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1. Introduction. Let a(u) be bounded mesurable in every finite interval
of u ^ 0 and let

l Γ
s«(u) = Γ ( ^ _ jy Jo (u - x)aa{x) dx,a>- 1,

σ*(μ) = T(a + l)sΛ(u)/if9 a > - 1,

and let

<Γ-ι(u) = us-ι(u) = ua(u).

If <ra(ιi) —> s as u —> °°, then we say that the integral

(1. 1) [ a(u)du

is evaluable (C, ct), a > — 1, to s and write

(C, α) I a(u)du = 5.

If I I dσa{u) I is finite and σα(^) -* s as u-+ oo9 then we say that the integral
•'0

(1. 1) is evaluable | C, cί, \ a > - 1, to s and write

C9a\ I a(u)du = s.
Jo

Recently, Rajagopal [5] defined the Riemann-Cesaro methods of summability
for integrals. In the following, let p be a positive integer and let oί be a
real number such that a i> — 1. The integral (1. 1) is said to be evaluable
(Ryp,ct) to s if the integral

where

C - I Γ ( α + 1 ) Jo w α P s i n P M ^ - K Λ < / » - l o r Λ = 0 , ί = l ,

1, a = - 1,

converges in some interval 0 < £ < £0 and its limit tends to s as t —* 0 -f .
The purpose of this paper is to establish the summability theorems for inte-
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grals analogous to those for series.

Rajagopal [5 Theorem I(A)] proved the following

THEOREM A. Let 0 ^ # - f l < £ . Suppose that the integral (1. 1) is evaluable

(A) to s and that

f \<rJLx)\dx = CKu).

Then the integral (1. 1) is evaluable (R,p,cέ) to s.

Concerning this Theorem, we have the following two theorems.

THEOREM 1. Let 0 < r + 1 ^ a + 1 < p. Suppose that the integral (1.1)

is evaluable (A) to s and that

ru

(1.3) \σr(χ)\dx'^ O(u)

Then the integral (1. 1) is evaluable (R,ρ,oί) to s.

If the integral (1. 1) is evaluable (C, r) to s, then it satisfies the condition of

Theorem 1. Hence we have

COROLLARY. Let 0<r+l<^a + Kp. If the integral (1. 1) is evalu-

able (C, r) to s, then it is also evaluable (R, p, cί) to s.

THEOREM 2. Let 0 <; a + K r + 1 < p. Suppose that the integral

(1.1) is evaluable (A) to s and that (1. 3) holds. Then the integral (1.1) is

evaluable (R, p, <X) to s, provided that

(1. 4) Sa+1(u) = o(up).

The series analogues of Theorems 1 and 2 are Theorem 3 in the paper [3].

For the series, the condition corresponding to (1. 4) is superflous, reasoning

that the limitation theorem (Hardy [1 Theorem 56]) holds. But the limita-

tion theorem of this kinds does not hold for integrals. In fact, in the section

6, we shall show that there exists a function a{u) defined in (0, oo) such

that the integral (1. 1) is evaluable (C, β) to zero for some β, 0 < β < 1,

while it is not evaluable (i?, p, ά) for p ^ 2 and — 1 <Ξ a < 0. This example

shows that the condition (1. 4) is not dropped in Theorem 2 for p^2 and

— 1 ^ a < 0. On the other hand, we have the following

THEOREM 3. Let 0 <; a + 1 < p. If the integral (1. 1) is evaluable

\C,p\ to s, then it is evaluable (R,p,cί) to s,provided that (1.4) holds. Fur-

ther, if the integral (1.1) is evaluable \ C, 11 to s, then it is also evaluable

(R, 1, 0) to s.

The series analogue of this Theorem is Theorem 4 in the paper [3]. Here,
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also, the supplementary remark to Theorem 2 is needed. In fact, we shall
show, in the section 6, that there exists a function a(u) defined in (0, °°)
such that the integral (1.1) is evaluable | C , ^ | to zero, while it is not eva-
luable (R9ρ, ct) for p Ξ> 2 and — 1 <S a < 0. Theorems 1, 2 and 3 are proved
in the sections 3,4 and 5, respectively. We shall prove, in the section 6,
the following

THEOREM 4. Let p^2. Then, there exists a function a{u) defined in
(0, °°) such that the integral (1.1) is not evaluable (R,p,ct) for any a, — 1
^ a < 0, but it is evaluable (R,p, β) to zero for some β, 0 < β < 1.

In the last section 7, we shall prove the following

THEOREM 5. Let p^S. Then, there exists a function a{u) defined in
(0, oo) such that the integral (1.1) is not evaluable (R,p,a) for any a, — 1
< a < 1, but it is evaluable {R,p, β) to zero for some β, 0 < β < 2.

Concluding this section, we shall state the following two theorems without
the proofs. The methods of the proofs are quite similar to those of series
analogues which are found in the paper [2].

THEOREM 6. Let — 1 ^ a <̂  0 and let p be a positive odd integer. Sup-
pose that

sβ(u) = o(uy), 0 < γ < β,

and

l«U)ί
/ •

Ju

dx = O(zΓ ( 1-δ )),
X

where

0 < δ = p(β - i)/(β + 1 - / > ) < 1.

Then the integral (1. 1) ^ evaluable (R,p,oί) to zero.

THEOREM 7. Lέtf - 1 <: a <; 0 and let p be a positive odd integer. Sup-
pose that

ΓI
J0

-ι(x) I dx = o(up/log u)

and

λ-λ~ΐrL dx = O(u-8), 0 < δ < 1.
Ju X

Then the integral (1.1) is evaluable (R,p,<x) to zero.

2. Preliminary Lemmas.

LEMMA 1. Let 0 <Ξ a + 1 < p and let
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Ku) = a{u) - s (0 ^ « < 1)

= a(u) (l^u< oo).

If the integral (1.1) is evaluable (R,p,a) to s, then the integral

\ b{u) du

is evaluable (R, p, ά) to zero, and conversely.

PROOF. For a = — 1, Lemma is obvious. For a > — 1, let

Then, if w < 1,

and, if u ^ 1,

Hence we have formally, putting φ{x) = OtΓ'sin Λ;)P,

^f u«+iφ{ut)du

where

Therefore, for the proof of Lemma, it is sufficient to prove that

This is easily proved by an elementary calculation.

LEMMA 2. Let φ(x) = Gz^sin xf. Then

(2.1) -^rφ{x)=

and

(2.2) ~j^m-φ(x) =

This is due to Obreschkoff [4].

LEMMA 3. Let 0 < δ < 1 W let
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(2. 3) G(x, t) = £ (μ - x)-S~^φ(ut)du.

where 9>(w)=(sin u/iif. Then, for x > 0 and t > 0,

(2.3) G(x,t)=O(t«)

and,

(2. 4) G(x, t) = O(?-pχ-v).

PROOF. Since

^ ) d { )ί
we have, using (2.1),

(w - x)-*~^φ(ut)du + [(« -

+ / ®(fί - Λ:)"5-1 φ(ut)du

θ ( / (« - ^)-s-1 du)

which is the required (2. 3). On the other hand, using (2,2),

G(x,t) = I (u — x)~8~η φ{ut)du + \_{u — x)~8φ(uty]u=x+iιt

+ δ j (u- x)-*-1 φ(ut)du

a +l/t

-vχ-p

Jxx+llt

which is the repuired (2. 5).

LEMMA 4. Let 0 < δ < 1 α«J /** m = 1, 2, 3, Then, for x > 0

tffl<i ί > 0, ίΛe function G(x, t), defined in Lemma 3, has the following

properties:
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(2. 5) -^5Γ G(x, i) = I (it -

dm

(2.6) dx"

(2. 7) i^ G ^>')

PROOF. The property (2, 5) is easily proved by an elementary calculation.

Further, for m = 1,2,3, ,

Therefore, by the method analogous to one which we obtained Lemma 3,
the properties (2. 6) and (2.7) are proved.

LEMMA 5. Suppose that the integral (1.1) is evaluable (A) to s and (1. 3)
holds. Then

(2.8) <rr+i(u) = O(l), as u -> oo,

αwύ?, for S > 0,

(2. 9) σr+ι+£u) -> 5, as «-> oo.

PROOF. Rajagopal [5; Lemma 6] proved (2.8) and

(2.10) Cr+zW) -* s> as u-+ oo.

Then, by the well-known theorem, (2. 8) and (2.10) imply (2. 9).

3. Proof of Theorem 1. Since Theorem in which r = a is Theorem
A, we shall consider the case r < a. Let (1.3) hold. Then, K denoting a
constant, depending only a and r, which is not necessarily the same on any
two occurrences, for 0 < r < Λ < r + l,

Γu\s (x) 1 ΓM
 J Λ : ΓX

σ.Gr)| Ac = *:Jo ^ ^ T 1 ^ ^ ^ J o - p - Jo (x - y)-'-1 \sr(y)\ dy

& κ[\sXy)\ dy[ (.u - y^dy

- K a— JΓ (JΓ \σlχ)\ dx)yr-«~Λ dy

= O(u) + O(u*+r ( yr~* dy) = O(u).
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For a < 0, we see easily

jo \σΛ(χ)\dx = CKu).

Therefore, if (1.3) holds, we see that, for Λ, a > r, (1.3) holds when r

replaced by cί. Then Theorem follows obviously.

4. Proof of Theorem 2. Since r + 1 < />, we take S such that

r + l < r + l + ε < p .

Then, by Lemma 5,

σr+ί+ΐ(u) -*s, as u -+ oo.

On the other hand, by the method of the proof of Theorem 1, we see that

(1. 3) implies, for £ > 0,

\σr+e(u)\du=O(u).

Therefore, in our Theorem, the condition that the integral (1.1) is evaluable

(A) to s may be replaced by

(4.1) <rr+ι(u) -* s, a s u -• oo.

For the proof, we may suppose, without loss of generality, that 5 = 0, by

Lemma 1, and

(4. 2) r + 1 < p < r + 2.

We take an integer q such that r ^ a + q<r+l. Then q >̂ 1. Now, by

the Riesz theorem [6], (1. 4) and (4.1) imply

for 0 ^ v ^ r — a. Then we have, as M - > W for a fixed t > 0,

for 1 ^ z> 5S <Z Hence, by the integration by parts,

(4. 3) Γsjίu)φ(ut)du = Γ έ ( - ιγ+is.M-f^

Γ dQ

r dq

We shall now consider the case r < a \- q < r + 1, since the case r = ct

+ q may be easily deduced by the following argument. By the well-known
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formula

we have

/„ s«^u)

, Γ d"

Here, we shall prove that this interchange is legitimate. For this purpose,
it is suffcient to prove that, for a fixed t > 0,

7(JV) = sr(x)dx {u- xy^-1"1-^ ψ{ui)du = o(l), as N

rite

7(iV) = dx du+ dx\ du = U

Let us write

Then, by (1.3) and (2.2),

= o(f 15̂ )1 d

= O{ u-v du \sXx)\(u - xT+q-"-1

£ «-*(« - NT**-'-1 duj \sr{x)\dx)

(u - N)"+q-r-]du)

Since, for x, 0 ̂  x :£ JV

q-r-l)f (« - ^ ) β + 9 - r - 2 -

θ ( f (a - a:)a+3-r-2M-p du)
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= O(N-") +

we have

I,(N) =θ(N-pfg I sr(x) I dx) = O(Nr+ι-»),

and then

I(N) = O(Nr+1~p) = o(l), as N-+ oo,

by (4. 2), which is the required. Therefore, for the proof of Theorem, it is
sufficient to prove that

r(x)dxfχ (u - x)«+q-r-ι-£cΓ<p(ut)du

converges in 0 < t < t0 and its limit tends to zero as /-*0+". Let us
write

*α+1f sr(a:)dxί (u-xy+q-r-ι~yτφ(ut)du= f sr(x)H(x,t)dx

= [{o dx + j^ dx) = C/(ί) + F(4

where Λf = JV/ί, iV being an arbitrary fixed positive number, and

H(x, t) = ία+

Since 0 < r + 1 — α — ς < l , by Lemmas 3 and 4, we get, for n — 0,1, 2, ,

(4. 4) ^ H ^ ') = O(ί"+ r + I)

and

(4. 5) -~- H(x, i) = O(tn+'^-»x-*).

Hence, using (4.1) and (4. 4),

U(t)= sr(x)H(x,t)dx

ΓM d
= [sr+ι(x)H(x, Olίlo - Jo ί r« (a:) " ^ H(Λ:, t)dx

xr+1 -"dx)

= o{Nr+1)

since r + 2 — p > 0, by (4. 2). On the other hand, by (1. 3) and (4. 5),
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V(t) = O^-'JjsXxVx-" dx)

Therefore we get

Γsr(x)H(x,t)dx = o(l)

as t -> 0 +. Since N is arbitrary, we have

lim f sr(x)H(x, i)dx = 0,

and Theorem is completely proved.

5. Proof of Theorem 3. The method of the proof is analogous to one

of Theorem 3 in the paper [3], so that we shall sketch the outline of the

proof. We shall consider the case in which oί is not an integer, the case

in which a is an integer being easily proved by the method analogous to

the following argument. For the proof, we may suppose, without loss of

generality, that s = 0 by Lemma 1. Let β be the greatest integer less than

a. Then, by the integration by parts, putting φ(x) = (x~ι sin.r)p, for a

fixed t > 0,

Γsa(u)φ(ut)du =

jp-β-l

p-β-ι φ(ut)du.

By the summability | C, p \ of the integral (1,1), sp(x) = o(xv) and then, using

Riesz's convexity theorem [6], by (1, 4), for v such that a + 1 <Ξ v < p>

sv(x) = o(xp).

Hence, by (2. 2),
P-β-l j v - l p-β-l

Therefore, for the proof, it is sufficient to prove that the integral

*p+*-β-i(u) r p-β-ι ψ(ut)du
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converges in some interval 0 < t < tQ and its limit tends to zero as £->0 + .
This is proved by the quite same method to one of the proof of Theorem
3 in the paper [3]. Thus Theorem is proved.

6. Proof of Theorem 4 For the proof, we need the following

LEMMA 6. Let

(6.1) 0<ξ<v, 0 ^ a < ^ and ~J~~~ < β < 1.

Then, there exists a function a{u) defined in (0, oo) such that

Γ l
(6.2) T(a+Ϊ)sa(u) = I (u-χ)aa(x)dx^~w~up+%

Jo £
h*//f-tS/ %s tl/ TCJ l-», V , >

and η,

(6.3)

and

(6.4)

PROOF. Let

(6.5)

(C,

(C,

= 1 (0

Λ(W)JW =• 0

a{u)du = 0.

= - 2"n
 (Λ ^ α < Λ + 1, Λ = 1, 2, 3,

Then

f έ(wVw = 0 and f ) b(u) \du = 2.
Jo Jo

Therefore, by the well-known theorem, for γ > 0,

(6. 6) (C, y) ί b{u)du = 0 and ] C, y ( f £(«>*« = 0.
Jo Jo

Thus

(6. 7) 7\(iO

On the other hand, for n 5Ξ u <. n + 1, n = 1, 2, 3, ,

To(«) = 7X«) = 21"" - 2-M(M - π) > 0.

We shall now define the function a(u). Let, for n = 4, 5,6,

α(w) = 6(«), (0 ^ « < 4, n + ±n-v-n ^ u < n + 1),

(6. 8) = 4 - w^t"1'^ - 21""), (» ^ «• < n + 2»-3)-"),
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Then, for n = 4, 5, 6, ,

slu) = s(u) = T(«) (0 ^ « < 4, rc + 4*-*-* ̂  w < ^ + 1)

(6. 9) ^ I Γ ^ (* + n'P'v <u<n + 3n'p-η)

Thus (β. 2) for tf = 0 holds. For a > 0, by the integration by parts,

l Γ

Since s(x) > 0 for all x, when » + 2n-p~η ^ u <: n + Sn"p'n,

Γ
sa(u) ^ a ^p_η{u - x)«-λs(x) dx

~ 2 '

by (6. 9). Thus, when n + 2n~p'v SuSn + 3n'p'\

where 8 = ξ - #(/> + 17) > 0 by (6. 1). This proves (6. 2) for a > 0. On the
other hand, using (6. 9) and putting p = [u], for 0 < /S < 1,

P-1 \n+in-P-V

^βΣ (u - xf-ιs{x)d
TO-4 J w

+ /8 f (a - αry-'War) - Γ

p - 1

= o(uβ),
^ W = 4 '

by (6.1). Then, using (6. 6),

sβ(u) = o(wβ),

which proves (6.3). Lastly we shall prove (6.4). Let
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Then, by (6. 6),

<6.10) ί \dr(u)I = f I τ'(«) I du = O(l),
J o Jo

where

~

Let

[ I σ(χ) I dx - f I τ%r) I J.z g f 1 σ\χ) - r'(x) \ dx
JQ JQ JQ

o u

say. Then, by (6. 9),

~ rn+ι 1 V^Λ 1 Γ
2 — Z_^ I \S\U) — 1 vUjjCtU ^ / , I

(u) - T(u))du

n+4n~-p-V

-«> = 0(1),

since η > ξ. Concerning Jl9 when

l ru l n

u2 Jo === ^2 ^T^

where δ is a positive constant depending only ξ and η. Hence

Jι = Σ f"+1 ( T Γ f(s(x) - τ(x))dx)du = o ( Σ »-ι-«) = o(i).

Thus

Therefore, using (6.10),

I \σ'(χ)\dx = Jo [JσU)| = O(l),

which proves (6. 4).

PROOF OF THEOREM 4 For any a, - 1 <; a < 0, we take £ and 97
such that

0 <ξ <η and
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We shall now define the function a(u) by (6. 8). Then, by Lemma 6,

( 6 . 1 1 ) T(a + 2)sa+ι(u) ^^γup+% (n + 2n-
p-η < u < n + 3n'p-η)

where n = 4, 5, 6, and £ is a positive constant depending only on a,p, ζ

and η, and, when , , .. < /8 < 1,

(6. 3) (C, 0) f α(M)A* = 0.

Hence, by Corollary of Theorem 1, the integral (1.1) is evaluable (R9p,β)

to zero, when p ^ 2 and ~Γ~T — — < β <]_. But the integral (1.1) is not

evaluable (2?, />, tf). In fact, putting φ(u) — (u~ι sin u)v

9 by the integration by

parts,
,N *N d

Scίu)φ(ut)du = tΛ+1sΛ+ι(N)φ(tN) - f+ι sΛ+ι(u) "7~ φ(ut)du,
JQ &U

where, as was shown in the proof of Theorem 2, the last term

" . . d . .

converges as N-*• °°, in some interval 0 < t < t0, while, by (6.11),

<-+1ίu+, (N)φ(tN)

is divergent as JV—• oo? in an arbitrary interval 0 < t < t0. Therefore the

integral (1.1) is not evaluable (R,p,ά). Thus the proof is complete.

REMARK. AS was shown in the proof of Theorem, the integral (1.1) in

which a(u) is defined by (6. 8) is evaluable (C, β) for some β, 0 < β < 1, and

is evaluable \C9p\ to zero by (6. 4), while, for any a9 — 1 ^ a < 0, the in-

tegral (1.1) is not evaluable (R,p,a). Thus, the condition (1.4) is not

dropped in Theorems 2 and 3 when — 1 ^ a < 0 and p^2.

7. Proof of Theorem 5. For the proof, we need the following

LEMMA 7. Let

(7.1) 0 < ξ < v < 2f, 1 ^ a < 1 + ^ ~ | and -p^j~ < β < 2.

Then, there exists a function a(u) defined in (0, oo) such that

(7. 2) 5α"(u) > wp+β, {n + \n-v-t <u<n+ 2n~p'ξ),

where n = 4, 5,6, and B is a positive constant depending only on ct,p9 ξ

and η, and
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(7.3) (C,β)f a(u)du = 0.
•Ό

PROOF. Let the function b(u) be defined by (6. 5) and let the function
a(u) be defined by

a(u)=2np+VP+" - 2-n), (n ίS u < n + »"'-*)

(7. 4) = -np+K2n*p+η-3 2 ' -"+3 21'V""-*) (n + 2^"'* ^ u < n +

= np+K2n2P+''-2t-n + 2i-'ιn-p-t\ (n + ZnΓ^ ^u<n +

= b(u), elsewhere,

where n = 4, 5, 6, Then, when n + n'"'* <u <n + 2«~p~ί,

(7. 5) J:(«) = f s(x)dx > ί s(x)dx > Γ+" s(x)dx = «"*-*,
•'O Jn **n

which proves (7. 2) for Λ = 1. When w ̂  w ̂  ^ 4- 4n~p~*,

(7. 6) 0 < ^(tt) = ί s(x)dx + ί 5 ^ ) ^ ^ 2 - J r + 4~"~*~WP+

and, when 0 ^ « < 4 o r » + 4n~" ( ^ u < n + 1, n = 4,5, 6,

(7. 7) ,,(«) = Γ,(«).

We shall now prove (7. 2) for a > 1. When ft -f — ^" p " έ < u < n + 2/ΓF~έ,

using (7. 5),

Γ
T(a + l)sa(u) = a(a - 1) (« - ^ - ^ U X / r

> a(a - 1) f (» - ^ ^ . ( x ) ^
Jn+n—p—ξ

> anp+η-<!(u - n - n T " ' * ) * - 1

- 1

_. 21~(*ctnp+v ^~(α5~1
_. 21~(*ctn

where £ = 77 - ^ — (Λ — 1) (p + ξ) > 0 by (7.1), which proves (7. 2). Next

we shall prove (7. 3). Using (7. 6) and (7. 7), putting p = [u],

Γ(/3 + 1)(^) - Tβ(u)) = β(β - l)J\u - x H
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J

/ p " τ

since, by (7. 1),

/> + η - ξ + 1 - (β - 1) (/> +̂  £ ) < β.

Since, by (6. 7), T8(w) = o(wβ), we have sβ(u) = o(wβ), that is, (7. 3) holds.
PROOF OF THEOREM 5. The case in which — 1 <Ξ a < 0 is proved by

Theorem 4. Hence we shall prove for the case in which 0 ^ ct < 1. For
any cc, we take f and η such that

' •'O'< f <ίy < 2 f and 1 ^ Λ + 1 < 1 + ~—f.

We shall now define the function a(u) by (7. 4). Then, using Lemma 7, the
proof runs similarly to one of Theorem 4.
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