Ad(G), we have
the natural homomorphism ad of g onto the Lie algebra of Ad{G). Then we
may suppose that ad($) is contained in QΪ(n, ίl) and that ad (g) is a subal-
gebra of the Lie algebra of all endomorphisms of the vector space g over ίl.

Let kf be another field of definition for G and let D]} D'Λ be a base
of g( >#)• Let Ad' and ad' be the representation of G and its differential
which are defined as described above with respect to k' and D\, D'n.
Then if K is the compositum of k and k'y there exists a matrix S = (sί7 ) in

GL{n,K) such that A = 2 ^ ^ ^ W e h a v e Ad\x) = S -Aflf(Λr) S ' 1 for any
* € G. Let D be an element of g defined over # . Then from the definition
and (3) we have that Φ(ad(D)) = - ( Λ o ) and Φ{ad\D)) = -(Λ' o ), where ΛfJ

= (D7./f))(^) and A;, = (D7,',(f))W. It is easily seen that Φ(ad'(D)) =• S
Φ(ad(D)) S'1.

Then if we identify Ad(x) with ^(jtr) and «i/(̂ r) with the endomorphism

of the vector space g over ί l such that Dt -> 2 Γi ^ £ A?> w e have a linear

representation of G and its differential which are independent of the choice
of a field k of definition for G and a base Dh , Dn of Q( , A?). We shall
call A*i and *&/ the adjoint representation of G and g, respectively. Then
we have

PROPOSITION 1. Let G be a connected algebraic group \ let x-+Ad(x) be
the adjoint representation of G. Then for any D, Df € g we have ad(D) D' =

PROOF. Let k be a field of definition for G and Z); let Dlf , Dn be
a base of g(, k) let # be a generic point over k on G. Then we have

(5) Ad{x) Di = 2 l

where 7.M(ΛΓ) is in k(x). Let f,, , ξy be coordinate functions of G relative
to an affine variety in which the unit element e has a representative, and
put Dξj = χ^fλ Λff - χc/f) and

(6) Λ.^ίDyi/RXβ).

Then from (3) and the above remark it follows that

ad(D)Di = - 2 L Λ ^ A,

and therefore
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(7) ad(D)Dι ξj - - 2 - 1 , Λι. XιAξ)

On the other hand

(8) [A Di] ξ, = 2 j B l &Xi&)ffi» X»(ξ) - oX5{ζ)ldξfl XιP<ξ)}.

So it is sufficient to show that these two functions (7) and (8) have the same
value at e. From (5) we have

Applying L*9 we have

so at ?, we have

Applying the ^-derivation of &(#) induced by D, we have

Since Yt/tf) is in the specialization ring of £ in &;#) and ji/e) = δi, , putting
Λ: = ,̂ we see that the functions (7) and (8.) have the same value at e (cf. (2)
and (6)). q.e.d.

2. In this section we assume that the characterestic of the universal
domain is 0. We first prove the proposition which affords the definition of
replica.

PROPOSITION 2. Let H\ aud H2 be connected algebraic subgroups of G whose
Lie algebras are ty and i)2 let Ho be the component of Hi Π Hz containing the
unit element e. Then we have ίh f] fe = ίh ivhere t)0 is the Lie algebra of Ho.

PROOF. HO being an algebraic subgroup of Hi and Hλ, clearly bG a ίh Π ίv
Let D be any element of ί)7 Π fyj We shall show that D is in \)0. Let k

be a field of definition for G, Ho, Hλ, H, and D; let x be a generic point over
k on G let V be an affine variety in which e has a representative, then Hi
also has a representative in V. Let s$be the ideal in k[X] determined by F ;
let s$i be those for Hi, then the set of those points of G whose represen' atives
in V are zeros of any polynomials in 2ί = ^ + $ 2 is the set of those points of
Hi Π Hz which have representatives in V. Let Co be the set of all those P(X)
in k[X], for which there exists a polynomial L(X) in k[X] such that L(h0) Φ 0
and L(X)P(X) € 3ϊ, where h0 is a generic point over k on H{). Then by the
lemma 5 of [5] F-III3> Co is a ^-primary ideal in A[X]. Let hi be a generic
point over k on Hi \ let (?£ be the specialization ring of h% in k{x) let me be
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the maximal ideal in Qt. Then we have rm = vΊSί|rζ?ι, where %μ is the set
of those elements P{x) of k[x] for some P(X) € %. We shall denote by the
same D the ^-derivation of k(x) induced by D. Then, since D is everywhere
finite and in particular D Qo cz ζ)0, for /} to be contained in ϊfo, it is sufϊicent
thatD s-Pϋ|cc: nι0. Take any element P(x) of %\x, then DP(ΛΓ) € ζ?o, so we may
express DP(x) - FΊ(x)/F^(x) for some Fi(X), F*(X) € A M such that F A ) * 0.
Let P(X) be an element of k[X\ which has a specialization P(ΛΓ) over (X) ->(#).
Let r be the minimal positive integer such that P(X)r 6 Do, then there exists
Z(X) € AΓ-Ή such that L(h0) Φ 0 and P(X)rL(X) € 9ϊ, and we may write

PκXfL{X) - ΛC*) + ACXO,

where some Pι(X) € ^t, therefore we have

P(xYL(x) - ΛCΛΓ) + P,(x).

Applying D on this relation, we have

rP{xf-χDP[x)L(x) Λ- P(x)rDL{x) = £>Pj(*j + /)P^(Λ;), i. e.

rP(x)r -1L(x)F1(x)/F2{x) = DPJ(ΛΓ) + DP2W - P(x)rDL(x).

Since /) is in ί)ι Π \>, DPi(x) is in nu (i = 1, 2), and therefore we may write
DP.(ΛΓ) = P'lx)lP'}Xx) for some P^X) € s-βt, P/XX) € Λ[ΛΓ] such that P['(ho) Φ 0,
since DPi(x) is in ^ 0 So, /)/,(#) being in Qo? in the relation

r P{xr-χL\x)F1(x)lF^x) - L{x){DPM + Z>Λ(*)} - L{x)P{xYDL{x),
the right hand side may be expressed as Λ(x)/B(x) for some A(X) € Mand
B{X) e k[X] such 5(/ίυ) Φ 0. Then we have

r P(xY^LKx)B(x)F1(x) - A(x)F*(x),

and, x being generic for £ over k, we have

r P(Xy"ιL\X)B(X)FL(X) = A(X)F2(X) + P0(X),

where Po(X) is some element of s$. Since β̂ is contained in %, the right hand
side is contained in % and therefore r PiXf'Ψ^X) is in Co. But r I\XJ"1 $
Do, so we have that Fi(X) is in S|V Thus we have shown that D is in ί)0.

q.e. d.

Now we have two corollaries and the first as follows

COROLLARY 1. Let be a connected algebraic gropu For any element D of the
Lie algebra of G> there exists the smallest connected algebraic subgroup of
G whose Lie algebra contains D.

PROOF. Let ϊ)ί be the family of connected algebraic subgroups of G whose
Lie algebra contains D then, as W is not empty, there exists an element H
of 9JΪ whose dimension is > 0 and the minimal in 9)?. Take any Ή! € 9DΪ, and
let (H Π H\ be the component of H (Ί H! containing e, then (H Γt EΓ)n £ Ho

By the proposition 2, the Lie algebra of (H Π £Γ)o contains D, so (H Π If\
€ Ώΐ and dim (H f] H')o > dim H. Thus we have that (H f] H) = H and H
is contained in H.

q.e. d.
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Let υs denote by Go the smallest connected algebraic subgroup H of G
in the corollary and by QD the Lie algebra of Go. We call any element of c\n
replica of D. This is an extension of the definition 2 of [1] p. 180.

Let H be a connected algebraic subgroup of G with Lie algebra t) let
H' be the connected algebraic subgroup of G generated by GD for all D € i)
let f)' be the Lie algebra of H. Then H is contained in H, since each Go
is contained in H. But, as t) is generated by QD for all £> € f), I)' contains ί),
therefore dim H = dim f) <; dim t)' = dim IT, and H~H. Thus we have proved
that H is the connected algebraic subgroup of G generated by G,, for all
D € f), and we have another corollary of the proposition 2

COROLLARY 2. Let Hγ and H> be connected algebraic subgroups of G, let
\)L and \h be the Lie algebras of H\ ani H^ respectively. Then if ίh contains
{)>, Hi contains H.

The next proposition shows the relation between GD and rational hom-
omorphism

PROPOSITION 3. Let G and G be connected algebraic groups; let p be a

rational homomorphism of G onto G. Then for any D of % we have p(Gn) =

Ga>D

PROOF. AS dpD is in the Lie algebra dp QD of the algebraic subgroup

p{GD) of G, G<ipD is contained in ρiGD).

We shall show that GilPΌ contains p(Gn). Let Hbe the algebraic subgroup
of G consisting of those z such that p(z) is in G\Pn and Hu be the component
of H containing the unit element e of G. Let k be a field of definition for
p, D, and all these algebraic groups concerned let x and h be generic points

over k on G and Ho, then y = ρ(x) and p(h) are those on G and Gd?D. Let V
and V be afiine varieties in which the unit elements of G and G have their
representatives. We shall denote by the same p the rational mapping of V
into V induced by p. Let *$ and ψo be the ideals in k[X] determined by x and
h let ψ0 be the ideal in k[Y] determined by ρ{h). Let (S be the subset of k[X]
consis ing of those P(X) for which there exists P0(X) € k[X] such that Po(x)

Φ 0 and P(X)/PQ(X) € Pow, where Ψ^j is the ideal in k[y] consisting of those

F(y) for some F\Y) € s ô let ?ί be the ideal in k[X] generated by φ and g.
Then for a point z of G which has a representative in F, 2 is in H if

and only if 2 is a zero of %. In fact; suppose that z is in H, then P(<ε) = 0

for P € $. If P € S, we have #U) - P(x)/P0(x) € &(*) such that R(x) e %ιv.
Since p is everywhere defined on G and therefore R(x) is in the specialization
ring of z in k(x), we have another expression R(x) = P'(x)/P'0(x) where i>',(z) Φ 0,
if necessary. Since p(z) is a specialization of p(h) over ,̂ we have P'(z) = 0

and therefore P{z) — 0. Conversely, suppose that 2 is a zero of 91. For F € ^
there exist P(X) and P0(X) in k[X] such that F(^) •=• P(x)lPυ(x) and Pc(z) Φ 0,
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since My) is in the specialization ring of z in k(x). Then z being a speciali-
zation of x over k, we have P(X) € 6, and P(z) = 0. Thus F^(z)) = 0 and
p(z) is a specialization of p{h) over £.

Let O be the ideal in k[X\ consisting of those P(X) for which there exists
L{X) e k[X] such that L(h) Φ 0 and L{X)P(X) € % then C is s-)Vprimary. Let
m be the maximal ideal of the specialization ring of p(h) in k(y), We shall
denote by the same D and dpD the ^-derivations of k(x) and k(y) induced by
D and dpD, respectively. Then, from the definition of dp, we have Dm =
dpDm cz in, since r//>D is in the Lie algebra of G«PD. NOW if P(X) € ί>, we

have />P(#) - 0 and if P(X") € 6, we have F(F) € $T> and P0(X) € k[X] such
that Po(*) Φ 0 and F(y) = P(x)/P0(x). So we have

Z) />(*) = (£>Pυ(*)) F(y) + Po(#) DMy).

Since /} is finite at h, D P0(x) is in the specialization ring of h in k(x). On
the other hand we have DF(y) = DF{p{x)) = ί/pD FW = F^/F^y) tor some
Fi(Γ) € s£o and F2(F) € &[Ύ] such that F2(/σ(«) Φ 0. And p being defined at h,
F(y) and Fi(y) is in the specialization ring of h in k(x). Thus we may express
DP(x) = AOtr)/£(#) for some Λ(X) € 31 and B(X) € A[X] such tha 1- BQi) Φ 0. D
being finite at /z, we see that this is true for any P(x) 6 9ί. So the argument
which has run in the proof of the proposition 2 shows that D is in the Lie
algebra of Ho. Thus GD is in H, and p{GD) is contained in G,ipD.

q.e.d.

We have an application of this proposition as follows

PROPOSITION 4. Let p be a rational homomorphism of a connected algebraic

group G onto another G; let H be an algebraic subgroup of G with the Lie

algebra \). Then the set of those elements y of G such that p(y) is in H is an

algebraic subgroup H of G with the Lie algebra consisting of those elements D

of g such that dpD is in f).

PROOF. It is known that such a set H is algebraic. We may suppose

that H and H are connected. Let f)' be the set of those D of 9 such that dpD

€ t) let § be the Lie algebra of H. Since ρ(H) = H, we have dp t) = ί) and

therefore ί) is contained in ίY. Conversely for any D of f)r we have p(Gn) =

GΛPD by the proposition 3. As Ή is algebraic, i/contains GapD Thus we have
that GD is contained in H and D is in ί).

q. e d.

From this proposition follows the next corollary

COROLLARY. Let G be a connected algebraic group with the Lie algebra g
let § be a subspace of a. Then the set H of those elements y of G such that
Ad(y) maps § into itself is an algebraic subgroup of G with the Lie algebra
consitsing of those elements D of g such that [D, D'\ is in § for any D' € §,
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PROOF. Let H be the set of Ad(y) such that Ad(y)Za$. Then it is

known that H is algebraic, and therefore that H is algebraic. We may sup-

pose that H is contained in GL(n, ίl) where n is the dimension of G. By the

example of §10 of [1], the Lie algebra ί) of Ή is the set of those X of gl(w,

ίl) such that X<$cz§. By the proposition 4 the Lie algebra ί) of H is the set

of those D of g such that ad(D) €¥. So, for D of fl, D is in ϊ) if and only if
ad (D)§ c δ i . e . [D, §] c: 5 (cf. Proposition 1).

q.e.d.

3. In this section we assume that the characterestic of the universal
domain is 0. Then we have

PROPOSITION 5. Let U be a subυariety of a connected algebraic group G
which contains the unit element £ let k be a field of definition for G and U.
Then the Lie algebra of the connected algebraic subgroup H of G generated by
U is the minimal subspace ΐ) of g such that (i) for any y € U, Ad(y) maps ί) into
itself (\\)for any overfield k'of k, generic point u overk' on U and k'-deήυation
X of #00, Dx is in f).

PROOF. Evidently the intersection of those subspaces of g with these
properties also has these properties too, so there exists the unique minimal
subspace t) of g.By the lemma 1 and 2 the Lie algebra of H satisfies these
two conditions, and therefore ϊ) is contained in the Lie algebra of H.

We shall show the converse. Let D be an element of the Lie algebra of
H, defined over k let uh — , ur be independent generic points over k on U
such that product h = uλ — u r is a generic point over k on H\ let ξu ,
ξπ be coordinate functions of G relative to an affine variety V in which e
has a representative let X be the ^-derivation of k(h) induced by D put

K = k(uι, , ur) and K% = k(uh ...., w, ....,«,), where Λ means that the
letter under Λ is to be omitted. Then there exists a ^-derivation-of K which
is an extension of X, and which we shall denote by the same X. Let Xi be
the Kt-derivation of K such that Xi utj = X uih where utj is the j-th coord-
inate of the representative of u, ΊnV(l^iSrflSJS N). In fact there exists
such XI, since Kt and k(u,) are linearly disjoint over k. Then we have X =

2 i - i X i P u t Sι = e> Sί = ^p<i Upt t ι ~ ΐ l i l Ug a n d t r = e W S ^ S r), t h e n
we have

(9) D = 2 [ β l Ad(sf) D^.

In fact it is suίϊicent to prove that the eqaulity of these two invariant
derivations holds at h, i. e. putting/}^ = Xt(£) and Ad(Sί)Dχrξf = XtΊ(ξ\ we

have to show that Xj(h) = 2 ι l i ^ ' J W W e h a v e
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On the other hand we have

where Xniξ) = Dχ.ξι}. So, by the invariance of

By the lemma 1, Xiq(u,) = X «ί(ϊ - Jf«ί(,. Thus we have proved (9).
For yhy2 € U, we have Ad(y]y2) = Λ^Oj)i4.^2) and therefore Ac?

c: ί). Thus, from (i) and (ii) it follows that D is in ί).
q. e. d.

Now we prove the main theorem;

THEOREM. Let G be a connected algebraic group ivith the Lie algebra g
let Hi be connected algebraic subgroups of G ivith the \Lie algebras f)t , where
i runs through a set I of indecies let f) be the subalgebra of α generated by all
ί»ί s; let H be the connected algebraic subgroup of G generated by all H] s.
Then the Lie algebra of H is f).

PROOF. Suppose that / is a finite set, say •/= {1, . . . . , r } . Lat k be a
field of definition for HΊ, , H; and G let hh , hr be independent generic
points over k on Hh , Hrf respectively let U be the locus of the product
u~hγ hr over k on G, then H is the connected algebraic subgroup of G
generated by U. Let ί)' be the Lie algebra of H. Since H contains Hi, so ()'
contains % and therefore t)' contains ί).

To prove the converse we have to show that t) satisfies the two condit-
ions of the proposition 5.

As for (i) Let H be the set of those elements x of G such that Ad(x)

maps f) into itself, then H is an algebraic group (cf. the corollary of the

proposition 4). Let Ho be the component of H containing e, then, by the

same corollary the Lie algebra §o of Ho is the subalgebra of g consisting of

those D of gsuch that [D, f>] cz t), so all Ks are in f>0, and by the corollary 2

of the proposition 2, all ϋζs are in Hn and therefore H is contained in Ho.

Thus we proved that the condition (i) is satisfied.
As for (ii) let k' be an overfield of k let u be a generic point over k'

on U; let X be any ^'-derivation of k'(u). Lat h[, . . . . , h'r be independent
generic points over &'on Hλ, . . . . , Hr, respectively, then u' = h\... .h'r is a
generic point over k' on £7. So we have a ^'-isomorphism of #(#') which
transforms u into w'. Let X' be the ^'-derivation of k'(u') induced by the X.
As in the proof of the proposition 5 we extend X into K and define the Kt-
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derivat ion X\ of K, w h e r e K =. k'(h[...., tir) and Kt = k\h[, ,h'if . . . /*;),

and we have Dx> — 2 t = i -A^(s0 £**'„ where sf is a product of some finite
points of U. From the definition Dx>t is in ϊ)<, and now that the condition
(i) has been proved, we have Dχ> € ί). But from the definition the local co-
mponents of Dx and Zλr at u' are same, and therefore we have Dx = D r .
Thus the condition (ii) has been proved.

In the infinite case, for any finite subset E of /, let \)E be the subalgebra
of Q generated by all f)» for i € E\ let /fr; be the connected algebraic subgroup
of G with the Lie algebra ^ let ί)^ be such one of those \)E that dim \)Eo is
the maximal. Then if E{) is a subset of E, have ϊ)/̂  = ϊî . So we have

q. e.d.

The next corollary gives a characterization of algebraic subalgebra of Q,
which is a generalization of the proposition 2 of [l]p. 181.

COROLLARY. Let cj 60 ί/̂  Lie algebra of a conmcted algebraic group
teί ί) be a subalgebra of g. T/z^^ ί) /s algebraic if and only if for D € fy α ^
replica of D is in fy.

PROOF. The necessity is trivial from the definition of replica. Conversely,
5 being generated by fes for D € ί), ϊj is algebraic (cf. the theorem).

q.e.d.

REFERENCES

[1] C CHEVALLEY, Theorie des groupes de Lie II. Actualites Sci. et Industr. 1152,
Hermann, Paris. 1951.

[2] S. NAKANO, On inivarant differential forms on group varieties. Journ. Math.
Soc. Japan, 2 (1950-51), 216-227.

[3] M. ROSENTJCHT, A note of derivations and differentials on algebraic varieties.
Portugaliae Math. 16(1957), 44-55.

[41 M. ROSENTJCHT, Some basic theorems of algebraic groups, Amer. Journ. Math.
78(1956), 401-443.

[5] A. WETL, Foundations of algebraic geometry. Amer. Math. Soc. Colloqu urn
Pub. New York 1946.

MATHEMATICAL INSTITUTE,TOHOKU UNIVERSITY.




