A NOTE ON CONTRACTION SEMI-GROUPS OF OPERATORS

ISAO MIYADERA

(Received August 31, 1958)

1. Let $\Sigma=\{T(\xi) ; 0 \leq \xi<\infty\}$ be a one-parameter semi-group of operators from an abstract (L)-space X into itself satisfying the following conditions:
(a) For each $\xi>0, T(\xi)$ is a contraction (transition) operator ${ }^{1)}$.
(b) $T(\xi+\eta)=T(\xi) T(\eta)$ for each $\xi, \eta \geqq 0$ and $T(0)=I$.
(c) $\lim _{\xi \downarrow 0} T(\xi) x=x$ for each $x \in X$.

Such a semi-group is called a contraction (transition) semi-group of operators. We say that $\Sigma^{\prime}=\left\{T^{\prime}(\xi) ; 0 \leqq \xi<\infty\right\}$ dominates $\Sigma=\{T(\xi) ; 0 \leqq \xi<\infty\}$ if

$$
T^{\prime}(\xi) x \geqq T(\xi) x
$$

for each $x \geqq 0$ and $\xi>0$.
We shall deal with the problem on the generation of contraction semigroups dominating a given contraction semi-group. This problem has been discussed by G. E. H. Reuter ${ }^{2}$.
2. We shall define a linear functional (e, \cdot) by

$$
\begin{equation*}
(e, x)=\left\|x^{+}\right\|-\left\|x^{-}\right\| \tag{2.1}
\end{equation*}
$$

for each $x \in X$.
An elementary argument shows that (e, \cdot) is a positive linear functional and $|(e, x)| \leqq\|x\|$ for each $x \in X$.

The following theorem is due to Reuter and is a variant of the HilleYosida theorem which will be convenient for our purposes.

THEOREM 1. A linear operator A with an dense domain $D(A)$ generates a contraction (transition) semi-group if and only if
(i) $(e, A x) \leqq 0(=0)$
for $x \geqq 0$ in $D(A)$,
(ii) for each $\lambda>0$ and $x \in X$, the equation

$$
\lambda y-A y=x
$$

has a unique solution $y=R(\lambda ; A) x \in D(A)$ and $R(\lambda ; A) x \geqq 0$ for $x \geqq 0$.
We shall first prove the following

[^0]THEOREM 2. Let A generate a contraction semi-group Σ and let B be a linear operator with domain $D(B) \supset D(A)$. Then $A=A+B$ will generate a contraction (transition) semi-group Σ^{\prime} which dominates Σ if and only if
(i) $\quad B x \geqq 0$
for $x \geqq 0$ in $D(A)$,
(ii) $\quad(e, B x) \leqq-(e, A x)(=-(e, A x)) \quad$ for $x \geqq 0$ in $D(A)$,
(iii') any one of the following;
(a') $(I-B R(\lambda ; A))[X]=X \quad$ for each $\lambda>0$,
(b') $\sum_{n=0}^{\infty}\left\|[B R(\lambda ; A)]^{n} y\right\|<\infty$ for each $\lambda>0$ and $y>0$.
Proof. The necessity of (ii) follows from Theorem 1, and that of (i') follows from

$$
(A+B) x=\lim _{\xi \downarrow 0} \frac{T^{\prime}(\xi)-I}{\xi} x \geqq \lim _{\xi \downarrow 0} \frac{T(\xi)-I}{\xi} x=A x
$$

for $x \geqq 0$ in $D(A)$. Since
(2. 1)

$$
\left(\lambda-A^{\prime}\right) R(\lambda ; A) x=(I-B R(\lambda ; A)) x \quad \text { for each } x \in X
$$

$(I-B R(\lambda ; A))[X]=\left(\lambda-A^{\prime}\right) R(\lambda ; A)[X]=\left(\lambda-A^{\prime}\right)[D(A)]=\left(\lambda-A^{\prime}\right)$
$\left[D\left(A^{\prime}\right)\right]=X$. Thus we obtain the property (iii' a^{\prime}).
Conversely, if (i'), (ii') and (iii' $-a^{\prime}$) hold, then we have that the inverse $(I-B R(\lambda ; A))^{-1}$ exists for each $\lambda>0$ and that $(I-B R(\lambda ; A))^{-1}$ is a positive linear operator with domain X.

In fact, if $(I-B R(\lambda ; A)) x=0$, then (i') and (ii') together with the equation $A R(\lambda ; A)=\lambda R(\lambda ; A)-I$ imply that

$$
\begin{aligned}
\|x\| & \leqq\|B R(\lambda ; A)|x|\| \leqq-(e, A R(\lambda ; A)|x|) \\
& =\|x\|-\|\lambda R(\lambda ; A)|x|\| .
\end{aligned}
$$

Hence we get $\lambda R(\lambda ; A)|x|=0$, so that $|x|=(\lambda-A) R(\lambda ; A)|x|=0$. Then the inverse $(I-B R(\lambda ; A))^{-1}$ exists for each $\lambda>0$ and its domain is the whole space X from (iii -a). If $y=(I-B R(\lambda ; A))^{-1} x(x \geqq 0)$, then $y-B R$ $(\lambda ; A) y=x \geqq 0$. Hence $y^{-} \leqq(B R(\lambda ; A) y)^{-} \leqq B R(\lambda ; A) y^{-}$, so that

$$
\begin{aligned}
\left\|y^{-}\right\| & \leqq\left\|B R(\lambda ; A) y^{-}\right\| \leqq-\left(e, A R(\lambda ; A) y^{-}\right) \\
& =\left\|y^{-}\right\|-\left\|\lambda R(\lambda ; A) y^{-}\right\|
\end{aligned}
$$

This shows that $\lambda R(\lambda ; A) y^{-}=0$. Therefore $y^{-}=(\lambda-A) R(\lambda ; A) y^{-}=0$ and this concludes that $(I-B R(\lambda ; A))^{-1}$ is a positive operator.

We define $R\left(\lambda ; A^{\prime}\right)$ by

$$
\begin{equation*}
R\left(\lambda ; A^{\prime}\right)=R(\lambda ; A)(I-B R(\lambda ; A))^{-1} \tag{2.2}
\end{equation*}
$$

then $R\left(\lambda ; A^{\prime}\right)$ is a positive linear operator with domain X. It follows
directly from (2.2) that

$$
\begin{equation*}
\left(\lambda-A^{\prime}\right) R\left(\lambda ; A^{\prime}\right) x=x \quad \text { for each } \lambda>0 \text { and } x \in X \tag{2.3}
\end{equation*}
$$

The range of $R(\lambda ; A)$ is precisely $D(A)$ since the range of $(I-B R(\lambda ; A))^{-1}$ is X. Thus for each $x \in D_{(}^{\prime}(A)$ there exists an element y such that $x=$ $R(\lambda ; A) y$. By (2. 3),

$$
\begin{gather*}
R\left(\lambda ; A^{\prime}\right)\left(\lambda-A^{\prime}\right) x=R\left(\lambda ; A^{\prime}\right)\left(\lambda-A^{\prime}\right) R(\lambda ; A) y \tag{2.4}\\
=R\left(\lambda ; A^{\prime}\right) y=x
\end{gather*}
$$

for each $x \in D(A)$. This shows that A^{\prime} satisfiies the condition (ii) in Theorem 1. Furthermore it is obvious from (ii') that

$$
\left(e, A^{\prime} x\right) \leqq 0(=0)
$$

for each $x \geqq 0$ in $D(A)$. Thus it follows from Theorem 1 that A generates a contraction (transition) semi-group $\Sigma^{\prime}=\left\{T^{\prime}(\xi) ; 0 \leqq \xi<\infty\right\}$. It is seen at once dy (2.2) that $R(\lambda ; A) x \geqq R(\lambda ; A) x$ for $x \geqq 0$ and $\lambda>0$, so that the formula

$$
T(\xi) x=\lim _{\lambda \rightarrow \infty}\left\{\exp (-\lambda \xi) \sum_{n=0}^{\infty}\left(\lambda^{2} \xi\right)^{n}[R(\lambda ; A)]^{n} / n!\right\} x
$$

shows that

$$
T^{\prime}(\xi) x \geqq T(\xi) x
$$

for each $\xi \geqq 0$ and $x \geqq 0$.
Since $(I-B R(\lambda ; A))^{-1}$ is a positive linear operator, we have

$$
x=(I-B R(\lambda ; A))^{-1} y \geqq 0
$$

for each $y \geqq 0$. Hence

$$
\begin{equation*}
x=y+B R(\lambda ; A) y+\cdots \cdots+[B R(\lambda ; A)]^{n-1} y+[B R(\lambda ; A)]^{n} x \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
x \geqq B R(\lambda ; A) x \geqq[B R(\lambda ; A)]^{2} x \geqq \cdots \cdots \geqq 0 \tag{2.6}
\end{equation*}
$$

Then there exists the limit $x_{0}=\lim _{n \rightarrow \infty}[B R(\lambda ; A)]^{n} x$ and $x_{0}=B R(\lambda ; A) x_{0}$, so that $x_{0}=0$. Therefore, by (2. 5), we get

$$
x=\sum_{n=0}^{\infty}[B R(\lambda ; A)]^{n} y
$$

and a fortiori

$$
\sum_{n=0}^{\infty}\left\|[B R(\lambda ; A)]^{n} y\right\|<\infty .
$$

Suppose that $\mathrm{b}(\mathrm{iii} r)$ holds. Then the series $\sum_{n=0}^{\infty}[B R(\lambda ; A)]^{n} y$ converges
for each $y \in X$ and is equal to $(I-B R(\lambda ; A))^{-1} y$, so that (iii' ${ }^{\prime}$ 'a) holds. This concludes the proof of Theorem 2.

Corollary 1. Let A generate a contraction semi-group Σ, and let B be a linear operator with domain $D(B) \supset D(A)$. Further assume that there exist real numbers $\lambda_{0}>0$ and $\varepsilon_{0}>0$ such that $\left\|\lambda_{0} R\left(\lambda_{0} ; A\right) x\right\| \geqq \varepsilon_{0}\|x\|$ for all $x \geqq 0$. Then $A=A+B$ will generate a contraction (transition) semigroup Σ^{\prime} which dominates Σ if and only if the conditions (i^{\prime}) and (ii') in Theorem 2 hold.

Proof. The necessity is obvious. We shall now prove the sufficiency. From (i') and (ii'),

$$
\begin{equation*}
\|B R(\lambda ; A) x\| \leqq\|x\|-\|\lambda R(\lambda ; A) x\| \quad \text { for } x \geqq 0 \tag{2.7}
\end{equation*}
$$

Let us put

$$
\varepsilon_{\lambda}=\inf _{\|r\|=1, x>0}\|\lambda R(\lambda ; A) x\| \quad \quad(\lambda>0)
$$

If $\varepsilon_{\lambda}=0$, then there exists a sequence $\left\{x_{n} ;\left\|x_{n}\right\|=1\right.$ and $\left.x_{n}>0\right\}$ such that $\lambda R(\lambda ; A) x_{n} \rightarrow 0$. Then we have $\lim _{n \rightarrow \infty} \lambda_{0} R\left(\lambda_{0} ; A\right) x_{n}=0$ by the resolvent equation

$$
\begin{equation*}
R\left(\lambda_{0} ; A\right)-R(\lambda ; A)=-\left(\lambda_{0}-\lambda\right) R\left(\lambda_{0} ; A\right) R(\lambda ; A) \tag{2.8}
\end{equation*}
$$

From this contradiction we conclude that $\varepsilon_{\lambda}>0$ for each $\lambda>0$. Therefore we get, by (2. 7),

$$
\|B R(\lambda ; A) x\| \leqq\left(1-\varepsilon_{\lambda}\right)\|x\|
$$

for each $x \geqq 0$, so that (iii'-b') in Theorem 2 holds.
COROLLARY 2. Let $\Sigma=\{T(\xi) ; 0 \leqq \xi<\infty\}$ be uniformly continuous at $\xi=0$ (if and only if A is a bounded linear operator), and let B be a linear operator with domain $D(B)=X$. Then $A^{\prime}=A+B$ will generate a contraction (transition) semi-group Σ^{\prime} which dominates Σ if and only if the conditions (i') and (ii') in Theorem 2 hold.

Proof. Since

$$
\|x\| \leqq(\lambda+\|A\|)\|R(\lambda ; A) x\| \quad \text { for each } x \in X
$$

this corollary follows from Corollary 1.
Corollary 3. Let A generate a contraction semi-group Σ, and let B be a linear operator with domain $D(B) \supset D(A)$ satisfying the conditions (i') and (ii) in Theorem 2. Further assume that $B R\left(\lambda_{0} ; A\right)$ is completely continuous for some $\lambda_{0}>0$. Then $A=A+B$ generates a contraction (transition) semi-group Σ^{\prime} which dominates Σ.

Proof. From the resolvent equation (2. 8),

$$
B R(\lambda ; A)=B R\left(\lambda_{0} ; A\right)+\left(\lambda_{0}-\lambda\right) B R\left(\lambda_{0} ; A\right) R(\lambda ; A) .
$$

Then $B R(\lambda ; A)$ is completely continuous for each $\lambda>0$ since the product of a bounded linear operator and a completely continuous linear operator is completely continuous and since the sum of two completely continuous linear operators is again completely continuous. Since 1 is not eigen-value of $B R(\lambda ; A)$, we have by the theorem of F.Riesz that $(I-B R(\lambda ; A))[X]$ $=X$, so that (iii' $-\mathrm{a}^{\prime}$) in Theorem 2 holds. Hence this corollary follows from Theorem 2.
3. It is seen at once by using the identity

$$
\|x+y\|=\|x\|+\|y\| \quad(x \geqq 0, y \geqq 0)
$$

that if a contraction semi-group Σ^{\prime} dominates a transition semi-group Σ, then $\Sigma^{\prime}=\Sigma$. Thus if Σ is a transition semi-group, no distinct contraction semi-group dominates Σ.

We now suppose that Σ is a contraction but not transition semigroup. The following theorem is due to Reuter.

TheOrem 3. Let Σ be a contraction semi-group, generated by A. Then the operator A_{c} defined by

$$
\left.A_{c} x=A x-(e, A x) c, x \in D^{\prime} A\right)(\text { with } c \geqq 0 \text { and }\|c\| \leqq 1) \text {, }
$$

generates a contraction semi-group Σ_{c} dominating Σ. Also $\Sigma_{c 1} \neq \Sigma_{c 2}$ if $c_{1} \neq c_{2}$, and Σ_{c} is a transition semi-group if and only if $\|c\|=1$.

Proof. Let us put

$$
B x=-(e, A x) c \quad \text { for } x \in D(A)
$$

where $c \geqq 0$ and $0 \leqq\|c\| \leqq 1$. It is obvious that the assumptions in Corollary 3 hold. Hence $A_{c}=A+B$ generates a contraction semi-group Σ_{c} which dominates Σ.

Since Σ was assumed to be not a transition semi-group, Theorem 1 shows that

$$
\begin{equation*}
\left(e, A x_{0}\right)<0 \quad \text { for some } x_{0}>0 \text { in } D^{\prime}(A) \tag{3.1}
\end{equation*}
$$

Now

$$
\left(e, A_{c} x_{0}\right)=\left(e, A x_{0}\right)(1-\|c\|),
$$

so (3.1) implies that Σ_{c} is a transition semi-group if and only if $\|c\|=1$. If $c_{1} \neq c_{2}$, then $A_{c 1} \neq A_{c 2}$, so that $\Sigma_{c 1} \neq \Sigma_{c 2}$.

LEMMA. Let A generate a contraction (but not transition) semi-geoup Σ, and let B be a linear operator with domain $\left.D^{\prime} B\right) \supset D(A)$ such that $B x$ $=0$ for each $x \in E$, where $E \equiv\left\{x \in D^{\prime}(A) ;(e, A x)=0\right\}$. If $A=A+B$ generates a contraction semi-group which dominates Σ, then there exists a
non-negative element c_{B} with $\left\|c_{B}\right\| \leqq 1$ such that

$$
B x=-(e, A x) c_{B}
$$

for all $x \in D(A)$.
Proof. Since Σ was assumed to be not a transition semi-group, Theorem 1 shows that $\left(e, A x_{0}\right)<0$ for some $x_{0}>0$ in $D(A)$. Let us put

$$
\alpha(x)=\frac{(e, A x)}{\left(e, A x_{v}\right)}
$$

for each $x \in D(A)$. Yt is obvious that $x-\alpha(x) x_{0} \in E$. Hence

$$
B x=B\left(x-\alpha(x) x_{0}\right)+\alpha(x) B x_{0}=\alpha(x) B x_{0}=-(e, A x) c_{B},
$$

where $c_{B}=-B x_{0} /\left(e, A x_{0}\right)$. By Theorem $2, B x \geqq 0$ for $x \geqq 0$ in $D(A)$ and $\|B x\| \leqq-(e, A x)$ for $x \geqq 0$ in $D(A)$. Hence $c_{B} \geqq 0$ and $\left\|c_{B}\right\| \leqq 1$. Thus the lemma is proved.

This lemma and Theorem 3 show that if $E=E^{+}-E^{+}$, where $E^{+} \equiv$ $\{x \geqq 0$ and $x \in E\}$, then contraction semi-groups dominating Σ are always the type Σ_{c} in Theorem 3.

In fact, if $A+B$ generates a contraction semi-group Σ^{\prime} which dominates Σ, then it follows from Theorem 2 that $\|B x\|=0$ for each $x \in E^{+}$. Hence $B x=0$ for all $x \in E=E^{+}-E^{+}$, so that we have by the lemma,

$$
(A+B) x=A x-(e, A x) c, x \in D(A) \text { (with } c \geqq 0 \text { and }\|c\| \leqq 1)
$$

Therefore Σ^{\prime} is the type Σ_{c} in Theorem 3.
4. In this section we shall deal with the space (l) and we shall assume that Σ is uniformly continuous at $\xi=0$. $(\|T(\xi)-I\| \rightarrow 0$ as $\xi \downarrow 0)$. We first prove the following

THEOREM 4. Let A generate a contraction (but not transition) semigroup Σ, and let $E \neq E^{+}-E^{+}$. Then there exist contraction semi-groups which dominate Σ and which are different from the type Σ_{c} in Theorem 3.

PROOF. Since A is a bounded linear operator, there exists a non-negative element $\left(a_{1}, a_{2}, a_{3} \ldots \ldots\right) \in\left(l^{\infty}\right)$ such that

$$
-(e, A x)=\sum_{i=1}^{\infty} a_{i} x_{i}
$$

for all $x=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right) \in(l)$. The set $N \equiv\left\{i ; a_{i}>0\right\} \neq \phi$ since Σ is not transition. In this case

$$
E^{+}=\left\{x=\left(x_{1}, x_{2}, x_{3} \ldots \ldots\right) \geqq 0 ; x_{i}=0 \text { for all } i \in N\right\}
$$

and

$$
E^{+}-E^{+}=\left\{x=\left(x_{1}, x_{2}, x_{3} \ldots \ldots\right) \in(l) ; x_{i}=0 \text { for all } i \in N\right\}
$$

Hence $E^{+}-E^{+}$is a closed set. By the assumption E 予 $E^{+}-E^{+}$there exists an element $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots ..\right)$ such that $x^{\prime} \in E$ and $x \notin E^{+}-E^{+}$. Thus $0=\left(e, A x^{\prime}\right)=\left(e, A x^{\prime+}\right)-\left(e, A x^{\prime-}\right)$ and $\left(e, A x^{+}\right)=\left(e, A x^{-}\right)<0$, so that $N_{1} \cap N \neq \phi$ and $N_{2} \cap N \neq \phi$, where $N_{1} \equiv\left\{i ; x_{i}^{\prime}>0\right\}$ and $N_{2} \equiv\{i$; $\left.x_{i}^{\prime}<0\right\}$.

Let us put

$$
b_{i}= \begin{cases}a_{i} & \text { for } i \in N_{1} \cap N \\ 0 & \text { otherwise }\end{cases}
$$

We now define a positive bounded linear functional $f(x)$ by

$$
f(x)=\sum_{i=1}^{\infty} b_{i} x_{i} .
$$

The operator $f(x) c$ with $c \geqq 0$ and $\|c\| \leqq 1$ satisfies that $f(x) c \geqq 0$ for $x \geqq 0$ and $\|f(x) c\|=(e, f(x) c) \leqq-(e, A x)$ for $x \geqq 0$, so that it follows from Corollary 2 that $A x+f(x) c$ generates a contraction semi-group Σ dominating Σ.

On the other hand

$$
f\left(x^{\prime}\right)=\sum_{i=1}^{\infty} b_{i} x_{i}^{\prime}=\sum_{i \in N_{1} a^{N}} a_{i} x_{i}^{\prime}=-\left(e, A x^{\prime+}\right)>0
$$

hence $A x+f(x) c$ is different from the type A_{c} in Theorem 3. This concludes the proof.

It follows from Theorem 4 the following
COROLLARY 4. Let A generate a contraction (but not transition) semigroup Σ. Then each contraction semi-group dominating Σ is always of the type Σ_{c} in Theorem 3 if and only if $E=E^{+}-E^{+}$.

Finally we shall show that there exists a contraction semi-group Σ such that $E=E^{+}-E^{+}$.

Example. Let us put
where $\left\{a_{n}\right\}$ is a sequence such that $a_{n} \geqq 0$ for $n \geqq 2$ and $a_{1}<-\sum_{n=2}^{\infty} a_{n}$. It is obvious that A is a bounded linear operator (l) into itself.

We define

$$
T(\xi)=\exp \xi A=\sum_{m=0}^{\infty} \xi^{m} A^{m} / m!\quad(\xi \geqq 0)
$$

$\Sigma=\{T(\xi) ; 0 \leqq \xi<\infty\}$ is a semi-group of operators which is generated from the bounded linear operator A. For each $x=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right) \in(l)$,

$$
T(\xi) x=\left(\begin{array}{c}
x_{1} e^{n_{11} \xi} \\
x_{2}-\frac{a_{2}}{a_{1}}\left(1-e^{n_{1 \xi}}\right) x_{1} \\
\vdots \\
x_{n}-\frac{a_{n}}{a_{1}}\left(1-e^{a_{1} \xi}\right) x_{1} \\
\vdots
\end{array}\right)
$$

Since $-a_{n} / a_{1} \geqq 0$ for $n \geqq 2$ and $1-e^{a_{1} \xi}>0, T(\xi)$ is a positıve bounded linear operator. Furthermore, for each $x=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right) \geqq 0$,

$$
\begin{aligned}
\|(\xi) x\| & =\sum_{n=2}^{\infty} x_{n}+x_{1} e^{a_{1} \xi}-\frac{a_{2}+\ldots \ldots+a_{n}+\ldots}{a_{1}}\left(1-e^{a_{1} \xi}\right) x_{1} \\
& \leqq \sum_{n=2}^{\infty} x_{n}+x_{1} e^{\pi_{1} \xi}+x_{1}\left(1-e^{\tau_{1} \xi}\right)=\| x \mid
\end{aligned}
$$

and $\|T(\xi) x\|<\|x\|$ if $x_{1}>0$, so that $\Sigma=\{T(\xi) ; 0 \leqq \xi<\infty\}$ is a contraction but not transition semi-group.

Now

$$
(e, A x)=x_{1} \sum_{n=1}^{\infty} a_{n}
$$

hence

$$
E=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right) ; x_{1}=0\right\}
$$

It is obvious that $E=E^{+}-E^{+}$.

Mathematical Institute, Tokyo Metropolitan University.

[^0]: 1) A positive linear operator T on X is called a contraction (transition) operator if $\|T x\| \leqq$ $\|x\|\left(\|T x\|=\left\|_{1} x\right\|\right)$ for $x \geqq 0$.
 2) A note on contraction semi- groups, Math. Scand., vol. 3, 1955.
