# ON THE RELATION BETWEEN HARMONIC SUMMABILITY and summability by riesz means of certain type 

O. P. Varshney

(Recived September 19, 1958)

1. An infinite series $\sum_{n=0}^{\infty} u_{n}$ with partial sums $s_{n}=\sum_{0}^{n} u_{k}$ is said to be summable by Harmonic means [3], if the sequence $\left\{y_{n}\right\}$ tends to a limit as $n \rightarrow \infty$, where

$$
\begin{equation*}
y_{n}=\frac{b_{n} s_{0}+b_{n-1} s_{1}+\ldots \ldots+b_{0} s_{n}}{b_{0}+b_{1}+\ldots \ldots+b_{n}}, \quad\left(b_{n}=\frac{1}{n+1}\right) . \tag{1.1}
\end{equation*}
$$

We write $B_{n}=b_{0}+b_{1}+\ldots \ldots+b_{n}$ so that $B_{n} \sim \log n$.
The main interest of the method lies in the Tauberian theorem associated with it.

ThEOREM A [2]. If $\Sigma u_{n}$ is summable by Harmonic means, and

$$
u_{n}=O\left(n^{-\delta}\right) \quad 0<\delta<1
$$

then $\Sigma u_{n}$ is convergent.
If $\delta=1$, Theorem A reduces to well known Tauber's first theorem, in view of the fact that Harmonic summability implies ( $C, \delta$ ) summability for every $\delta>0$.

$$
\text { If } \left.p_{n} \geqq 0, p_{0}>0, \Sigma p_{n}=\infty \text {, (so that } P_{n}=p_{0}+p_{1}+\ldots \ldots+p_{n} \rightarrow \infty\right) \text {, }
$$ and

$$
\begin{equation*}
t_{n}=\frac{p_{0} s_{0}+p_{1} s_{1}+\ldots \ldots+p_{n} s_{n}}{p_{0}+p_{1}+\ldots \ldots+p_{n}} \rightarrow s \tag{1.2}
\end{equation*}
$$

as $n \rightarrow \infty$, then we say that $s_{n} \rightarrow s\left(R, p_{n}\right)[1, \mathrm{p} .57]$. If we choose $P_{n}=\exp n^{\alpha}$ ( $0<\alpha<1$ ), then the Tauberian condition of Theorem A is also the Tauberian condition of $\left(R, p_{n}\right)$ summability.

The object of this note is to give an indirect proof of Theorem A by proving the following theorem:

ThEOREM I. If an infinite series $\Sigma u_{n}$ is summable by Harmonic means to the sum $s$, then it is also summable $\left(R, p_{n}\right)$ to the same sum, where $P_{n}=\exp n^{\alpha}(0<\alpha<1)$.
2. Let $a_{n}$ be defined by
(2. 1)

$$
\left(1-\sum_{r=1}^{\infty} a_{r} x^{r}\right)\left(\sum_{0}^{\infty} b_{r} x^{r}\right)=1 .
$$

We shall be using the following known relations [2].
(2. 2)

$$
b_{n}=\sum_{r=1}^{n} a_{r} b_{n-r}
$$

(2. 3)

$$
B_{n}=1+\sum_{r=1}^{n} a_{r} B_{n-r}
$$

(2. 4)

$$
a_{n}=O\left(\frac{1}{n(\log n)^{2}}\right)
$$

$$
\begin{equation*}
a_{n}+a_{n+1}+\ldots \ldots=O\left(\frac{1}{\log n}\right) \tag{2.5}
\end{equation*}
$$

In our case $a_{n} \geqq 0$ by Kaluza's theorem [ $1, \mathrm{p} .68$ ].
We shall also need the following lemma :
LEMMA. If $P_{n}=\exp n^{\alpha}(0<\alpha<1)$ and $m<n^{1-\alpha}$, then

$$
\begin{equation*}
\frac{p_{n-m}}{p_{n}}=1+O\left(\frac{m}{n^{1-\alpha}}\right) . \tag{2.6}
\end{equation*}
$$

PROOF .

$$
\begin{aligned}
& \left.\frac{p_{n-m}}{p_{n}}=\left(\frac{n}{n-m}\right)^{1-\alpha} \exp \left\{(n-m)^{\alpha}-n^{\alpha}\right)\right\} \\
& =\left\{1+O\left(\frac{m}{n-m}\right)\right\}\left\{1-O\left(\frac{m}{n^{1-\alpha}}\right)\right\} \\
& =1+O\left(\frac{m}{n^{1-\alpha}}\right)
\end{aligned}
$$

3. Proof of Theorem I. Without loss of generality we may assume that $s=0$. From (1.1) and (1.2), we obtain
(3. 1) $\quad s_{n}=B_{n} y_{n}-\sum_{r=1}^{n} a_{r} B_{n-r} y_{n-r}$,
and

$$
t_{n}=\sum_{k=0}^{n} y_{n} c_{n, k},
$$

where

$$
c_{n, k}=\frac{B_{k}}{P_{n}}\left(p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{n-k} p_{n}\right) \quad \text { for } k=0,1,2, \ldots \ldots n .
$$

For the proof of our theorem it is sufficient to prove [1, p. 43] that
(i) $\lim _{n \rightarrow \infty} c_{n, k}=0$
for each $k$;
(3. 2)
(ii) $\sum_{k=0}^{n} c_{n, k}=\lambda_{n} \rightarrow 1 \quad$ as $n \rightarrow \infty$;
(iii) $\sum_{k=0}^{n}\left|c_{n, k}\right|<H \quad$ where $H$ is independent of $n$.

Since $\Sigma a_{n}$ is convergent and $\frac{p_{n}}{P_{n}}=O\left(\frac{1}{n^{1-\alpha}}\right)$ it is easy to prove (3.2) (i). For proving (3.2) (ii) we observe that

$$
\begin{aligned}
& \frac{1}{P_{n}} \sum_{k=0}^{n} B_{k}\left(p_{k}-a_{1} p_{k+1}-\ldots . .-a_{n-k} p_{n}\right) \\
= & \frac{1}{P_{n}} \sum_{r=0}^{n} p_{r}\left[B_{r}-a_{1} B_{r-1} \ldots \ldots-a_{r} B_{0}\right] \\
= & \frac{1}{P_{n}} \sum_{r=0}^{n} p_{r} \\
= & 1
\end{aligned}
$$

by using (2. 3).
For proving (3.2) (iii) we assume that $n_{0}=\left[n^{1-\alpha+\epsilon}\right]$ and $m_{0}=\left[n^{1-\alpha-\epsilon}\right]$ where $\varepsilon$ is a fixed positive number.

Now

$$
\begin{aligned}
& \sum_{k=0}^{n}\left|c_{n, k}\right|= \frac{1}{P_{n}} \sum_{k=0}^{n} B_{k}\left|p_{k}-a_{1} p_{k+1}-\ldots . .-a_{n-k} p_{n}\right| \\
& \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-n_{0}} B_{k} p_{k}+\frac{1}{P_{n}} \sum_{k=0}^{n-n_{0}} B_{k}\left(a_{1} p_{k+1}+\ldots \ldots+a_{n-k} p_{n}\right) \\
&+\frac{1}{P_{n}} \sum_{k=n-n_{0}+1}^{n} B_{k}\left|p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{n-k} p_{n}\right| \\
&= \Sigma_{1}+\Sigma_{2}+\Sigma_{3}, \text { say } .
\end{aligned}
$$

First we consider $\Sigma_{1}$.

$$
\text { (3. 3) } \quad \Sigma_{1}=O\left(B_{n}\right) \frac{P_{n-n_{0}}}{P_{n}}=O\left(B_{n}\right) \exp \left(-\alpha n_{0} / n^{1-\alpha}\right)=O(1)
$$

Again using (2.3) and (2.5) we have

$$
\Sigma_{2}=\frac{1}{P_{n}} \sum_{k=0}^{n-n_{0}} B_{k}\left(a_{1} p_{k+1}+\ldots \ldots+a_{n-k} p_{n}\right)
$$

$$
\begin{aligned}
& =\frac{1}{P_{n}} \sum_{r=1}^{n-n_{0}+1} p_{r}\left(B_{0} a_{r}+B_{1} a_{r-1}+\ldots \ldots+B_{r-1} a_{1}\right) \\
& +\frac{1}{P_{n}} \sum_{r=n-n_{0}+2}^{n} p_{r}\left(B_{0} a_{r}+\ldots . .+B_{n-n_{0}} a_{r-\left(n-n_{0}\right)}\right) \\
& =\frac{1}{P_{n}} \sum_{r=1}^{n-n_{0}+1} p_{r}\left(B_{r}-1\right)+\frac{1}{P_{n}} \sum_{r=n-n_{0}+2}^{n-n_{0}+1+m_{0}} p_{r}\left(B_{0} a_{r}+\ldots \ldots+B_{n-n_{0}} a_{r-\left(n-n_{0}\right)}\right) \\
& +\frac{1}{P_{n}} \sum_{r=n-n_{0}+2+m_{0}}^{n} p_{r}\left(B_{0} a_{r}+\ldots \ldots+B_{n-n_{0}} a_{r-\left(n-n_{0}\right)}\right) \\
& =O\left(\frac{B_{n} P_{n-n_{0}}}{P_{n}}\right)+O\left(\frac{P_{n-n_{0}+1+m_{0}}}{P_{n}}\right) B_{n-n_{n}+2 \leq r \leq n-n_{0}+1+m_{0}}\left(a_{r}+a_{r-1}+\ldots \ldots+a_{r-\left(n-n_{0}\right)}\right) \\
& +O\left(\frac{P_{n} B_{n}}{P_{n}}\right)_{n-n_{0}+2+m_{0} \leqq r \leqq n}\left(a_{r}+a_{r-1}+\ldots \ldots+a_{r-\left(n-n_{0}\right)}\right) \\
& =O(1)+O(\log n) \exp \left\{-\alpha\left(n_{0}-m_{0}-1\right) / n^{1-a}\right\}+O\left(B_{n} / \log m_{0}\right) \\
& \text { (3. 4) } \quad=O(1) \text {. }
\end{aligned}
$$

Finally

$$
\begin{aligned}
\Sigma_{3}= & O\left(B_{n} / P_{n}\right) \sum_{k=n-n_{0}+1}^{n}\left|p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{n-k} p_{n}\right| \\
= & O\left(B_{n} / P_{n}\right) \sum_{k=n-n_{0}+1}^{n-m_{0}-1}\left|p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{m_{0}} p_{m_{0}+k}\right| \\
& +O\left(B_{n} / P_{n}\right) \sum_{k=n-n_{0}+1}^{n-m_{0}-1}\left(a_{m_{0}+1} p_{m_{0}+1+k}+\ldots \ldots+a_{n-k} p_{n}\right) \\
& +O\left(B_{n} / P_{n}\right) \sum_{k=n-m_{0}}^{n}\left|p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{n-k} p_{n}\right| \\
= & \Sigma_{31}+O\left(\log n / P_{n}\right) \sum_{r=n-n_{0}+m_{0}+2}^{n} p_{r}\left(a_{m_{0}+1}+a_{m 0+2}+\ldots \ldots+a_{r-n+n_{0}-1}\right) \\
& +O\left(\log n / P_{n}\right) p_{n} \sum_{k=n-m_{0}}^{n}\left(1+a_{1}+a_{2}+\ldots \ldots+a_{n-k}\right) \\
= & \Sigma_{31}+O\left(\log n P_{n} / P_{n} \log m_{0}\right)+O\left(B_{n} p_{n} m_{0} / P_{n}\right)
\end{aligned}
$$

(3. 5) $=\Sigma_{31}+O(1)$

Making use of (2.6) we obtain

$$
\begin{aligned}
\Sigma_{31} & =O\left(\log n / P_{n}\right) \sum_{k=n=n_{0}+1}^{n-m_{0}-1}\left|p_{k}-a_{1} p_{k+1}-\ldots \ldots-a_{m_{0}} p_{k+m_{0}}\right| \\
& =O\left(\log n / P_{n}\right) \sum_{k=n-n_{0}+1}^{n-m_{0}-1} p_{k+m_{0}}\left|\frac{p_{k}}{p_{k+m_{0}}}-a_{1} \frac{p_{k+1}}{p_{k+m_{0}}}-\ldots \ldots-a_{m_{0}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O\left(\log n / P_{n}\right) \sum_{n-n_{0}+1}^{n-m_{0}-1} p_{k+m_{0}}\left(1-a_{1}-\ldots \ldots-a_{m_{0}}\right) \\
& +O\left(\log n / P_{n}\right) \sum_{n-n_{0}+1}^{n-m_{0}-1} \frac{p_{k+m_{0}}}{\left(k+m_{0}\right)^{1-\alpha}}\left[m_{0}+\left(m_{0}-1\right) a_{1}+\ldots \ldots+a_{m_{0}-1}\right] \\
& =O\left(\log n / \log m_{0}\right)+O\left(m_{0} \log n / P_{n}\left(n-n_{0}\right)^{1-\alpha}\right) \sum_{n-n_{0}+1}^{n-m_{0}-1} p_{k+m_{0}} \\
& =O(1)+O\left(\frac{m_{0}}{\left(n-n_{0}\right)^{1-\alpha}} \cdot \frac{P_{n} \log n}{P_{n}}\right)
\end{aligned}
$$

(3. 6) $=O(1)$.

Collecting (3. 3), (3. 4), (3.5) and (3. 6) we see that (3. 2) (iii) is also satisfied. This completes the proof of the theorem.

I am indebted to Prof. M. L. Misra for his kind interest and advice in the preparation of this paper.

## REFERENCES

[1] Hardy, G. H., Divergent Series, Oxford, (1949).
[2] IYANGAR, K.S. K., A Tauberian theorem and its application to convergence of Fourier series. Proc. Indian Acad. of Sciences, 18 A (1943), 81-87.
[3] RIESZ, M., Sur l'équivalence de certaines méthodes de sommation., Proc. London. Math. Soc. 22 (1924), 412-419.

