A NOTE ON CONTRACTION SEMI-GROUPS OF OPERATORS

ISAO MIYADERA

(Received August 31, 1958)

- 1. Let $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ be a one-parameter semi-group of operators from an abstract (L)-space X into itself satisfying the following conditions:
 - (a) For each $\xi > 0$, $T(\xi)$ is a contraction (transition) operator¹⁾.
 - (b) $T(\xi + \eta) = T(\xi)T(\eta)$ for each ξ , $\eta \ge 0$ and T(0) = I.
 - (c) $\lim_{\xi \downarrow 0} T(\xi)x = x$ for each $x \in X$.

Such a semi-group is called a contraction (transition) semi-group of operators. We say that $\Sigma' = \{T'(\xi); 0 \le \xi < \infty\}$ dominates $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ if

$$T'(\xi)x \geq T(\xi)x$$

for each $x \ge 0$ and $\xi > 0$.

We shall deal with the problem on the generation of contraction semi-groups dominating a given contraction semi-group. This problem has been discussed by G.E.H. Reuter²⁾.

2. We shall define a linear functional (e, \cdot) by

$$(2. 1) (e, x) = ||x^+|| - ||x^-|| for each x \in X.$$

An elementary argument shows that (e, \cdot) is a positive linear functional and $|(e, x)| \le ||x||$ for each $x \in X$.

The following theorem is due to Reuter and is a variant of the Hille-Yosida theorem which will be convenient for our purposes.

THEOREM 1. A linear operator A with an dense domain D(A) generates a contraction (transition) semi-group if and only if

(i)
$$(e, Ax) \le 0 (= 0)$$
 for $x \ge 0$ in $D(A)$,

(ii) for each $\lambda > 0$ and $x \in X$, the equation

$$\lambda y - Ay = x$$

has a unique solution $y = R(\lambda; A) x \in D(A)$ and $R(\lambda; A) x \ge 0$ for $x \ge 0$.

We shall first prove the following

¹⁾ A positive linear operator T on X is called a contraction (transition) operator if $||Tx|| \le ||x|| (||Tx|| = ||x||)$ for $x \ge 0$.

²⁾ A note on contraction semi-groups, Math. Scand., vol. 3, 1955.

THEOREM 2. Let A generate a contraction semi-group Σ and let B be a linear operator with domain $D(B) \supset D(A)$. Then A = A + B will generate a contraction (transition) semi-group Σ' which dominates Σ if and only if

(i')
$$Bx \ge 0$$
 for $x \ge 0$ in $D(A)$,

(ii')
$$(e, Bx) \leq -(e, Ax) (= -(e, Ax))$$
 for $x \geq 0$ in $D(A)$,

(iii') any one of the following;

(a')
$$(I - BR(\lambda; A))[X] = X$$
 for each $\lambda > 0$,

(b')
$$\sum_{n=0}^{\infty} \| [BR(\lambda; A)]^n y \| < \infty \text{ for each } \lambda > 0 \text{ and } y > 0.$$

PROOF. The necessity of (ii) follows from Theorem 1, and that of (i') follows from

$$(A+B)x = \lim_{\xi \downarrow 0} \frac{T'(\xi) - I}{\xi} x \ge \lim_{\xi \downarrow 0} \frac{T(\xi) - I}{\xi} x = Ax$$

for $x \ge 0$ in D(A). Since

(2. 1)
$$(\lambda - A')R(\lambda; A)x = (I - BR(\lambda; A))x$$
 for each $x \in X$, $(I - BR(\lambda; A))[X] = (\lambda - A')R(\lambda; A)[X] = (\lambda - A')[D(A)] = (\lambda - A')$ $[D(A')] = X$. Thus we obtain the property (iii'-a').

Conversely, if (i'), (ii') and (iii'-a') hold, then we have that the inverse $(I - BR(\lambda; A))^{-1}$ exists for each $\lambda > 0$ and that $(I - BR(\lambda; A))^{-1}$ is a positive linear operator with domain X.

In fact, if $(I - BR(\lambda; A))x = 0$, then (i') and (ii') together with the equation $AR(\lambda; A) = \lambda R(\lambda; A) - I$ imply that

$$||x|| \le ||BR(\lambda; A)|x|| \le -(e, AR(\lambda; A)|x|)$$

= $||x|| - ||\lambda R(\lambda; A)|x||$.

Hence we get $\lambda R(\lambda; A)|x| = 0$, so that $|x| = (\lambda - A)R(\lambda; A)|x| = 0$. Then the inverse $(I - BR(\lambda; A))^{-1}$ exists for each $\lambda > 0$ and its domain is the whole space X from (iii -a). If $y = (I - BR(\lambda; A))^{-1} x$ ($x \ge 0$), then $y - BR(\lambda; A)y = x \ge 0$. Hence $y^- \le (BR(\lambda; A)y)^- \le BR(\lambda; A)y^-$, so that

$$||y^-|| \le ||BR(\lambda; A)y^-|| \le -(e, AR(\lambda; A)y^-)$$

= $||y^-|| - ||\lambda R(\lambda; A)y^-||$.

This shows that $\lambda R(\lambda; A)y^- = 0$. Therefore $y^- = (\lambda - A)R(\lambda; A)y^- = 0$ and this concludes that $(I - BR(\lambda; A))^{-1}$ is a positive operator.

We define $R(\lambda; A')$ by

$$(2. 2) R(\lambda; A') = R(\lambda; A)(I - BR(\lambda; A))^{-1},$$

then $R(\lambda; A')$ is a positive linear operator with domain X. It follows

directly from (2.2) that

(2. 3)
$$(\lambda - A')R(\lambda; A')x = x$$
 for each $\lambda > 0$ and $x \in X$.

The range of $R(\lambda; A)$ is precisely D(A) since the range of $(I - BR(\lambda; A))^{-1}$ is X. Thus for each $x \in D(A)$ there exists an element y such that $x = R(\lambda; A)y$. By (2. 3),

(2. 4)
$$R(\lambda; A')(\lambda - A')x = R(\lambda; A')(\lambda - A')R(\lambda; A)y$$
$$= R(\lambda; A')y = x$$

for each $x \in D(A)$. This shows that A' satisfies the condition (ii) in Theorem 1. Furthermore it is obvious from (ii') that

$$(e,A'x) \leq 0 \, (=0)$$

for each $x \ge 0$ in D(A). Thus it follows from Theorem 1 that A generates a contraction (transition) semi-group $\Sigma' = \{T'(\xi); \ 0 \le \xi < \infty\}$. It is seen at once dy (2. 2) that $R(\lambda; A)x \ge R(\lambda; A)x$ for $x \ge 0$ and $\lambda > 0$, so that the formula

$$T(\xi)x = \lim_{\lambda \to \infty} \left\{ \exp\left(-\lambda \xi\right) \sum_{n=0}^{\infty} (\lambda^2 \xi)^n [R(\lambda; A)]^n / n! \right\} x$$

shows that

$$T'(\xi)x \geq T(\xi)x$$

for each $\xi \geq 0$ and $x \geq 0$.

Since $(I - BR(\lambda; A))^{-1}$ is a positive linear operator, we have

$$x = (I - BR(\lambda; A))^{-1}y \ge 0$$

for each $y \ge 0$. Hence

(2. 5)
$$x = y + BR(\lambda; A)y + \cdots + [BR(\lambda; A)]^{n-1}y + [BR(\lambda; A)]^n x$$
 and

(2. 6)
$$x \ge BR(\lambda; A) x \ge [BR(\lambda; A)]^2 x \ge \cdots \ge 0.$$

Then there exists the limit $x_0 = \lim_{n \to \infty} [BR(\lambda; A)]^n x$ and $x_0 = BR(\lambda; A)x_0$, so that $x_0 = 0$. Therefore, by (2. 5), we get

$$x = \sum_{n=0}^{\infty} [BR(\lambda; A)]^n y$$

and a fortiori

$$\sum_{n=0}^{\infty} \| [BR(\lambda; A)]^n y \| < \infty.$$

Suppose that b(iii -) holds. Then the series $\sum_{n=0}^{\infty} [BR(\lambda; A)]^n y$ converges

for each $y \in X$ and is equal to $(I - BR(\lambda; A))^{-1}y$, so that (iii'-a') holds. This concludes the proof of Theorem 2.

COROLLARY 1. Let A generate a contraction semi-group Σ , and let B be a linear operator with domain $D(B) \supset D(A)$. Further assume that there exist real numbers $\lambda_0 > 0$ and $\varepsilon_0 > 0$ such that $\|\lambda_0 R(\lambda_0; A)x\| \ge \varepsilon_0 \|x\|$ for all $x \ge 0$. Then A = A + B will generate a contraction (transition) semi-group Σ' which dominates Σ if and only if the conditions (i') and (ii') in Theorem 2 hold.

PROOF. The necessity is obvious. We shall now prove the sufficiency. From (i') and (ii'),

(2. 7)
$$||BR(\lambda; A)x|| \le ||x|| - ||\lambda R(\lambda; A)x||$$
 for $x \ge 0$.

Let us put

$$\mathcal{E}_{\lambda} = \inf_{\|\cdot\| = 1, x > 0} \|\lambda R(\lambda; A) x\| \qquad (\lambda > 0).$$

If $\mathcal{E}_{\lambda} = 0$, then there exists a sequence $\{x_n ; \|x_n\| = 1 \text{ and } x_n > 0\}$ such that $\lambda R(\lambda; A)x_n \to 0$. Then we have $\lim_{n \to \infty} \lambda_0 R(\lambda_0; A)x_n = 0$ by the resolvent equation

$$(2. 8) R(\lambda_0; A) - R(\lambda; A) = -(\lambda_0 - \lambda)R(\lambda_0; A)R(\lambda; A).$$

From this contradiction we conclude that $\varepsilon_{\lambda} > 0$ for each $\lambda > 0$. Therefore we get, by (2. 7),

$$||BR(\lambda; A)x|| \leq (1 - \varepsilon_{\lambda}) ||x||$$

for each $x \ge 0$, so that (iii'-b') in Theorem 2 holds.

COROLLARY 2. Let $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ be uniformly continuous at $\xi = 0$ (if and only if A is a bounded linear operator), and let B be a linear operator with domain D(B) = X. Then A' = A + B will generate a contraction (transition) semi-group Σ' which dominates Σ if and only if the conditions (i') and (ii') in Theorem 2 hold.

PROOF. Since

$$||x|| \le (\lambda + ||A||) ||R(\lambda; A)x||$$
 for each $x \in X$, this corollary follows from Corollary 1.

COROLLARY 3. Let A generate a contraction semi-group Σ , and let B be a linear operator with domain $D(B) \supset D(A)$ satisfying the conditions (i') and (ii) in Theorem 2. Further assume that $BR(\lambda_0; A)$ is completely continuous for some $\lambda_0 > 0$. Then A = A + B generates a contraction (transition) semi-group Σ' which dominates Σ .

PROOF. From the resolvent equation (2. 8),

$$BR(\lambda; A) = BR(\lambda_0; A) + (\lambda_0 - \lambda)BR(\lambda_0; A)R(\lambda; A).$$

Then $BR(\lambda; A)$ is completely continuous for each $\lambda > 0$ since the product of a bounded linear operator and a completely continuous linear operator is completely continuous and since the sum of two completely continuous linear operators is again completely continuous. Since 1 is not eigen-value of $BR(\lambda; A)$, we have by the theorem of F.Riesz that $(I - BR(\lambda; A))[X] = X$, so that (iii'-a') in Theorem 2 holds. Hence this corollary follows from Theorem 2.

3. It is seen at once by using the identity

$$||x + y|| = ||x|| + ||y|| \qquad (x \ge 0, \ y \ge 0)$$

that if a contraction semi-group Σ' dominates a transition semi-group Σ , then $\Sigma' = \Sigma$. Thus if Σ is a transition semi-group, no distinct contraction semi-group dominates Σ .

We now suppose that Σ is a contraction but not transition semigroup. The following theorem is due to Reuter.

THEOREM 3. Let Σ be a contraction semi-group, generated by A. Then the operator A_c defined by

$$A_c x = Ax - (e, Ax)c, x \in D(A)$$
 (with $c \ge 0$ and $||c|| \le 1$),

generates a contraction semi-group Σ_c dominating Σ . Also $\Sigma_{c_1} \neq \Sigma_{c_2}$ if $c_1 \neq c_2$, and Σ_c is a transition semi-group if and only if ||c|| = 1.

PROOF. Let us put

$$Bx = -(e, Ax)c$$
 for $x \in D(A)$,

where $c \ge 0$ and $0 \le ||c|| \le 1$. It is obvious that the assumptions in Corollary 3 hold. Hence $A_c = A + B$ generates a contraction semi-group Σ_c which dominates Σ .

Since Σ was assumed to be not a transition semi-group, Theorem 1 shows that

(3. 1)
$$(e, Ax_0) < 0$$
 for some $x_0 > 0$ in $D(A)$.

Now

$$(e, A_c x_0) = (e, A x_0) (1 - ||c|),$$

so (3. 1) implies that Σ_c is a transition semi-group if and only if ||c|| = 1. If $c_1 \neq c_2$, then $A_{c_1} \neq A_{c_2}$, so that $\Sigma_{c_1} \neq \Sigma_{c_2}$.

LEMMA. Let A generate a contraction (but not transition) semi-geoup Σ , and let B be a linear operator with domain $D(B) \supset D(A)$ such that Bx = 0 for each $x \in E$, where $E \equiv \{x \in D(A); (e, Ax) = 0\}$. If A = A + B generates a contraction semi-group which dominates Σ , then there exists a

non-negative element c_B with $||c_B|| \leq 1$ such that

$$Bx = -(e, Ax)c_B$$

for all $x \in D(A)$.

PROOF. Since Σ was assumed to be not a transition semi-group, Theorem 1 shows that $(e, Ax_0) < 0$ for some $x_0 > 0$ in D(A). Let us put

$$\alpha(x) = \frac{(e, Ax)}{(e, Ax_0)}$$

for each $x \in D(A)$. It is obvious that $x - \alpha(x)x_0 \in E$. Hence

$$Bx = B(x - \alpha(x)x_0) + \alpha(x)Bx_0 = \alpha(x)Bx_0 = -(e, Ax)c_B,$$

where $c_B = -Bx_0/(e, Ax_0)$. By Theorem 2, $Bx \ge 0$ for $x \ge 0$ in D(A) and $||Bx|| \le -(e, Ax)$ for $x \ge 0$ in D(A). Hence $c_B \ge 0$ and $||c_B|| \le 1$. Thus the lemma is proved.

This lemma and Theorem 3 show that if $E=E^+-E^+$, where $E^+\equiv\{x\geq 0 \text{ and } x\in E\}$, then contraction semi-groups dominating Σ are always the type Σ_c in Theorem 3.

In fact, if A+B generates a contraction semi-group Σ' which dominates Σ , then it follows from Theorem 2 that ||Bx|| = 0 for each $x \in E^+$. Hence Bx = 0 for all $x \in E = E^+ - E^+$, so that we have by the lemma,

 $(A+B)x=Ax-(e,Ax)c,\ x\in D(A)$ (with $c\geq 0$ and $||c||\leq 1$). Therefore Σ' is the type Σ_c in Theorem 3.

4. In this section we shall deal with the space (*l*) and we shall assume that Σ is uniformly continuous at $\xi = 0$. ($||T(\xi) - I|| \to 0$ as $\xi \downarrow 0$). We first prove the following

THEOREM 4. Let A generate a contraction (but not transition) semi-group Σ , and let $E \supseteq E^+ - E^+$. Then there exist contraction semi-groups which dominate Σ and which are different from the type Σ_c in Theorem 3.

PROOF. Since A is a bounded linear operator, there exists a non-negative element $(a_1, a_2, a_3, \ldots) \in (l^{\infty})$ such that

$$-\left(e,\ Ax\right)=\sum_{i=1}^{\infty}a_{i}x_{i}$$

for all $x = (x_1, x_2, x_3, \dots) \in (l)$. The set $N \equiv \{i; a_i > 0\} \neq \phi$ since Σ is not transition. In this case

$$E^+ = \{x = (x_1, x_2, x_3 \dots) \ge 0; x_i = 0 \text{ for all } i \in N\}$$

and

$$E^{+} - E^{+} = \{x = (x_1, x_2, x_3 \dots) \in (l); x_i = 0 \text{ for all } i \in N\}.$$

Hence $E^+ - E^+$ is a closed set. By the assumption $E \rightleftharpoons E^+ - E^+$ there exists an element $x' = (x_1', x_2', x_3', \dots)$ such that $x' \in E$ and $x \notin E^+ - E^+$. Thus $0 = (e, Ax') = (e, Ax'^+) - (e, Ax'^-)$ and $(e, Ax^+) = (e, Ax^-) < 0$, so that $N_1 \cap N \neq \emptyset$ and $N_2 \cap N \neq \emptyset$, where $N_1 \equiv \{i; x_i' > 0\}$ and $N_2 \equiv \{i; x_i' < 0\}$.

Let us put

$$b_i = \begin{cases} a_i & \text{for } i \in N_1 \cap N, \\ 0 & \text{otherwise.} \end{cases}$$

We now define a positive bounded linear functional f(x) by

$$f(x) = \sum_{i=1}^{\infty} b_i x_i.$$

The operator f(x)c with $c \ge 0$ and $||c|| \le 1$ satisfies that $f(x)c \ge 0$ for $x \ge 0$ and $||f(x)c|| = (e, f(x)c) \le -(e, Ax)$ for $x \ge 0$, so that it follows from Corollary 2 that Ax + f(x)c generates a contraction semi-group Σ dominating Σ .

On the other hand

$$f(x') = \sum_{i=1}^{\infty} b_i x'_i = \sum_{i \in N_1 \cap N} a_i x'_i = -(e, Ax'^+) > 0,$$

hence Ax + f(x)c is different from the type A_c in Theorem 3. This concludes the proof.

It follows from Theorem 4 the following

COROLLARY 4. Let A generate a contraction (but not transition) semigroup Σ . Then each contraction semi-group dominating Σ is always of the type Σ_c in Theorem 3 if and only if $E = E^+ - E^+$.

Finally we shall show that there exists a contraction semi-group Σ such that $E=E^+-E^+.$

EXAMPLE. Let us put

where $\{a_n\}$ is a sequence such that $a_n \ge 0$ for $n \ge 2$ and $a_1 < -\sum_{n=2}^{\infty} a_n$. It is obvious that A is a bounded linear operator (l) into itself.

We define

$$T(\xi) = \exp \xi A = \sum_{m=0}^{\infty} \xi^m A^m / m!$$
 $(\xi \ge 0).$

 $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ is a semi-group of operators which is generated from the bounded linear operator A. For each $x = (x_1, x_2, x_3, \ldots) \in (l)$,

$$T(\xi) \, x = \left(egin{array}{c} x_1 \, e^{a_1 \xi} \ x_2 - rac{a_2}{a_1} \, (1 - e^{a_1 \xi}) \, x_1 \ dots \ x_n - rac{a_n}{a_1} \, (1 - e^{a_1 \xi}) \, x_1 \ dots \ \end{array}
ight)$$

Since $-a_n/a_1 \ge 0$ for $n \ge 2$ and $1 - e^{a_1 \xi} > 0$, $T(\xi)$ is a positive bounded linear operator. Furthermore, for each $x = (x_1, x_2, x_3, \ldots) \ge 0$,

$$||T(\xi)x|| = \sum_{n=2}^{\infty} x_n + x_1 e^{a_1 \xi} - \frac{a_2 + \dots + a_n + \dots}{a_1} (1 - e^{a_1 \xi}) x_1$$

$$\leq \sum_{n=2}^{\infty} x_n + x_1 e^{a_1 \xi} + x_1 (1 - e^{a_1 \xi}) = ||x||$$

and $||T(\xi)x|| < ||x||$ if $x_1 > 0$, so that $\Sigma = \{T(\xi); 0 \le \xi < \infty\}$ is a contraction but not transition semi-group.

Now

$$(e, Ax) = x_1 \sum_{n=1}^{\infty} a_n,$$

hence

$$E = \{x = (x_1, x_2, x_3, \ldots); x_1 = 0\}.$$

It is obvious that $E = E^{\scriptscriptstyle +} - E^{\scriptscriptstyle +}$.

MATHEMATICAL INSTITUTE, TOKYO METROPOLITAN UNIVERSITY.