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1. Introduction. The main purpose of the present paper is to prove
the theorems on the generalized Walsh Fourier series which we announced
in the previous paper [11].

Let {a{ή)} be a sequence of integers not less than 2, and put

A(ή) = tf(OMl).... a(n - 1), A( - n) = 1/A(n)

empty product being considered to be equal to 1. *>
The generalized Rademacher functions φn(t) (n = 0,1,2, ) are

defined as

φn(t) = exp (2mk/a(n)) (i = */ - 1)

for t belonging to the left-semiclosed intervals

(1.1) [kA(-n-l), (* + l) A ( - » - D ) , k = 0,1,2, .. ..,A(n + 1) - 1

and φnit + 1) = φn{t) for all t.

An elementary consideration shows that these functions φn(t) (n = 0,1,2
) are orthonormal over the interval (0,1), or

, ,.v -r ... ,. _ f0 (m Φ w, say, e.g.m> ri)
( 1 (Wί = 71).

It is worth observing that this orthogonality is a consequence of the following
fact:

φm(t) has mean 0 over each of the intervals (1.1) where φn(t) takes a
constant value.

Now we can define the generalized Walsh functions ψn(f) (n = 0,1,2 )
as follows:

provided that n is expressed in the form

(1.2) Λ = β(l)A(Λ(l)) + a(2)A(n(2)) + •.
where

(1.3) w(l) > n{2) > . . . . > w(f) > 0
0<a(j)<oc(j) ί/=l,2, ..../).

It is easily seen from the above remark on φn(f) that the functions
thus defined form an orthonormal system over the unit interval. Moreover,
this system is complete, as we shall see in §3.

If a{ή) = 2 (Λ = 0,1,2,—), our functions reduce to those of Walsh

1) And similarly, we*'Consider that the empty sum is equal to 0.
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himself, and the case a{n) = a (n = 0,1,2, ) was studied by H. E. Chres-
tenson [1]. The general definition seems to have been given by J. J. Price (cf.
[8]). We shall assume, in the latter half of §3 aαd thereafter, unless the
contrary is stated exolicitly, that the sequence (a(n)} is bounded, say a{n) <; a
(Λ = 0,1,2,....).

In § 2 we consider some properties of the "A-group", whose characters
are essentially the generalized Walsh functions defined above. The first
consideration in this direction was done by N. J. Fine [2] who defined the
"dyadic group" in regard to the case of the "proper" Walsh functions, in
which a(n) = 2 (n = 0,1,2, ).

§ 3 is dedicated to the proof of the completeness of our system {ψ} and
a concise treatise of Haar functions, generalized a little more than in our
preceding note [10],

In §4 we generalize an inequality of R.E.A. C. Paley [7], which is
fundamental to the Lp(p > 1) theory of Walsh Fourier series, and then apply
it to prove the mean convergence of Generalized Walsh Fourier series.

§ 5 is a generalization of §4, done in such a way as I.I. Hirschman [6]
generalized Paley's results.

In §6 we give two examples which show that the boundedness of the
sequence {cc(n)} is indispensable to the truth of Paley's inequality.

The final section deals with summability factors and convergence factors.
The author wishes to express his hearty gratitude to Professor G. Sunouchi

for his encouragement and many kind advices. The author also thanks Dr.
S. Yano, who gave valuable suggestions.

2. The A-group. Let gn [n = 0,1,2, ) be cyclic groups of orders a(n),
which are understood to be the remainder groups of the division modulo cc(n),
respectively. Let G be their direct product, so that its elements are sequences

/ = {*»}, tnGgn.
Clearly, G is an Abelian group which is compact with respect to the

weak topology. The group operation in G is the termwise addition modulo
a(n), denoted by 4-, and the inverse element of t € G is denoted by — t.
We write simply T — zΓforT-j- (—~ύ).

To every element t € G corresponds a number t € [0,1] defined by

t = Mf) = 2
The inverse mapping /-&, of λ. is determined uniquely, except for those fs €
[0,1] which are "A-rationals" (by which we mean those £'s of the form
kA( — n)). It is easily seen that the group character (which is a continuous
representation having absolute value 1) of G and the generalized Walsh
functions pass into one another by these mappings, except for at most a
countable set of arguments. We abbreviate Mμ{t) -j- μ{u)) resp. \{μ{t) ±.μ{u))
into t + u resp. t—u, provided that they are determined uniquely. These
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yield for every t, u € ΓO, 1]

(2. 1) ψn(t + U) = Ψn(t)ψn(u), Ψn(t - ύ) = ψn(t)ψn(u)

except for u's belonging to a certain countable set.
We have following propositions which are easily verified:

LEMMA 1. Let 0 ^ ί < l , 0 ^ # < l and the A-expansion of u be 0 in the
first n places in > 0), then we have

(2.2) t - (a{n) -ΐ)u^t + u^t + u

(2.3) t-u StJLuSt- (a(ή) - 1) u.

LEMMA 2. Let 0 ^ ί < l , 0 g w < l #wi their A-expansion coincide in the
first n places, n ^ 0, then we have

(2.4) min(t — w,u — t) > |ί -

If the sequence {ct(ri)} is bounded, say 2 <Ξ ct(ri) ^ α, we have, as a
corollary of Lemma 1:

LEMMA 3. Let f(t) € £(0,1),2) then, for almost every t Ξ (0,1) we have

/i = f \Λt + u)
0

(as #-> + 0).

/2 = f \f(t-u)-f(t)\du = o(x)
0

PROOF. We have only to prove the first half. Putting

we see by Lemma 1, that E c= [t - (a — l)x, t — x]. Since the transformation
Tt: « -> ί + # is measure-preserving, we have

i = /!/(«) -ΛOI Λ S J ϊf(t + «) -ΛOIΛ
^ 0

+ J \f(t + «) ~/ωi ̂  « o(*) + o00 = O(ΛΓ) a.e.

3. We have already seen that the functions Ψn(t), n = 0,1,2, form
an orthonormal system over the unit interval.

Let/(ί) € £(0,1) and write

where cv is given by

2) We consider, here and in the sequel, only those functions which have
period 1.
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(3.2) cv = J f(u) Φ»(u) du.
0

The w-th partial sum sn(t) of (3.1) is then expressed->s
n-l n-l z 1

\ό. όj Sn\T.) — > CvΎv\t) — ^^ YίK^J I J\U) Y^vKUjtlU

i/»0 y=0 Q

n-lJ1 n-l

o - o

= J
o "-0

0

where A»C0 is the Dirichlet Kernel :
n-l

(3.4) ΛC0=

Since the values assumed by φn(t) are either 1 or one of the a(n)-th roots
of 1, we see that

Jm0 I 0 if φ«CO Φ 1.

On the other hand, we have
A(n + λ)-l Λ(n)-Ί A(n)-l

Λi(n+1>(*)= 2 ^ α ) = 2 Σ ΨiΛ(n)+V(t)
(3.6) "-° / = ϋ "-ϋ

= 2 ΦiSf) 2 ^"^ = ^Aw(t) 2
J=»0 v=0 i = 0

By induction, we can infer from (3.5) and (3.6) that

(3.7) / W ] 0 Λ(-n)Sί<l

Substituting this into (3.3), we obtain

(3.8) 5^(w)α) = A(Λ) ί f(u) du,

where /(w, ί) is the interval of the form fkA( — n), (k + 1)A( — ri)) containing
t. Thus we have proved the following proposition:

THEOREM K. At every point where f(t) is equal to the derivative of its
indefinite integral, we have

(3.9)
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Moreover, by the well-known maximal theorems of Hardy and Littlewood (cf e.
g. [14 pp. 244-245]) we have^

f &uv\sA{nίt)\pdt^BP J \f(t)\*>dt (P>1);
0 0

f
(3.10)

f sup I sAW(t) \dtSB f W) ! log+ WO \dt + B;

f sup|s^»,ef)ΓΛ < Br (j l/ΌOI dtj (0 < r < 1)
0 ϋ

sup \sA{n)(t)\ <; ess sup \f(t)\.
t
p

n t

provided that the right-hand side exists.

Now it is evident that our system {ψ} is complete in. £(Ό, 1): for, if all
of the Fourier coefficients of a function fit) € Z,(0,1) are equal to 0, f{t) has
its A(n)-th partial sums vanishing identically, so that does the limit of these
partial sums, which is equal to f(t) itself almost everwhere, vanish identically.

Let us pass to the study of generalized Haar functions: put

φι(f) = φ1}0(t) = φo(t)

and generally

m _ (Φii(O ( ( + ) ̂  t < (m + 1) A( -_ (Φi-i(O (rnA( - / +
- 1 0 elsewhere
0 , l , . . . . , A ( / - l ) - l ;

- <po(t)

= 0,1,
/ — 1,2, . . . . ,

- 1) - 1
/

and we rearrange {Xϋ)

m} into a sequence {%*} (Λ = 0,1,2, ) lexicographi-
cally with respect to /, m, j , so that Xn(n ^ l)is the X[j)

m where n is expressed
in the form

(3. ID » = 2 ( α ( λ - u - ι ) A ( x - 1 } - m (^α^ - D -1) + i
λ = l

= A(l - 1) - »ιCα(/ - 1) - 1) +j- 1

We call the functions Xn (or %p}J the generalized Haar functions. The remark
given in § 1 subsists here too, and the system {χn} is orthonormal over the
unit interval. Moreover, it is verified without difficulty that (a proof is given
in a moment) this system is also complete in Z(0,1). For this system, the

3) We use, here and in the sequel, the letter B with or without subscripts
to denote a constant (which need not the same in different contexts) depending
only on parameters disposed explicitly.
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following theorem is valid:

THEOREM H. Let f(t) € L(0,1) and the sequence {a(n)} be bounded, say
a(n) <; a. Then the generalized Haar Fourier series of f(t) converges almost
everywhere to f(t). In particular, the series converges at every point of contiuuity
of f: the convergence is uniform in t € [a,b] c [0,1) or for all t, when f(t) is
known to be continuous in the designated place respectively.

PROOF. Let / be fixed and the intervals l(l — l,i,t) and 1(1,k,t) have
the same meaning as above. Then it is easy to see that

\A(l) - A(l - 1) u € /(/, k, t)J= J - A(l - 1)
I 0

u € 1(1 - 1, i, t) - 1(1, k, t)
elsewhere

(AC/)
(0(0

2 X*

and consequently

(3.12) iε*(i-i)-(Λ+i)

according to
uζl(l,k,t) with
u€I(l-l,i,t) with »2 + l S ^ A ( / - l ) - l
ortherwise respectively.

In particular, taking m = A(/ — 1) — 1 we have

10 elsewhere
of which we made use above.

The formulas (3.12) and (3.13) together show that

K C+ *Λ - J e i t h e Γ KΛW ^' W ) = D J ( l ) ( ί ~ ^
(or KAU-I) (t, u) = L)̂ (i_i) (ί — u).

This facts and a consideration similar to what led us to Theorem K yield,
n and l,m,j being related by (3.11)

(3.14) f(u)Kn(t,u)du \f(u)\ \Kn(t,u)\du

\f(u)\

Xϊ?m(u) X&iμ) du

/
A(X) j \f(u) \du+j

/(λ,»c,t)

r A(/-1)J («) I du
7(1-1,TO, )

i r +

Λ>U 2h J
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Thus we have, by a maximal theorem of Hardy and Littlewood,

I sup f f(u)Kn{t,u)du V dt S Br,« (f W)\ dtX (0 < r< 1),
0 ' 0 0

from which our first assertion follows.
In order to see the last half of the theorem, we take f(u) = 1 in (3.14)

obtaining

J
0

As a moment's inspection of Kn(x, t) shows that this is a quasi-positive
kernel, our theorem is now established completely.

4. We are now in a position to prove a generalization of the funda-
mental inequality of Paley. It should be remembered that we have been
assuming the boundedness of {a(n)}, say α(w)<iα:. Paley's result reads as
follows:

THEORFM P. Let ψn(t) (n = 0,1,2, . . . .) be the "proper" Walsh functions

corresponding to the sequence (2,2,2, ) and let f(t) — 2 <VΨΊΌO ^ £p(0,1)

p > 1. Putting

fait) = 2 c&ti) (w = 0,1,2, . . . .)

/ '

This can be brought into our case "formally", that is, we can prove the
following proposition:

THEOREM P . Let ψn(t) (n - 0,1,2, )be the generalized Walsh functions

and let fit) ~~ 2 cuψv(t) € Lp(0,1), p > 1. Then, putting Aa(t) = 2 cvΨXt)

(n = 0,1,2, ) we have

f1 Γ1 / °° \p'2

Bp,cc\ \f(t)\pdt^ (\co\2+ y\\An,(t)\2) dt

\Bmaj \f(t)\pdt.
o

However, Theorem P' is not so effective in applications as Theorem P in
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the theory of "proper" Walsh functions a "finer" decomposition of Fourier
series would be needed, as we are going to see.

THEOREM 1. Let f(t) € Z3'(Ό, 1) (/> > 1), At) and p u t

» = 0,1,2 1 ! ) .

Then we have

(4.2)
' J ^ J

α ι n )" 1

dt>

PROOF. Clearly we may suppose that c0 = 0, and f(t) is real-valued
because if this case is proved, the general case then follows by Minkowski's
inequality. Assuming first p is an even integer 2 k, we prove Theorem 1 and
Theorem P' together in three steps, of which the second is trivial:

(4.3) Γ W)\pdtSBP,

of
1 / ~ \i>/2 r / °° α ι n ) 1

Λ1 - β(»)- l / 2 z.1

(4-5) ( 2 Σ lδ»,X«l2) Λ S ΰ , , J IΛOI'A

We begin with the proof of C4.3) , write S»(t) for sAw(t), then Sn(t) is real-
valued and

S»+1(ί) = Sn(ί) + Δn(ί),

so that we have

0 S Sf+1 = (S. + Δn)2fc - S* +

Subtracting S* and integrating over the unit interval we see
1 2Jc

I] (s%+1 -s?)dt\= 2 ( ?

(4.6)

(observe that by the remark of §1, I S*Δn dt = 0j. A trivial computation
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including Holder's inequality and

ct bx~e g max(β, b) S a + b (Ό g a, 0 <; b, 0 < S < 1)

shows that the right-hand side does not exceed

2fc

Summing up (4.6) for n = 0,1, — i V we have

o n ~ ϋ

•(/«..*Γ(/(i«)"*)'

where the first inequality of (3.10) was used. Consequently we have

J Sf+1
0 0 W = 0 0 W = 2

An application of Fatou's lemma yields (4.3).
For the proof of (4.5) we rearrange {δn,j} lexicographically with respect

to n, j into a sequence {dm} m = 0,1,2, so that c?0 = δo,i, d0 = δo,2, ,
*A(o)-i = δi.i -We need two lemmas :

LEMMA 4. Let mΦ n, max (m, n) > max (n(l), n(k - 1))3)

Then

12 I Ac*i)(ί)12 AW Stf) Λ = 0.J I Ao
0

PROOF. Considering the complex conjugate if necessary, we may assume

4) Here the n(i)'$ are not the "exponents" of A-expansion. Since no confusion
will arise, we may use this notation.
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that m> n. Write

There are two posibilities, in both of which the assertion is easily inferred

from the remark of § 1.
(i) If λ > Z then the function φL

λ has mean 0 over each of the intervals
[μA( - λ), (μ + 1) A( - λ)) μ = 0,1, . . . . , A(λ) - 1, where the product of the
rest

is a constant.
(ϋ) If λ = / and / > j, the same is said about φι

λ~
j and

LEMMA 5. For q>2, we have
1 1

/ °° Γ 1i<i / C v/β
(4.7) ( 2 \dmVdt\ S ( l/ΪOIβ*J

PROOF. (4.7) holds for # = 2, when it reduces to the Parseval relation.
It holds also for q — oo, since tfw(i) being a δn.XO»

"(w) Φw (̂  — w) DAW (t — ύ) du
o

: I \f(u)I DAW it — u)du< ess sup \f(u)\

yields that sup |όζ»(β| ^ ess sup 1/(01 To obtain (4.7) for general q>2, we

have only to interpolate these extremal cases byfcmeans of the well-known
convexity theorem of M. Riesz.

Now let us return to the proof of (4.5): what we must prove is (p = 2k
is an evern integer)

Λ 1 co k rι

(4.5y I (2K(oi2) * s » M ι/roiΛ*

Put Λ(0 = 2 * ^ T h e n ' f o r N > n>
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F% =

(4.8)
= IΛI 2 + 2 » 2 J'» + 2 '

I ,ra=w+l

where Σ' means that the terms with / = m are omitted in the summation.
Take a pair of k — 1 non-negative integers w(l), , w(& — 1) with max (n(l),
. . . . , n{k-l)) = n. Multiplying both sides of (4.8) by | dliω \2.... | dΛ{Jc^ | 2

and integrating over the unit interval, we see by lemma 4 that

f |A(i)|2....

= J
iV r 1

so that we have
1

I ] Γ |rfn(1)l2....K(fc.i)|2|GU2*2i Γ lA

Letting the pair (w(l), , w(̂  — 1)) run over all lattice points in the (k — 1)
dimensional cube Q : max(w(l), n(k — 1)) = n <; iV — 1, we have

Γ1 ίN

1 \FNV[
dt,

" r'
or, a fortiori, we obtain

(4.9)

Now, summing up the inequalities

f ( Σ I A I 1 ) * - ί ( Σ

s i(f)(/^-Γ '"(/
*(0

irf-ιtι*+ f iΛ.i
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for m

:S2*

= 0,1,

( /
ι*.ι-

,N we

* + ί
have

C.

\o

WATARI

-1 \

(4.10) f (2 1*1*)**

f I*J"Λ + 2 ί
=0^ m-ljf

<4.9), (4.10) and Lemma 5 yield

dt/(Σi*!1)
0

^ 2fc I 1/12k dt + 2 M I FΛΓ

o u

0 0

An application of Holder's inequality shows

(4.11) Λi
r1 r

max
o

I

Since FN(t) is of the form s4(w)(ί) + 2 δΛj(O for some n and /, (/ S cc(n)
j=ι

— 1 S <x — 1) it is easily majorated by f(f) .
1

J \FN\2kdtfgBp,« Π \sκn)\
2kdt+^?J

0 0 J~l 0

Substituting this into (4.11) we have (4.5)', which was to be proved.
In order to prove Theorem P' and Theorem 1 for general p > 1, we

may argue as follows.
(4.1) and (4.2) have their equivalent forms which are convenient for

interpolation: that is
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(4.1)'
P,a

(4.2)' B
- /

1/001pdt for every θ

where rn(θ) are the "proper'' Rademacher functions. Observing that τ%θ) = 1
for every θ and n, (4.1)' and (4.2)' are easily deduced from (4.1) or (4.2)
respectively : while the opposite implication is a consequence of the Khintchine
inequality (integrating with respect to θ over the unit interval). Thus we
have (4.1)' and (4.2) for p even integers, and by interpolating between two
consequtive even integers, it is seen that they are also true for p > 2. The
case I<pfg2 is reduced, by the conjugacy argument, to the case 2<Ξ#
< oo, where q is the conjugate exponent of p. Thus (4.1)' and (4.2') hold
for p > 1 and so are (4.1) and (4.2).

Considering a special case in which each of the δ«j(f)'s consists of a
single term, we have the following corollary to Theorem 1:

n=o j=i

COROLLARY. Let p > 0, f(t) = 2 Σ c»,iΦiSf) Then we have

(4.12) £p,«J l/(ί)lpc?ί
0 " = υ / = x 0

In fact the first inequality follows directly from Theorem 1 and Holder's
inequality. The second is deduced from the first by observing

2 Σ ι< J J
0 0

0 0

L-P/3

where we may and do suppose that 0 < p < 3.
We now proceed to the proof of the "mean convergence".
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THEOREM 2. Let f(t) € Lp(0,1) (p > 1), f(t) - 2 c^(f) and

Cv Ψ*>(fy' Then we have

(4.13)

(4.14)

f \sn(t)\pdtSBp»f\sn(t)\pdtSBp»f \f(t)\»dt;

J \f(t) - sn(f)\pdt->0

PROOF. We have only to prove (4.13) and with an additional assumption
c0 = 0, for (4.14) follows from (4.13) by means of an approximation with
(generalized Walsh) polynomial^, and the case c0 Φ 0 is easily reduced to
that of cQ = 0.

Let N be given and write N = a(l)A(n(l)) + + a(r)A(n(r)). We have

= I f(u)DN{t-u)du^ f(u

and so

= f g(u) φ-^ (t-u).... φ$ρ (t-u) 2 ΨXt^-u) du
0

= J g(u)K(t-u)du,

where

and

As it is easily seen that, by Theorem 1, for a bounded "sequence"

/

oβ a(vϊ-i

(cf. [6]) we have

5) We shall say in the sequel simply "polynomial" instead of "generalized Walsh
polynomial".
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(4.15) f [ [ [f(t)\pdt,

0 " = u J = ί 0 0

where Snj(t); g) is a δnft) made regarding g(t), and we put

•χ _ fl f° r those (w,7) for which δΛ,, (/) has ^ ( 0 in common with
%s"" (0 otherwise.

But the left hand side of (4.15.) is equal to / \ss(f)\pdt, (4.13) is proved.

o

5. THEOREM 3. Let p >1, — 1/p < y < 1 — 1/p and suppose

ί

(i) B,,. γ Γ Wί) I' t» dt S f fl Co 12 + 2 " 2 I KSf I ) p / 2 ίpγ *

0

(ii) J
ϋ

(iii) J
o

This was proved, when cc(n) = 2 for all n, by I.I. Hirschman [6]. His
proof is applicable to our case, with a few slight modifications, the first of
wnich is the following 1

LEMMA 6. Let xn > 0, r > 0, 5 > 0 and let {wn} be a sequence of positive
numbers for which

Wnlwn.ι%q< 1 (n = 1,2, — )

/or S0»2£ # independent of n. Putting

we have

6) We wish to correct an erratum which took place in [11], On the right-hand
side of the inequality (ii) of Theorem 3, the weight W* should be inserted, as is
the case here.
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n=o n=0

PROOF. We have two cases:

(a) 0<r/sSl

(b) 1 < r/s.

The proof of the case (a) is very simple, indeed, since it is easily seen that

we have only to invert the order of summations:

* fc=0 7

The case (b) is less simple and may be proved*as follows.
Write

Then (5.1) would follow if we have proved that

for all non-negative sequence {Zn} such that 2 ^n(r""/} = l ^ u t w e h a v e

n=0

2 < / r »ίs/r s 2 q m l r = T

fc=0 fc=0 ^

so that [5: Theorem 275] yields (5.2).
PROOF OF THEOREM 3. We may assume that c0 = 0 and prove the theorem

with the weight tpy replaced by its "approximant" ωpy(t), where ω{f) is defined
by

ω(0) = 0, ω(t) = A( - ή) (A( - n)< t S A( - n + 1), n = 1,2, . . . . ) .

Write for y= 1,2, . . . . , Λ(Λ) - 1 ; Λ = 0,1,2, . . . .
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and
(? + ]) l(wΛ-l

gaM) -- A { - n) fjbnj 2 Ψv(O = A ( - ")/V.; φfa) D t(M)(f).

By (3.7). we have

(5.o) l ^ j ( ί ) l - , 0 A(-n)St<l,

so, for every ί Φ O , t h e summation

is finite. Let us put

ί v = 2 2 !/V' ' and S^=2

From (5.3) we have,, for A( - iV) S ί < A( - iV 4- 1),

and

Thus

- 2 A^(-»i) (

oβ

5 ^ A2)γ( - m) Rζt(A{ - m + 1) - A( - m))
m = l

-S (Λ - 1) 2 R)™ A 1 + ί ) Y( - /»)

and, by (5.3)

(5.5) »1ί)

= 2 ^"γ< -
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On. the other hand, the equality

μ»,
(]+ϊ)A(n)-i f*1 (i+l)4(α)-l

= f Λt)ΦAt)D.Hn)(t)dt
0

yields, for a fixed β satisfying γ < β < 1 — 1/p,
1

SA"W I \f(t)\pωpP(f)dt ( I ω
J \J
o o

0

where q is the conjugate exponent of p. Denoting the characteristic function
of the interval [0, A{ — n)) by χ(n, t), we have

\μn>j\
p j\}+py( — n) 5j Bp,Λ,y Ap(β~y^ (n) \ \f{t)\p ωpf*(t) χ(n, t) dt

o
and, summing up this inequality,

(5.6) 2 Σ lλ*ulpA1 + ^(-Λ)

\n) χ(n, t) dt.

Since it is easily seen that there is a constant Bp,a,β,y = Bl)%Cc,y such that

n=0

(5.6) can be written in the form of

^ ^ ^ ^ I/VJI Λ v ~/»; ̂  &v,oί

(5.4), (5.5), (5. 7) and Lemma 6 give

(5.8) I \g(t)\pωpy(t)dtSBPi*,y / \f(t)\pω»y(t)dt,
0 0
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/ ( 2 2 I# Λ*)I2) o>vy(t)dtsBp«,y \At)\*ω»y(t)dt.

On the other hand, in order that a function h(t) have the form

it is necessary and sufficient that

(a) h{t) is constant on each of the intervals

[mA( - n - 1), (m + 1)A( - n - 1)) m = 071, . . . . , A(Λ 4- 1) - 1

and

(b) Λ(ί) φ-*(ί) (A = 0,1, . .- . , i - l , i + l , . . . . , Φ ) - D
has mean 0 over each of the intervals

[mA{ - w), )w + 1) A( - Λ)), m = 0,1, . . . . , A(n) - 1.

This fact shows

- ω(t)) = ωγ(ί) (δn j(ί ;/) - S M ( ί ; ^))

since δrt ^ it /) = μH,jφ},(t) = »̂,X/) for 0 S K A ( - w).

Now we can appeal to Theorem 1, obtaining

Z . 1 o o Λ W ) . l

( 2 2 I^X«-^

This, combined with (5.8) and (5.9), gives the second half of (i).
The first half is proved similarly. We have

μnJ= V c = I fit) V Ψv(t) dt
v—jΛ(n) ( ) v j l ( )

δ/t xί) *y ΨΛO <# = I

= A(«) I δn j(t)φ~j(t)dt,

0

and consequently

{n){t) d t
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By an argument similar to one that led to (5.7), we see
co cc(n)-l

(5.10) 2 2 IA^JΓ A1""^ - n)

•-/(I "I"
(5.4), (5.5), (5.10) and Lemma 6 together show

(5.11) ί \g(t)\>ω'y(f)dt^Bp,Λly [ ( 2

( 2 2 iΛiWi

2 2
By Theorem 1,

(5.13) Γ W)-g(t)\pω»(t)dt^BPίΛiy[ ( 2 2
ϊ 5 v - o i-̂ϊ 5

Combining (5.11), (5.12), (5.13) we obtain the first half of (i).
Part (ii) of the theorem is proved in the same line as Theorem 2 is

deduced from Theorem 1. The only thing to be observed is that
r Λ(?(/)+l)-l

φtf? (»). . : Φΰ^' >(«) Dn{u) =

where the n(ifs and a(i)'s are related to n by (1.2) and (1.3). Part (iii) is an

immediate consequence of part (ii), because it is easily seen that the poly-

nomials are dense in our space of all functions/OO for which / \f(t)\ptpy dt
0

< 00, the norn being taken as the 1/p th power of that integral.
Since the latter half of § 3 we have constantly supposed that the sequence

{a{n)} is bounded, a{n) <; a. If we remove this restriction, our fundamental
Theorem 1 ceases to be true. That is, we can say as follows:

THEOREM 4. Let the sequence {a(n}} be unbounded. Then (i) there is a
function f{t), belonging to every Lebesgue class Lp(0,1), 0 < p < 2 for which
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for all t
(ii) there is a function g{t), belonging to none of Lebesgue classes Zp(0,l),

p > 2, and for which

2 2 \Kkt)v%M

for all t.

PROOF. Since the following proof depends on the mutual independence
of φn(tYs and the relation (3.5) only, we may, extracting a subsequence if
necessary, suppose that

(5.14) Λ + l ) / φ ) έ λ > l . (w = 0,1,2,.. .)

a n c * P u t(i)

Then,

Let

by

CΛ,

(3. 5),

C,t =

we

1

/(*) = 2
71 = 1

have

C = ^

(5.15) f{t) = 2 c» 2 **W = Σ ' CnCίn = Σ '
n = i j=ϋ n=l Λ=1

where Σ' denotes the summation over those ris for which φu(t) = 1. Observe
that this summation is finite a. e., by the well-known Borel-Cantelli lemma.

Now let us define the sets E(ή), n = 0,1.2, , by

Eφ) = {t: φn(t) Φ 1 for all Λ > 1}

E{n) = {ί: φn(ί) = 1, and φΛt(ί) Φ 1 for all m > n + 1}.

These sets are mutually disjoint, together fill up the interval (0,1) and their
measures are respectively

(5.15) shows that 0 S/(t) S 2 V'ΛCAJ for ί € £Xτi): consequently for 0 < p
fc = l

<2,

J f"{t)dt =- 2 / />(*) *

^ Σ «k ί Σ V5wY ^ ft,* Σ («(«))'1+!"2 < «
n i V ; J b i 7 n i
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by (5.14). But it is evident that

(ii) Let us now take cnj = cn = ljns/a(ri) and consider

Now

and for every t,

But, f or £ > 2

H . I

± =*,

Γ #»(f) A = 2 f
n = l

meas £

> β"λ 2 ^ w
n^l n=l

6. The Cesaro suαimability of the "proper^' Walsh Fourier series was
proved by N.J. Fine [3]. Recently, S.Yano [13] sharpened this result into a
maximal theorem and brought to the case of a(ri) = a with arbitrary a. In
this connection we prove two theorems, the one concerning Cesaro summability
factors, the other convergence factors.

THEOREM 5. Let f(t) € Z(0,1), At) - 2 c" ^

(C, - η) means of the series 2 Λ~^ί5 ^ ^ ' t f ' /)»
v = 0 ^ '

(i) / sup I N$\t;/) \dtSBaηJ \f(t) I A
0 0

(ii) the sequence {N^ (t;/)} converges almost everywhere.

For the case of a(n) = 2 (Λ = 0,1, 2, ) this theorem was proved by S.
Yano [12], his proof is also applicable to our case, as we are going to see.
We begin by proving several lemmas:

LEMMA 7. For 0 < t < 1 and n>l, we have

(6.1) \Dn(t)\ ^ min(n,a/t).

This is almost known; we prove it for the sake of completeness only.
PROOF. For a given t, choose N so that



ON GENERALIZED WALSH FOURIER SERIES 233

A( - N) S t < A( - N + 1)

and write

Then

n

n - l

- qA{N) + r

Q-l A(N)-l

0 S K A(N).

r-1

g - 1

Since DAw(t) = 0 for A( — N)St< 1, we have

I Dn(t)\ S K A(Λ0 S <*(iV - 1)11 S

as was to be proved.

REMARK. From (6.1) we obtain

f \Dn(t)\dt=j \Dn(t)\dt+f \Dn(t)\dt
0 0 l/n

(6.2)

ϋ 1/Λ

and an appeal to Lemma 3 shows, for fit) € L(0,1),
(6.3) sn(t) = o(\og ή) a.e.

where sn(t) denotes the n-th partial sum of the Fourier series of fit).

n—\ i / \

LEMMA 8. Let 0 < v < 1 and put H™(t) = 2 IVJ " T / ^ / 2 w e have

(6.4) I^WI S Bojt1-* 0<t<l.

PROOF. If 0 < t <Ξ 1/w, the assertion is almost trivial:

Suppose now l/n < t < 1. Writing w = [1//], we have
n-l

Σ̂ (" +
^ ΨXt)

= s, + s2,

say. That S! g B^/ί1"1 has already been shown. As to S2, Abel's transfor-
mation shows



234 C. WATARI

~" t (m + lp (n-1)7* t ~~~~ t-v

LEMMA 9. We have, for 0 < y < 1, 0 < m S n, 0 < t <

m

q. e.d.

1) T\k + 1)
- 1 . - 2 , . . . . ) •

PROOF. For 0 < / g 1/m, we have

For 11 in < t < 1, we have, putting £ =

= fi 4- 7\,

say. It is sufficient to estimate 7\. By Abel's transformation, we see
n-p-

4- 4- ^ - —

Γ(ϊ 17)

,

Now we put

4
ΓC1 -V) Γ(ϊ

(" + D"
and

= J K»)K(r'Ήt — u)du,

so that in particular if pfc(f) is a polynomial 2 bv *
κ-0

), w e

q.e.d.
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( 6 . 5 )

LEMMA 10. We haυe, for 0 < v < 1 anΐ 0 < t < 1.

PHOOP.

Σ
say. By AboΓs transformation, we have

where we write ^ for [Az/2],from which it follows that, by Lemma 8.

\P,,\S -τhϊ)B:ntη

As to Q,t, a similar argument (using Lemπia 9 instead of Lemma 8) shows

s ^ , Σ ( (.VD, - (I, + 2 )0 Σ A'.-_f,

l

f --Λ max

^ f ̂ Γ

PROOF OF THEOREM 5. By Lemma 10, we have
q. e.d.

(6.6) \Np>(t;f)\ S f \f(u)\ \Kn'Λt-u)\du
I)

- \ \/(t + «)l \K^Ku)\du S 5Λ,^ J |/(ί 4- u)\u^ du
β I)

Since the right-hand side of (6.6) is independent of n, taking the supremum
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with respect to n and integrating with respect to t over the unit interval,
we obtain

J sup I NtfKt:/) \dt^Ba,ηJ dt J \f(t + u) \ u^ du

-1 du J \f(t + u)\dt
0

\f(t)\dt

0 U

0

ϋ

which is the part (i) of our theorem.
To infer (ii) from this maximal inequality, we may argue as follows.

Let f*(t) be the sum of the series 2 CyΛ^~ . This series converges almost

everywhere by (6.3), and in Z^-norm by Lemma 8, and NftKt f) converges
in Z -̂norm by (i) already proved. Thus we have, by "consistency" of (C, — ή)
summability,

(6.7) J !/*(/) - N^(t /) | <# -> 0 as n-> oo.
o

For a given £ > 0 let us choose a polynomial p(t) = pb(t) so that

/ W)-pk{t)\dt< -J^-
o

Our assertion (i), applied to the function f(t) — p(t), yields

J s u p I TV W(ί / - P) I dt <Ξ B.,, J W) - Pit) \dt< 2

0 0

and by (6.7.)

J \/*(t)-p*(t)\dtS~
u

where p*(t) is a polynomial expressed by (6. 5).
Now define the set E = E(θ) by

E={t:sup\N£Kt;f-p)\ > S} f] {t: \f*(t) - P*(t)\ > S}

Then we have

meas E < ~ + -τr — S

and, for t belonging to the complement of E,
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Urn sup \NpKt f) -/+C0! gum sup \Nnψ~P)\ - \f\t) - p*(t)\
n n

Since £ > 0 is arbitrary, we complete the proof of (ii).
Next we prove a theorem on the convergence factor for the class U

THEOREM 6. Let fit) € L%0,1), fit) ~ 2 c< ^ ^

Then putting

J sup(i)

(ii) ί/te sequence {s*(ί)} conierg?s almost eυerywhere.

In case of α(/i) = 2 (w = 0,1,2, ), this theorem was stated by R. E. A.
C. Paley [7] and proved by S. Yano [12]. Our proof is different from that
of Yano, and done following the line of G. H. Hardy and J. E. Littlewood
[5]. We shall need a lemma, which was proved by G. Sunouchi [9] for general
p > 1, in case of the ''proper1' Walsh Fourier series, and known, in essence,
also for the generalised Walsh Fourier series and general p > 1 (Yano [13]).
But we supply it with a proof, for the sake of completeness.

LEMMA 11. Let fit) € Z2(0,1) J(t) - 2 cv ψv(t). Then denoting by σn(t) the
(C, 1) means of this series, we have

J sup \<rn(t)\'2 dtSB* I \fit)\2dt.

PROOF. The method given in [9] applies with few changes: this is done
in two steps.

J sup I <ΓA«)V) l2dtSB J(a) J sup I <ΓA«)V) l2dtSB J \f(t) \2 dt.

Since k W ) l 2
 S2 |SΛ ( / O (/) | 2 + 2|sj(n)(ί) - σΛo^t)\\

it is sufficient to prove that (cf. the first of the inequalities (3. 9))

r1 ~ r
sup \sA{n)(t) - σjwit) \2dtS*Σ /

-σHn)(t)\2dt
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of which the first inequality is trivial. But we have
1

2 I \s^)(t)-σA{n)(t)\-dt

= Σ A\n) 2 »^

= Σ ^ Σ Σ »̂ i2

,4(j+l)-loo ,4(j+l)-l oo ^

= Σ Σ ^r- 2

as desired.

(b) J sup I σn{t) | 2 dtSB« J \f(t) 12 dt
0 0

For a given w, there is an N such that A(N) § « < A(iV + 1). We have

I <rn(t) I 2 ^ 21 σn{t) - a-A(N)(t) I 2 4- 2

and

. Λ ( V f l ) - l

• * ( , Σ τ

r^log

( V+l) —1

Thus we have

(6.8) sup I σn{t)12 g 2 sup I σA^it) | 2 + 2 log a V V y| <r,
.v-ϋ ^.i(Λ)

oo

= 2 sup I σ^( v)(012 4- 2 log a V j\<τj+ι(t) — .

Integrating both sides of (6.8) and appealing to (a), we have (b). (See
also Kaczmarz-Steinhaus, Theorie der Orthogonalreihen?p. 188.)

Now we turn to the proof of Theorem 6. Let us first prove
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0 0

for any measurable function n(t) taking non-negative integers as its values.

r1

Wifhout loss of generality, we may suppose that / \f(t)\2 dt — 1, and con-
0

fine ourselves to those n(tys which are bounded by a number, say H, arbi-
trarily fixed. Thus what we must prove is reduced to the following inequality :

1
i r -

(6.10) sup Uu(t)g(t)dt --sup |Λ| g
fi J <J

o
where UH(t) = Sn(t)(t) (log (n{t) 4- 2))"1/2 and the supremum is taken for those

ich Is for which I \g{t)\'dt- 1. Now

ψ dt
s/\og(n(t) + 2)

/

I . 1

- / Γ . . ^ - . = - - - dt f Art) Dmn (t - u) du

J J s/\og(n(t) + 2)

and by Schwarz's inequality,

J

(6 11) = f ^ f «^.Λ(944«) Λ Γ1 ̂ ^ ( x ^
J J \Λόg(n(t) + 2) J v/log(/2U) +

J J vΛogMO + 2) χΛog(n(x) + 2)
0 0 0

Integrating first by u and observing the fact that

J DHt)(t) (t — u) Dnix) (x —u)du^ Dn{w (t — x)

0

where n(t,x) = min(n(t), n(x)), we see that the last tripple integral in (6.11)
takes the form

/

I 1 _

/ . , s(t)px)J)^xΛt~x^ _____ dtdχ
o υ
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I) 0

1 1

(n{t) + 2) Λ/log nix) + 2

tgβJ f J W3-- 4. _lί<*)l
I log (n(t) + 2) log («(*) + 2) Γ 11 - x\ + (n(t, x) + 1)'

υ υ

by Lemmas 2 and 7. Here

(6 13) 7 = f' f
J J

dt dx
log (n(t) + 2) | ί - # | + (w(*, ΛΓ) + I ) ' '

g(t)\2

 d t f1 dx
_ (n(t) 4-2) J \t — x\ + n(t, (x) + 1.)"

0 U

\g{t)\*dt =
u

and similarly

J J log(•«(*)+
(6.14) Jt~ [ (

J J log(•«(*)+ 2) |ί-Λ:|
0 ϋ

(6.12), (6.13) and (6.14) show that (6.10) holds, and (6.9) is proved.
Let us now proceed to the proof of our assertion (i). By Abel's transfor-

mations repeated twice, we see

+ (n - 1) σ Λ-i(/) Δ — - i - , -_-.-.- + —^5?^-_- ̂
/ l o g ( ^ l ) /log(z + 2)

= Pa + Q» + /?n,

say. Because of the inequality

it is sufficient to prove

J u J

(6.15) °

/
sup |QJ2<# < B α / \f(t)\-dt

\) I)

(we have already dealt with Rn). But, as is easily seen, we have

^ (u + 1) (log (J; +
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and

so the inequalities (6.15) are deduced directly from Lemma 11.
The assertion (ii) follows from (i).

REFERENCES

[1] H. E. CHKESΊΈNSON, A class of generalized Walsh functions, Pacific Journ. of
Math. 5(1955), 17-31.

[2] N.J. FINE, On Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372 414.
[3] , Cesaro summability of Walsh-Fourier series, Proc. Nat. Acad. S î.
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