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1. Introduction. The main purpose of the present paper is to prove
the theorems on the generalized Walsh Fourier series which we announced
in the previous paper [11].

Let {a(n)} be a sequence of integers not less than 2, and put

An) = a(0a@)....arn — 1), A(—mn) =1/A(n)
empty product being considered to be equal to 1.V

The generalized Rademacher functions ¢.(#) (2 =10,1,2,........ ) are

defined as

bnlt) = exp 2mrik]a(n)) =+ 1)

for ¢ belonging to the left-semiclosed intervals

1.1) [RA(—n—1), +1) A(—n—-1)), k=0,1,2,....,An+1)—1
and St + 1) = Pul?) for all 2.

An elementary consideration shows that these functions ¢a(#) (2 =0,1,2
....) are orthonormal over the interval (0,1), or

W
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It is worth observing that this orthogonality is a consequence of the following
fact:

dm(t) has mean 0 over each of the intervals (1.1) where ¢n(t) takes a
constant valwue.

Now we can define the generalized Walsh functions Y,,(¢) (# =0,1,2....)
as follows:

Yot) =1,
Vu(t) = Sl Obnin®). . .S LE®)
provided that » is expressed in the form
(1.2) 7 = a(D)AnQ) + a@)ANE) + ....+aPAMnRP) =1
where
1.3) n1)>n2)>....>n(0)=0;
0 < a(j) < a(j) G3=1,2,....7.

It is easily seen from the above remark on ¢.(f) that the functions V¥a(f).
thus defined form an orthonormal system over the unit interval. Moreover,
this system is complete, as we shall see in §3.

If an)=2 n=0,1,2,....), our functions reduce to those of Walsh

1) And similarly, we consider that the empty sum is equal to 0.
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himself, and the case a(n) =a (# =0,1,2,....) was studied by H.E.Chres-
tenson [1]. The general definition seems to have been given by J.J. Price (cf.
[8]). We shall assume, in the latter half of §3 and thereafter, unless the
contrary is stated exnlicitly, that the sequance {a(n)} is bounded, say a(») =«
7z=0,1,2,....).

In §2 we consider some properties of the “A-group”’, whose characters
are essentially the generalized Walsh functions defined above. The first
consideration in this direction was done by N.J. Fine [2] who defined the
“dyadic group” in regard to the case of the “proper’” Walsh functlons, in
which a(n) =2 (n=0,1,2, ....).

§ 3 is dedicated to the proof of the completeness of our system {Y¥} and
a concise treatise of Haar functions, generalized a little more than in our
preceding note [10].

In §4 we generalize an inequality of R.E.A.C. Paley [7], which is
fundamental to the Z?(p > 1) theory of Walsh Fourier series, and then apply
it to prove the mean convergence of Generalized Walsh Fourier series.

§ 5 is a generalization of §4, done in such a way as I[.I. Hirschman [6]
generalized Paley’s results.

In §6 we give two examples which show that the boundedness of the
sequence {a(n)} is indispensable to the truth of Paley’s inequality.

The final section deals with summability factors and convergence factors.

The author wishes to express his hearty gratitude to Professor G.Sunouchi
for his encouragement and many kind advices. The author also thanks Dr.
S. Yano, who gave valuable suggestions.

2. The A-group. Let gx (n =0,1,2, ....) be cyclic groups of orders a(n),
which are understood to be the remainder groups of the division modulo a(#),
respectively. Let G be their direct product, so that its elements are sequences

i’:—‘ {tn}, tn € Gn.
Clearly, G is an Abelian group which is compact with respect to the
weak topology. The group operation in G is the termwise addition modulo

a(n), denoted by §, and the inverse element of £ € G is denoted by =¢2.
We write simply # —# for ¢ 4 (= u).
To every element ¢ € G corresponds a number ¢ € [0, 1] defined by

t=A\zt) = D, taA( — n).
n=1
The inverse mapping w, of A. is determined uniquely, except for those #'s €
[0,1] which are “A-rationals” (by which we mean those #'s of the form
EA( — m)). It is easily seen that the group character (which is a continuous
representation having absolute value 1) of G and the generalized Walsh
functions pass into one another by these mappings, except for at most a
countable set of arguments. We abbreviate M) + () resp. N u(2) 2 p(z))
into ¢ + # resp. ¢, provided that they are determined uniquely. These
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yield for every ¢, » € [0,1]

2.1 Vult + %) = VaE¥n(®), Valt = %) = Ya)Vra(n)
except for #’s belonging to a certain countable set.

We have following propositions which are easily verified :

LEMMA 1. Let 0=t < 1,0=u<1 and the A-expansion of u be 0O in the
first n places (n =0), then we have

2.2) t—(@an)—Du=t+ust+u

2.3) t—u Strust—(an) —1) «

LEMMA 2. Let 0=t <1, 0= u < 1 and their A-expansion coincide in the
first n places, n =0, then we have
2.4) min (¢t >~ %, —1) = |t — u|/a(n).

If the sequence {a(n)} is bounded, say 2 <a(n) <a, we have, as a
corollary of Lemma 1:

LemMA 3. Let f(t) € L(0,1),” then, for almost every t € (0,1) we have
1 = f [/ 4 %) — ) |du = o(x)
0
(as x— +0).

I, = f f(t-—u) — f(t)|du = o(x)
0
Proor. We have only to prove the first half. Putting
E={t3u:05u=sx)
we see by Lemma 1, that E [t — (¢ — 1)¥, ¢ — x]. Since the transformation
T:: w—t 4 u is measure-preserving, we have

L= f ) —fB)] due = f Rt + ) — f(0)\ das
E 0

0
+ f It + u) —f(t)| du = o(x) + o(x) = o(x) a.e.
-(x—-1)z
3. We have already seen that the functions ¥.(2), n =0,1,2,.... form
an orthonormal system over the unit interval.
Let f/(¢) € L(0,1) and write

oo

(3.1) i)~ ev(t)

v=0

where ¢, is given by

2) We consider, here and in the sequel, only those functions which have
period 1.



214 C.WATARI

1
(3.2) ¢, = f 1) Y(u) du.
0
The n-th partial sum sa(#) of (3.1) is then expressed-as

(3.9 sb)= Dot = SO [ 0w du
0

v=0 v=0
= [ 70 ) ow) du
0 v=0

1

= [ f vt~ w

0 ve=(

= f S(u) Dot = u) du

where Dy(t) is the Dirichlet Kernel :

n-1

(3.4) Du(t) = 2.
v=0

Since the values assumed by ¢.(2) are either 1 or one of the a(zn)-th roots
of 1, we see that

a(n)-1 .
1oay a(n) if pu(t) =1
3.9 2 P = {67 hmar
On the other hand, we have
A(n+1)-1 a&(n)y—-1 A(n)-1
Dii®)= 2 V)= X > Prumnlt)
(3.6) v=0 j=0  v=0
a@(n -1 A(n)—1 a(m)-1

= > ¢it) > V) = Dum(®) ) HiB).
J=0 v=0 j=0

By induction, we can infer from (3.5) and (3.6) that

o1 bwn- i SEEN

Substituting this into (3.3), we obtain

(3.8) san)t) = A(n) f o t)f (%) du,

where I(n,t) is the interval of the form [2A( — n), (2 + 1)A( — »n)) containing
t. Thus we have proved the following proposition :

THEOREM K. At every point where f(t) is equal to the derivative of its
indefinite integral, we have

(3.9) «I»LT Sagmy () =12).
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Moreover, by the well-known maximal theorems of Hardy and Littlewood (cf. e.
&g. [14; pp.244-245]) we have®

f SEDISA(n,(t)Ipdf =B, f lf2)|? at ®>1);
0 0
f sup [samy(2)| dt = B f If(®)|1og* |ft)| dt + B;
(3.10) . o
f sgplsAm('t)l”dt =B (f )l ah‘)r 0<r<l);

sup |sam(?)| < ess sup f2)].
provided that the right-hand side exists.

Now it is evident that our system {y} is complete in Z(0,1): for, if all
of the Fourier coefficients of a function f(¢#) € L(0,1) are equal to 0, f(¢) has
its A(n)-th partial sums vanishing identically, so that does the limit of these
partial sums, which is equal to f(#) itself almost everwhere, vanish identically.

Let us pass to the study of generalized Haar functions: put

@) = o) =1 0=t1
<P1(t) = <P1;o(t) = ¢o(t)
and generally
ity = P ®  ORAC I DS < Om £ DAC=T+ 1)
0 elsewhere
m=0,1,...., A0 —-1)—1; 1=2,3,....
Xo(t) = @)

o i=12,..., al-1)—1;
X0t = @l AU =1) (ﬂ; =05 AU-D-1 ;)
and we rearrange {X“)} into a sequence {X.} (n=0,1,2,....) lexicographi-

cally with respect to I, m, j, so that X,(n = 1)is the X{), where » is expressed
in the form

-1

@1) =S @r-1)—DAA-1) —mal —1) =1 +j
A=1
=Al—-1)—mlal —1)—1)+j—1

We call the functions X (or X{)) the generalized Haar functions. The remark
given in §1 subsists here too, and the system {x»} is orthonormal over the
unit interval. Moreover, it is verified without difficulty that (a proof is given
in a moment) this system is also complete in Z(0,1). For this system, the

3) We use, here and in the sequel, the letter B with or without subscripts
to denote a constant (which need not the same in different contexts) depending
only on parameters disposed explicitly.
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following theorem is valid :

THEOREM H. Let f(t) € I(0,1) and the sequence {a(n)} be bounded, say
a(n) = a. Then the generalized Haar Fourier series of f(t) converges almost
everywhere to f(t). In particular,the series converges at every point of contiuuity
of [: the convergence is uniform in t € [a,b] <[0,1) or for all t, when f(t) is
known to be continuous in the designated place respectively.

Proor. Let ¢ be fixed and the intervals I(/ —1,7,¢) and I(l,k,¢) have
the same meaning as above. Then it is easy to see that

a(l-1)-1 ) All)— Al -1) uell k& t)
> X)X (u) = { — Al —-1) well—1,it)— I,k t)
=1 0 elsewhere
and consequently
A(l)
(3.12) Kag-1y-m+nyeq-n-1 (¢, %) = {OAG -1

according to
uw e Il kt) with 0=k=m+Dal —1)—1,
uecll—1,i,t) with m+1<i<SA(l-1)—-1
ortherwise respectively.
In particular, taking m = A(l —1) — 1 we have
(3.13) Kat, u) = {64(1) leiﬁ:r;)

of which we made use above.
The formulas (3.12) and (3.13) together show that
ither Kuw (¢, %) = Diq)y (¢ = u).
K —_ m{a(l—1)— t, = {el o
aa-nem@a-n-n (¢, ) or Kaq-1y (&, ) = Dag-y (t = u).
This facts and a consideration similar to what led us to Theorem K yield,
n and I, m,j being related by (3.11)

(3.14) ]ff(u)Kn(t, u) du _S_f | fw)| | Kn(t, )| du
0 0

1
§f fu)| Kag-1y+maq-1y—1 (L, %) du
0

1

ki
+ | il S
N

= !
X)) X)) [du

=AM f \A(w)| du + 7 A(l — l)f [f(2)| du

I(A.xT) I(l-1,m,")

1 t+h
< =~
=B. sup f,. [f(2)| du.
t—
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Thus we have, by a maximal theorem of Hardy and Littlewood,

i 1 . 1 ,
Oj sgplafﬂu)m(t,u)du dth,,.,(of )| dt) 0< 7<)

from which our first assertion follows.
In order to see the last half of the theorem, we take f(#) =1 in (3.14)
obtaining
1
f | Ku(t, %) du < Ba.
0
As a moment's inspection of K,(x,z) shows that this is a quasi-positive
kernel, our theorem is now established completely.

4. We are now in a position to prove a generalization of the funda-
mental inequality of Paley. It should be remembered that we have been
assuming the boundedness of {a(n)}, say a(n) < «a. Paley’s result reads as
follows :

THEORFM P. Let Vu(t) (n=0,1,2,....) be the “proper” Walsh functions
corresponding to the seguence (2,2,2,....) and let f(t) ~20y\lf,(t) € L%0,1)

v=0

» > 1. Putting

My

fy=S e n=0,12....)

y=27

one has
1 1 o ol 1
B, f? dt = f lcol? + 2 /()2 dt =By If(2)|*dt.
tf 0 ( n=0 ) ;)f

This can be brought into our case “formally”, that is, we can prove the
following proposition :

THEOREM P'. Let Yru(t) (n =0,1,2, ....) be the generalized Walsh functions
A(n+1)-1
and let f(t) ~ ) c(t) € LX0,1), p > 1. Then, putting Aut) = > c2)

v= v=A4(n)

(n=0,1,2,....) we have

B,,,mfl |f<t>|pdz§fl(|cor-’;u S 1ador)" a
(4.1) 0 0 "

oo

1

éBmuf [A(2)|* dt.

0

However, Theorem P’ is not so effective in applications as Theorem P in
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the theory of “proper” Walsh functions; a “finer” decomposition of Fourier
series would be needed, as we are going to see.

THEOREM 1. Let f(¢) € L¥(0,1) (p > 1), L) ~ Z‘ ¢ (t) and put

v=0

(J+1)4(n) -1 .
DA — _ 7=1,2,...., a(n) —1;
bt =t 3 ek (TR )
Then we have
1 ! o a(n)—1 2
Bow [ 0Nat s [ (lal+ 3 3 1onsol:)" a
0 n=0 J=1

(4.2) 0 1
<B,a| f®)|?at.
/

Proor. Clearly we may suppose that c¢p =0, and f(¢) is real-valued;
because if this case is proved, the general case then follows by Minkowski’s
inequality. Assuming first p is an even integer 2 k, we prove Theorem 1 and
Theorem P’ together in three steps, of which the second is trivial:

oo

e ‘ L\
@3 Df D) dt < By f (= 1200 a,

v=0
: A< )2 o e 2\
(4.4) Uf <§O IAn(t)[) dthp,.,af (2 2} [8n, (2)] ) dt,

o a(n)-1

! »[2 ! p
(4.5) f (2 IS»,JCt)P) dt <By. uf It 7 dt.

0 n=0 Jj=1

We begin with the proof of (4.3); write Si(£) for sw)(t), then Si(£)is real-
valued and

Sn+1<t) = Sn(t) -+ An(/t),
so that we have

2k
0S8y = (Sut a0 = S+ 3 (%) s34
=1

Subtracting S#* and integrating over the unit interval we see
L 2% 1
[s-soa=|2 @) [ sae]
0 =1 0

2% 1
(4.6) = } > (Zlk) f Sk-t AL df ’
0

(=2
1

(observe that by the remark of §1, f S* An dt = 0). A trivial computation

0
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including Holder's inequality and
@b =max(@@gb)=ec+b (0=aq 0b 0<E<])
shows that the right-hand side does not exceed

% 1 1
z/ 2 ( f SE-2 A2t + f Azt
0 0 '

‘Summing up (4.6) for » = 0,1,....N we have

f Slz\{c+1 dat < 2

n=0

j (S, — 53 dt‘

2k 2k—2 2 2k
<2 f (max s: )zA dt+f2A at

n=0

o

1

1—-1/k
2k 2k
so|([ paxsear) ™ ([ (Z9) @)
0

n=0

+f <§0 A,i)k at|
colnfsaaf™ ([ () o)

+f (Zos) af

n=0

‘where the first inequality of (3.10) was used. Consequently we have

1 1 v x 1 o X
fS§§+1dt§_B,, (Za) dth,,f <2A§> at
0 0 n=0 0 n=2

An application of Fatou’s lemma yields (4. 3).
For the proof of (4.5) we rearrange {d»,;} lexicographically with respect

to m, j into a sequence {d,} m =0,1,2,.... so that d, = &, dy = o3, -- ..,
Buy-1 = 01,1+ - We need two lemmas:

LEMMA 4. Let m =+ n, max (m,n) = max#(l),..... n(k — 1))
Then

1

f a1 [dner(®)? o) Bl = 0

0

Proor. Considering the complex conjugate if necessary, we may assume

4) Here the n(i)’s are not the “exponents” of A-expansion. Since no confusion
-will arise, we may use this notation.
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that m > n. Write

(+1)4N\) =1 AN -1
dm(t) = BAlt(t) = 2 C,, 1/’(’) = (}5,'\(1‘) 2 CV+LA()\) "P‘v(t,) = ¢,}\(t> (YI\-l(t.)l
v=14(A)v v=.

- . O+AM-1 40-1 -
dn(t) = BZ.J(t) = 2 Cy "lfu(t) = ‘i’[’(t) z Cy+34(1) ‘zl"v(t.) = ¢f"(t_)gz.g(t)-

v=gA(l) v=0
There are two posibilities, in both of which the assertion is easily inferred
from the remark of §1.

(i) If A >1 then the function ¢ has mean 0 over each of the intervals
[A(—A), (p+ 1) A(—2A) #=0,1,...., AQA) — 1, where the product of the
rest

Idn(l)‘z. . |dn(k..1) lz')’)\,L 6?;5
is a constant.

(ii) If A=1 and : > j, the same is said about ¢:~7 and

l@ucs|®. . . - | dageny | Yae Gase

LeEMMA 5. For q =2, we have

4.7) (=] e )= ( [ 1 eyl e "
m=0g 0

Proor. (4.7) holds for ¢ = 2, when it reduces to the Parseval relation.
It holds also for ¢ = oo, since du(¢) being a & i(2),

- G+ Ay -1
ldn(®)] = f fw) > WEw) du}
0

v=ja(n)

f 06y b3 (£ 10) Doacwy (¢ = 10)
0

= f [f(@)] Dagny (t = u)du < ess sup |f(%)]
0

yields that sup |dn(t)] =< esssup [f(¢)|. To obtain (4.7) for general g =2, we

have only to interpolate these extremal cases bygmeans of the well-known
convexity theorem of M. Riesz.

Now let us return to the proof of (4.5): what we must prove is (p = 2k
is an evern integer)

1 1
* 3
4.5y [ (Z1aore) a < b [ ro=a
0 m=0 0.
Put Fu(t) = E dn(2). Then, for N > n,

m=0
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2

v
_Fn+2dm

m=n-+1

N N o N N’
[Fal?+ 3 1dnl’+ Fa X dn+ Fa S dat 3 didnm,

m=n+1 m=n+1 m=n+1 1, m=n+1

(4.8)

|

where 3’ means that the terms with I = m are omitted in the summation.
Take a pair of 2 — 1 non-negative integers n(1), ...., n(k — 1) with max (#(1),

..., n(k—1)) =n Multiplying both sides of (4.8) by |d.w|®....|dsw—1|2
and integrating over the unit interval, we see by lemma 4 that

1
f |@acy (2. . . . [@age—n|*® | Fv|* dt
0
1

1

N
::f |dl(1)l2....ldn(k_1)lzan|2dt+ Z |dn(1)|2....|dn(k_1)|2Idm|2dt,

0 m=n+10
so that we have

1

1

N

2 f |dn(1)[2..--|dn(k=1)|2|dm|2dt§f [@neyl?. . .. |@n-1y|® | F|? dt.
0

m=n-+1y
Letting the pair (n(1), ...., n(k — 1)) run over all lattice points in the (¢ — 1)
dimensional cube @: max(n(1l),.... n(lk—1) =2 <N —1, we have
r ! ! -t k—1
> > f ldaoy|?. . .. |drw-n]2 1@a |2 dt = f | Fal|® (2 |d,.|2) dt,
Q m=u+10 0 n=y

or, a fortiori, we obtain

(4.9) ﬁfl |d,,,;2(§ juft)” dtgf IFNI2(N2—1Ian2>k—Idt.
0 0

m=1 n=y n=(

Now, summing up the inequalities

of (§)|dn|2)k dt—of (2:5 [dnl2>kdt

-3 () Of ld,nlﬂ(;ﬁ;))1 dal?) " at
s> #) ( / | dalat) ™ ( i | !dm12(m2—11d,.|2>'°" ar)”

n=0

=> ¢ (ofldmm dt+b[1 14le(§ i) a)

7%=0

=
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1 1 m—1 r—1
gz'f(f |dm|2'fdr+f 1dm12(2ldn12> dt)
0 0 n=0
for m=20,1,....,N we have
LI 4
k
(4.10) f (X 1dal? ) at

0 n=y

m=1 n=0

v ol ¥ ! m-1 -1
<2(3 [ 1wmar+ 3 [ 1aa (3 1a) " ar)
m=00 0

(4.9), (4.10) and Lemma 5 yield

1 N .
f (Z 1) a
0 n=0

N-1

gz'cf f1%dt + 2’ff1 Pl (2 Id,.l2)k_1dt
0 0

n=,

gzwmax{f /1 at, f [Fw(%f 4.?) " af
0 0 n=0

An application of Holder's inequality shows

1

(4.11) f (= ]d,.,[2>k at

n=0

1 1
= max (2 [ = a, 2w [ pazar)
0 0

l
Since Fx(#) is of the form s.w(#) + > 8.4(t) for some #z and I, (! = a(n)
Jj=1
—1=<a —1) it is easily majorated by f(¢):

1

~ 1 2 1
j |Fy|®dt < B, (f IS imy| % dt + 2[ [&A'”‘dt)
0 0 J=1y

§B,,,,f f ]2 dt.
0

Substituting this into (4.11) we have (4.5), which was to be proved.

In order to prove Theorem P’ and Theorem 1 for general p >1, we
may argue as follows.

(4.1) and (4.2) have their equivalent forms which are convenient for
interpolation : that is
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> Aty(O) dt

n=0

@y B i = | 1

<B,. f ft)]» dt
0

1

(4.2) B,. f fB|rdt < f > dult) ra(6) | P at
0 0

n=0

1
§Bp,wf |f()|* dt for every 0
0

where 7,(0) are the “proper” Rademacher functions. Observing that #(0) = 1
for every 6 and %, (4.1) and (4.2) are easily deduced from (4.1) or (4.2)
respectively : while the opposite implication is a consequence of the Khintchine
inequality (integrating with respect to @ over the unit interval). Thus we
have (4.1) and (4.2) for p even integers, and by interpolating between two
consequtive even integers, it is seen that they are also true for p =2. The
case 1< p=<2 is reduced, by the conjugacy argument, to the case 2=<¢
< oo, where ¢q is the conjugate exponent of p. Thus (4.1) and (4.2") hold
for p > 1 and so are (4.1) and (4.2).

Considering a special case in which each of the 8. (¢)’s consists of a
single term, we have the following corollary to Theorem 1:

o a@(n)-1
CoROLLARY. Let p >0, f(t) = > > cu;$i(t). Then we have
n=0 Jj=1
1 o @(n)-1 iz !
(4.12) Bp,af [f(’t)!"dt_s_(E > ]Cn,j|2> §Bp.uf IA)]* dt.
0 n=0 Jj=1 0

In fact the first inequality follows directly from Theorem 1 and Hélder's
inequality. The second is deduced from the first by observing

1

o a&(n)-1 1
2 2 lcn,jlz=f !f(t)l%it:f f] 2213 |f]2-2018 gt

n=0 J=1 0 0

=( f 1 srar) ( f 1 - a )

o a&(n)-1

=(f 1 y17de)" - B (23 lenslt)

n=0 Jj=1

where we may and do suppose that 0 < p < 3.
We now proceed to the proof of the “mean convergence”.
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oo

THEOREM 2. Let f(t) € L2(0,1) (p > 1), ft)~ 2 c (1) and put s«t) =

v=0
"2 ¢, ¥ (t). Then we have
- 1 1
(4.13) ‘ f [$a(2)|? dt =< Bp o f If2)]* at;
0 0
(4.14) f () — sa(t)|?dt — 0 as n—» o,
0

Proor. We have only to prove (4.13) and with an additional assumption
¢, = 0, for (4.14) follows from (4.13) by means of an approximation with
(generalized Walsh) polynomial®, and the case ¢, = 0 is easily reduced to
that of ¢, = 0.

Let N be given and write N = a(1)A#(1)) + .... +a(PAn(r). We have

1 n—1

sx(t) = f fu) Dyt ~-uw)du = | flu) 2 Y (t = u)du

0
and so

su(t) b E0(@). . . . br(@)

1

= f &) prad & —u).. . . b 080 (t-—u) 2_ Yt u)du
v=0

0

- f ) K(t-00) s,
0
where
a(u) = f(u) P30 (w). . .. 788 ()
and

r AR +1)—1

K=Y 3 W

=1 v=(a(t)—a(l)) A(n(L))
As it is easily seen that, by Theorem 1, for a bounded “sequence”
Mgk gl =M G=12,...., an)—1; n=0,12,....)

/

(cf.[6]) we have

o a(m-1

S S Msbes®| dt=Bya M f Ifet)| it
0

n=y j=1

5) We shall say in the sequel simply “polynomial” instead of “generalized Walsh
polynomial”.
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1 o @(n)-1 | 1 1
(4. 15) f E 2 hn,j Bn,j(lt‘)ép dt é BZ’,G f Ig(tD’pdt = Bp.af Lfct)lpdtr
0 n=0 j=1 0 0

where &,,5(¢); g) is a . (t) made regarding g(t), and we put

N = { 1 for those (n,7) for which &,,;(t) has ¥.(¢) in common with K(¢)
"7~ 10 otherwise.

1

But the left hand side of (4.15) is equal to f |sx(t)|?dt, (4.13) is proved.

0

5. THEOREM 3. Let p > 1, —1/p < v <1 —1/p and suppose

1

f )| tvdty < 0, i)~ cAuE).

0 Ve
Then we have
1 1 o a(m)—1
@ Boar [ vormars [ (1al + 373 skt oo ar
0 0 n=0 j=1
1
<Byas f )2 277 dit s
0
1 1
(ii) f |sw(2)|? 2P dt§Bp,w,Yf [f@)|? ¥ dt® -
0 0
1
(i) f ) — selB)|? 7 dt 0 as N oo,

0

This was proved, when a(n) =2 for all #, by I.I. Hirschman [6]. His
proof is applicable to our case, with a few “slight modifications, the first of
wnich is the following '

LeMMA 6. Let %, =0, r>0, s >0 and let {w.} be a sequence of positive
numbers for which
wnfwp-1=g<1 n=1,2....)
holds for some q independent of n. Pulting

n

Xn = (2 x;)l/t
k-0
we have

6) We wish to correct an erratum which took place in [11]. On the right-hand

side of the inequality (ii) of Theorem 3, the weight £#Y should be inserted, as is
the case here.
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(5.1) 2 Xpwn < By > %) 100
n=0 n=0

Proor. We have two cases:

(a) 0<7/s<1

(b) 1< 7/s.
The proof of the case (a) is very simple, indeed, since it is easily seen that

2 5] =3
k=0

we have only to invert the order of summations:

ORI T EED E S L

n=0 n=0 n=k

x,’c a Zq"— G—Ekak

n=0 k=0

=

M E

The case (b) is less simple and may be provedfas follows.
Write
In=25wl",  Ya= XSw)".

Then (5.1) would follow if we have proved that

(5.2) EY,,Z,.<qus<2y”’>l

n=0

for all non-negative sequence {Z,} such that 2 Zr-» = 1. But we have

n=0

L3
Yu= > Yew;/  w;r,

k=0

1

s/r -s/r < nslr —
2 w 2 aq qSIT ’

n=k

2 ws/r —s,r é 2 qks/r < l_lTlr ,
k=0 - q

so that [5: Theorem 275] yields (5.2).
ProOOF OF THEOREM 3. We may assume that ¢, = 0 and prove the theorem

with the weight #7" replaced by its “approximant” »?'(t), where o(#) is defined
by

»(0) = 0, o) = A(—n) A(—n)<t<A(—n+1),n=12,...).
Write for 7=1,2,...., a(n) —1; =10,1,2,....

G+ 4(n)—1

I"n, J = 2 cv

v=jA(n)
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and
(i+1) t(m -1

.I,’u,}(t) = A ( - ll) Fon, j 2 ‘\l’v(t) = A( —n) Mo j d’,Z(t) D l(n)(t)~

v=ja(n)
By (3.7). we have
. 1 1, 5] 0<t< A(—n)
5.3 ()] =
(5.3) [g.5(0)] 10 Al—m<t<l1,
so, for every ¢ =+ 0, the summation
o an) -1

)= 3 g

n=)  J=1

is finite. Let us put

vV o oa(n)-1 N a(n)-1
Ry = Z 2 [, ! and Sz\ = 2 2 [fn 512,
G=y )=1 n=0 Jj=1
From (5.3) we have, for A(— N)St< A(— N+ 1),
|gt)] = R~
and
oo m(n) -1 Voa(m) -1
Z 2 [gu f(D)]* = 2 Z [ st = S%.
n=0 =1 n=0 j=1
Thus
] - 4 -m+1)
(5.4) f o) gt)| P dt = o™ (@) g#)|" dt
0 m=1 4¢_m)
- A(—m+1)
=S AY(—m) f Lg@®)|? at

m=1 A(=m)

< Z A(—m) R (A(—m + 1) — A( — m))
m=1

oo

S(a@—1 > Ry, AP (—m)

m=1

and. by (5.3)

co  a(n)--1

(5.5) f o0 (33 il ) ar

0 n=0 =1

1(=m+1) o (-1

> f 0t (23 lesol ) de

m=1 A(=m) n=0 j=1

oo

Il

> A —m)SH(A(—m + 1) — A( — m))

m=1

227
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Sla-1) 23S, A —m.

m=1

On the other hand, the equality

G+1)d(n) -1 1 J+Dh -1
Hn = 2 c, = f St) 2 v (t) dt
0

v=JjA(n) v=Jjd(n)

- f &) $78) Dacn (2 dt
0

yields, for a fixed B satisfying y < B8 <1 —1/p,

1

g ? < ( f [f#)] Dacw (#) at )

1(-m)

P
)]? w(#) dt - (f () at>
0

A(—n)

= Bp,w,vA”p’g(”)f /@) |7 (2) dt,
0

where g is the conjugate exponent of ». Denoting the characteristic function
of the interval [0, A( — n)) by x(n,?), we have

1
[#n,3]7 AVPY(— n) = By,a,y APEV () f V@)]? () x(n,2) dt
0

and, summing up this inequality,
o a(n)-1

5.6) 3 paglr A=)
n=0 j=1
1

<Byay f )|” () i ArEV(n) x(n. 1) dt.

0 n =0

Since it is easily seen that there is a constant Bj,a,s,y = Bp,e,y such that

> APEN(n) X(8,2) < Bpya,y 0@ PE@),

n=0

(5.6) can be written in the form of
o a@(n)—1

B 2> P AP (—n) = Byay f [f@#)]” w?(2) dt.
0

n=0 J=1

(5.4), (56.5), (5.7) and Lemma 6 give

1 1
(5.8) f [&(®)|” @™(2) dt = By,a,y f /17 ™) dt,
0 0
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e @(n)—1 )2 1
(5.9) f (23l ) oredt < Buay f fid)|? " (t) dt.
=0 J=1 0
Or. the other hand, in order that a function A(¢#) have the form
Q1)) =1
> at
v=Jg.4(n)

it is necessary and sufficient that
(a) h(t) is constant on each of the intervals

[mA(—n—1), m+ 1DA(—n —1)) m=20,1,....,An+1)—1
and
(b) k@) ¢7*@) k=0,1,....,i—1,74+1,...., am) —1)
has mean 0 over each of the intervals
[mA(—n), m+1)A(—=n), m=10,1,...., A(n) —1.
This fact shows .
@¥(2) (On, () — gu, i) = @(2)) = @) n st ;1) — 8ns(t; £)
= Onjit: @ f — w0’ g).
since 8, 5(¢; f) = pn;0NE) = gn () for 0=t < A(—n).
Now we can appeal to Theorem 1, obtaining

o @ m) 1 p2
f S Bt —goel) o @

Il=l) Jj=1

<B,a, f A8) — g(t:|? oP(t) dt

This, combined with (5.8) and (5.9), gives the second half of (i).
The first half is proved similarly. We have

DAy -1 (J+1)d(n)-1 o
Mn j = 2 c =ff(t) 2 \ll‘,,(t)dt

v=)4(n) v=J1(n)

(i+1)A(m)— 1
f Suit) S tydt= f 8 (2) $:7(2) Daon(2) it
0

v=J.a(n)
4(~-n)

= A(H)f 3n () 7 t) at,

and consequently
4(-n)
l/"",)l r=s Bp,w,y AHpﬂ(ﬂ) |8n)j(t)l P o.)pﬂ(t) dt

0
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(= ") e w(m)-1

< By A(n) f (2 S o) onvar

m=0 =1

By an argumeat similar to one that led to (5.7), we see

o @(n)—1

(5.10) 3 X lpusl? A=)

n=0 J=1

o @(n)-1

< By ay f (2 2 18...,@!2)' ©™t) dt.

n=0

(5.4), (5.5), (5.10) and Lemma 6 together show

1 o @(n)-1 ]
6 [ 2OV OB S By (2 S tsol ) o,
0 n=0 j=1
oo a(n)—1 12
(5.12) f > > lgn,,(t)]”> w™(?) dt
n=J J=1
1w a(my-1
< Bya, f > > l&;(t)l?) o™(?)dt.
0 n 0 Jj=1

By Theorem 1,
o w(1)-1

1
pi2
(5.13) f /(&) — gt)|? 0?'@)dt < Bp,a,y f (2 > & mt’) () dt.
0 0 n=0 Jj=1
Combining (5.11), (5.12), (5.13) we obtain the first half of (i).
Part (ii) of the theorem is proved in the same line as Theorem 2 is
deduced from Theorem 1. The only thing to be observed is that

r A +1)-1

b6 (@).. 1 a5 () D) = > > Vu(u)

1=1 v=(a@ n(@))—a({l))Am@))

where the n(:)’s and «(?)'s are related to # by (1.2) and (1.3). Part (iii) is an
immediate consequence of part (ii), because it is easily seen that the poly-

nomials are dense in our space of all functions f(¢#) for which f | f(@)|Pe?Y dt

0
< oo, the norn being taken as the 1/p th power of that integral.
Since the latter half of § 3 we have constantly supposed that the sequence
{a(n)} is bounded, a(n) < a. If we remove this restriction, our fundamental
Theorem 1 ceases to be true. That is, we can say as follows:

THEOREM 4. Let the sequence {a(n)} be wunbounded. Then (i) there is a
function f(t), belonging to every Lebesgue class L*(0,1), 0 < p < 2 for which

o a(n)—1

2 2 [8n,5@)]* — o

Nn=) jal
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for all t;
(ii) there is a function g(t), belonging to none of Lebesgue classes L"(0,1),
P > 2, and for which
o a(n)~—1
> elr=M
n=0 J=1

Sor all t.

Proor. Since the following proof depends on the mutual independence
of ¢u(¢)'s and the relation (3.5) only. we may, extracting a subsequence if
necessary, suppose that

(5.14) aln + 1)Jam) =N > 1. (n=20,1,2,.. .)
1 P
i) Let Chy= Cu = C= Cn and put
(1) Le %] \v/a(n)‘ 7’2:5 p
o a(n)-1

#) =3 > easplt)+C

n=1 y=1
Then, by (3.5), we have

@(n)—1

6.15) 1) = zcn 2 b(t) = 2’ cnttn = N an)
n=1 n=1
where 3’ denotes the summation over those n’s for which ¢.(2) = 1. Observe
that this summation is finite a.e., by the well-known Borel-Cantelli lemma.
Now let us define the sets E(n), »=10,1.2, ..... by

EQ)={t: ¢put) =1 for all n =1}

En) = {t: ¢u(t) =1, and ¢u.() = 1 for all m=n + 1}.
These sets are mutually disjoint, together fill up the interval (0,1) and their
measures are respectively

oo

meas £0) = [ <1 _ 1 >

net a(n)

meas E(n) = —— ﬁ (1 1 )

( ) m=1 a(m)

(5.15) shows that 0 </() < > v'a(k) for ¢ € E(n): consequently for 0 < p

k=1

<2,
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by (5.14). But it is evident that

o a(n) 1

s 2 18 48)1* = Zc,:(a<">—1> 2( a(lh)*>:3°

n=1 f=1

(ii) Let us now take ca;= ¢, = 1/nv/a(n) and consider

oo a(n) -1

g0 =3 ¢+ an 2 Bit) = 2' cut(n) = 2 ‘/a ",

n=1 n=1
Now
8u 2) = 8.yt s g = diit)n\/a(n)
and for every ¢,

o @ n)-1

S @S Ec,,a\n) 2% _m
n=1 -1 n=1 nel n 6
But, for p >2
! bl oo
f g'tyat =3 f g't) = > ¢l a’(n) meas E(n)

0 n=1 ) n=1

'X”Z 1 n (D2
>BM” T (%) B,,KZ" -
6. The Cesaro summability of the “proper” Walsh Fourier series was
proved by N.J. Fine [3]. Recently, S.Yano [13] sharpened this result into a
maximal theorem and brought to the case of a(n) = a with arbitrary a. In
this connection we prove two theorems, the one concerning Cesaro summability
factors, the other convergence factors.

‘I)n

THEOREM 5. Let f(t) € L(0,1), f(t_)~20, v (t). Then putting the

v=0
(C, — ) means of the series VE (c”j_f 1(;?, by N{°(t; f), we have
1 1
(i) f sup IND(t )| @t < Ba ,,f /)] at ;
0 0

(ii) the sequence {N7 (¢:;f)} converges almost everywhere.

For the case of a(n)=2 (n=20,1,2,....) this theorem was proved by S.
Yano [12], his proof is also applicable to our case, as we are going to see.
We begin by proving several lemmas:

LEMMA 7. For 0< ¢t <1 and n=1, we have

6.1) | Du(t)| =< min (%, a/t).
Thais is almost known; we prove it for the sake of completeness only.
Proor. For a given ¢, choose NNV so that
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A(-N)=t<A(-N+1)

and write
n=qAN)+ 7 0=r< AN).
Then
n—1 a—1 A(N)-1
D) = 2 ¥lt) = 2 > Vurraan(®) + 2«#,+qA(A)(t)
v=0 =0 v=0

= D.v,(?) 2 "l"m(v)(f) -+ 2 ¥, raavy(E).

1=0 v=0
Since Dy (t) =0 for A(—N)<t? < 1, we have
|IDi#) S7< AIN)Sa(N—-1D/t=saft
as was to be proved.
REMARK. From (6.1) we obtain

1 1n

1
| D.(#)| dt = | Da(t)| dt + [ Da(2)| dt
[ o= ] o]

(6.2)
1'n 1
dt
§nf dt+af t—<Bm10g(n+1)

0 1/n
and an appeal to Lemma 3 shows, for f(¢) € L(0, 1),
6.3) sa(?) = o(log m) a.e.
where s,(¢) denotes the n-th partial sum of the Fourier series of f{¢).

LemMmA 8. Let 0 < <1 and put HP(t) = 2 (‘[’—Vf-(ti)" Then we have

(6.4) [HP@)| = Ba,y/t* " 0<t<1.
Proor. If 0 <t =1/n, the assertion is almost trivial:

n-1

|HO@)| < 2( + 1)11 <1+ i”}_;’}) = a :%Stl—n .

Suppose now 1/n < t < 1. Writing m = [1/¢], we have

v=0

[HO@)| = 2 (;};(ti)n

v=0

)
2 v+ 1)

ve=l

(@) | _
\2<+1>v St S,

v=m

say. That S, < B,/t'-" has already been shown. As to S,, Abel's transfor-
mation shows
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n-2

— - _1_. — 1 D;t(t) Dm(t) |
S ;m((uﬂ)v () (D) = Dakt)) + n 10

<2a 1 2 a<4z

t Tmrly T =1t T o e d

LEMMA 9. We have, for 0 <7 <1, 0<m=<mn, 0<t <1,
n-1
> A< B

v=n—m

Y, 4
where A“>—<m+k) Lim~+ %+ 1) ~ = (k= —1, —2,....).

k Otk +)Tm+1)  Dk+ 1)

Proor. For 0 < ¢t <1/m, we have

n-1 m

S A, v = 3 ac, =3 Ars nZ@ L

v=u m v=n-1
1- 1—
<B,m'-"< B,/t!"",

For 1/m <t <1, we have, putting p = [1/¢].

w1 n-p -1 n-1

S AR = S AR+ 3 A, wf)t
v=n-m v=N— vel—p

’E, f‘1 + T?r
say. It is sufficient to estimate 7. By Abel's transformation, we see
n-p-"'
T S JACD] DAY + AL Dacyt)] + AG™ | Dacn(t)]

« n-p-2

S ? (; gm lAg‘_:’z,:ll)l + Af’w + As""”)
m-1 1 - -

- ﬁ<2 Y ! i + 7, p + Vm !

t \ & T(=n—-1] IA-mn TAd-mn

Bay( 1 1 Bun 1 _ Ba,
= t_v<2 pin T ﬁ)g ot T < =ah a.e.d.

Now we put

1 QA )
= 'I) (U + 1)17

v={

(—n)(§) =
K@) = A
and
]
N f) = f o) K7™ (¢ = u) du,
° k-1

so that in particular if p«(¢) is a polynomial Ebv Y(t), we have

va=0
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N
w
(9)]

= k=1
65 Npip = 3000 A o AP0}

e b S VRt + 1)
LemMAa 10. We have, for 0 < n <1 a(z'l 0<t<1.
]KILAV)<t)[ § Ba, q/t1>'7
1 n-1 11/‘ (L‘)
. CM(F) = A v
Proor K, () Afﬁ’a”% S g 1y
1 Lni2-1 !
= A‘,ﬁ?) < Z + 2 > = Py -t Qu,

v=U LN
say. By Abel’'s transformation, we have

p—2

P = A(, o | 2 HDO) ALY - H A L

n=p
{
v=0

where we write p for [n/2], from which it follows that, by Lemma 8.
1 i ~
P i Bt '<2 AT+ A

n -1
SB35 )
< Bayn 71 p 1< By, 117
As to Q., a similar argument (using Lemma 9 instead of Lemma 8) shows

1 -
|Qul = ALy 2((1/ + 1) (v+2)") ZA V)

n-—

Afl nn) IZASJZ)—M}F”(”I

v=p
B, 1 1 D i
= g x J[(',; o Tn}),,‘i‘,i’,f 2 AT )
n—=1 yp=p ) by
B.,max | ACn i) < Ber
- “ng‘é” \2 " ] ! I = tL-m

Proor or THEOREM 5. By Lemma 10. we have
1
(6.6) [Nt )] §f )| | K™t = )| du
0

1

= f St +w)| | K" (u)|du < Bay | Ut +w)|w™" du
6

0

Since the right-hand side of (6.6) is independent of #, taking the supremum
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with respect to » and integrating with respect to # over the unit interval,
we obtain

1 1 1
f sup |[N(t:f)| dt = Ba,,,f dtf (2 + w)|ee-" du
0 0

u
1

1
= Bu,,,f w1 duf f(t + o) | dt
0 0

1

= Bw,,,f ()| at
0
which is the part (i) of our theorem.
To infer (ii) from this maximal inequality, we may argue as follows.
Let /*(¢) be the sum of the series 2 coVlt) . This series converges almost
~ v+ 1)
everywhere by (6.3), and in L'-norm by Lemma 8, and N{(¢; f) converges
in L'-norm by (i) already proved. Thus we have, by “consistency” of (C, — »)

summability,
1

6.7) f @) — Na~@¢t: )l dt —0 as n—> oo,
0
For a given & > 0 let us choose a polynomial p(¢) = pi(t) so that

1
e‘_’
[,[ /@) — pu(2)] dt < 9B,
Our assertion (i), applied to the function f(¢#) — p(¢), yields
1 1
[ swinge s—plar =B, [ 6 -pwar<
0

0

g2
2

and by (6.7)

1
f 5ty — pX()| dt < ‘?21
0
where p*(t) is a polynomial expressed by (6.5).
Now define the set E = E(&) by

E=A{t:sup [NP@E; [ =P > & NAL: /*E) —p¥(B)] > &)
Then we have
. & &
measE< o + 5 =&

and, for ¢ belonging to the complement of E,
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limsup [NV{(¢: /) —/*()] =limsup [N,7( —p)| — /") — p*(2)]

=2¢&.

Since & > 0 is arbitrary, we complete the proof of (ii).
Next we prove a theorem on the convergence factor for the class Z°.

THEOREM 6. ZLet () € LX0,1), f(t) ~ 2 c. U (t)
v=0
Then putting
n-1
X8 = WA
) 2, V1og (v + 2)
we have
1 1
) [ swisora<s. [ inora
0 0

(i) the sequznce {s*(t)} conrergzs almost everywhere.

In case of a(n) =2 (n=0,1,2,....), this theorem was stated by R.E.A.
C. Paley [7] and proved by S. Yano [12]. Our proof is different from that
of Yano, and done following the line of G.H. Hardy and J.E. Littlewood
[5]. We shall need a lemma, which was proved by G.Sunouchi [9] for general
p > 1, in case of the “‘proper’” Walsh Fourier series, and known, in essence,
also for the generalised Walsh Fourier series and general » > 1 (Yano [13]).
But we supply it with a proof, for the sake of completeness.

Lemma 11.  Let f(2) € L¥0,1) .S@) ~ S c.V(t). Then denoting by ou(t) the
(C, 1) means of this series, we have
1 1
f sup |on(t)|® dt §Bmf )| dt.
0

0

Proor. The method given in [9] applies with few changes: this is done
in two steps.
1 1
(a) [ swpiciworra=s [ nora
0 0
Since loacn()]? = 2[s4m(E)]? + 2] s4@) — aa0n(t)]?,
it is sufficient to prove that (cf. the first of the inequalities (3.9))

1 1

oo

f Sl:p [Sagyt) — oaw(t) |2 dt = Ef |4 (8) — o amy(t)|? a@t

0 n=0 h

<B. f o) at,
0
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of which the first inequality is trivial. But we have
1

oo

Zf [S100(t) — aam(®)|* dt

"-U()
oo 1 A(n) -1
= 2 C, 2
- 1 n-1 A +1) -1
=2 a2 = rler
n=1 AA(ln) J=1 vedl)
o A(J+1)-1 B 1
= 2 v¥c.|? 2 s
jz—-' v=4(J) n=jtrl A (ﬂ)
w A(f11)-1 1
<23 > lerez[ e
=0 v=1()) t
as desired.
W1 1
(b) _/ sup |oa(®)|? dt gB.,f )] dt

0 0

For a given #, there is an NN such that A(N) <n < A(IV+ 1). We have
lou(®)|? = 2|ant) — aaw)(@)]? + 2]oaw)(t)]?

and
AVl -1 2
lou(t) — cawy @)]2 < ( 2 [oya(t) — a,(t)] )
J=a(v)
A(V+1) -1 R A(V+1)-1 1 2
=3 (Vilou-al ) (&)
J=A(V) J=4(N) NI
AN+ =1
Sloga(N) X Jlow(t) —a)]?
J=.1(N)
A4(Vi1)—1
<loga 2 Jlo @) — (fj(f), 2,
J=A(N)

Thus we have

o A(N+1)--1
(6.8)  sup [ou(t)]* =25Up [oun(®)|® +2loga 3T ) o) — osBI

V=0 J=.(D)

= 2sup |aum@®)]? + 2log a D jloalt) — as)]?
N i
Integrating both sides of (6.8) and appealing to (a), we have (b). (See
also Kaczmarz-Steinhaus, Theorie der Orthogonalreihen, p. 188.)
Now we turn to the proof of Theorem 6. Let us first prove
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1
6.9 f ERGIE f
(6.9) Tog (n(?) + 2) |A2)]2 dt
0
for any measurable function #n(#) taking non-negative integers as its values.
Without loss of generality, we may suppose that f /(@)% dt =1, and con-

fine ourselves to those n(¢)'s which are bounded by a number, say H, arbi-
trarily fixed. Thus what we must prove is reduced to the following inequality :

1
| . i
(6.10) sup ] f Uu(t)gt)dt =sup |J,| =B
q . Yy
0

where Uu(t) = Suny(t) (log (n(?) + 2))~'? and the supremum is taken for those
1

g's for which f lg(t)i?dt = 1. Now

T - 1 Sny®) &)
J=dn= V1og (n@) + 2)

_ f 0) dt f S(2t) Dnery (t > u) du

N4 log(n(t) -+ 2)

V' Togn(®) + 2)

and by Schwarz’s inequality,

1 1
1< lf(u)l“’duf f &) Duw (2 —u) t( au
0 0

:f Sw) du @Q(Mdt
0 0

Vlog (n(t) + 2)
6 11) = f du f &) Doy (¢ = u) dtf &) D»(x)(x—“)d

0

log (n(t) + 2) og (n(%) + 2)

= f ff &(t) Do (¢ = ) 8%) Duoy (X 20) 0y 00

Vog (n(t) + 2) «/log (n(x) + 2)
Integrating first by # and observing the fact that

1
f Daco®) (¢ ) Doy (x 16) dtk = Doty (¢ - )

where n(t, x) = min(n(t), »(x)), we see that the last tripple integral in (6.11)
takes the form

(6.12) f f &(t) 8(%) Du,my (¢ = %) b e

Vdog (nt) +2) «/log (n(x) + 2)
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lg@)l lg(x)] o (b0 dt d

<f f Viog (n(t) +2) N/log n(x) + 2 | Dactoy ¢ = 2] it bz
|g@)|? gl ) dat dx
<Baf f | log (n(2) + 2) + log (n(x) + 2) | |t — x| + (n(t, %) + 1)~

by Lemmas 2 and 7. Here

([ e  aax ,
(6.13) I= bf B[ log(n(t) -+ 2) |2 — xl + (n(t x) + 1)’

rGE L ax
= [ log (n(¢) 4 2) dtu [t — x| + n(t, () + 1)~

1
=8 [ laia =5
0
and similarly

6.14) ]~ff ld_Lg_@' dt dx <B.

g (n(x) +2) |t — x| + (n(¢,0) + 1!

(6.12), (6.13) and (6.14) show that (6.10) holds, and (6.9) is proved.
Let us now proceed to the proof of our assertion (i). By Abel’s transfor-
mations repeated twice, we see

SO = S0+ Doty a1

v=0 /log (” +2)

P ) _S@)
Fm = Dona)A = D) T logn £ D

= I')IL + Qn + Rn,

say. Because of the inequality
[ = 3(| Pul® + |Qul* + [Rn!”

it is sufficient to prove
J

1
j sup 11),11—’dt§3af )] at,
(6.15) 0 "

: 1
fsupIQn]?dth,,f f(2)]2 dt

(we have already dealt with R,). But, as is easily seen, we have

1

|Pul = Bsup |ou(®)] 2 * (v + 1) (log (v + 2))

<B sep |aw(@)]



and
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1
[@u] = Blona(t)] (log (n -+ 2)7% =B sup laa®)],

so the inequalities (6.15) are deduced directly from Lemma 11.
The assartion (ii) follows from ().

(10}
{113
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[13]

[14]
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