ARITHMETIC OF GROUP REPRESENTATIONS

SHUICHI TAKAHASHI

(Received January 15, 1959)

Let $\mathfrak G$ be a finite group, k be an algebraic field of finite degree over the field of rationals $\mathbb Q$. In a representation space V over k we consider a $\Gamma = \mathfrak O[\mathfrak G]$ -lattice (Gitter) M in V which is a regular $\mathfrak O$ -right module and $\mathfrak G$ -left module where $\mathfrak O$ is the ring of integers in k. The set of all Γ -lattices which we denotes by $\{M; k/\mathfrak O\}$ can be classified into Γ -isomorphic Γ -lattices in the following way:

$${M; k/0} = {M_1; 0/0} + \dots + {M_c; 0/0}.$$

If $k = \mathbf{Q}$ is the field of rationals and V is irreducible, this class number is always finite and was proved by C. Jordan [13]¹⁾.

In the book of Speiser [20] this theorem was proved only in two special cases, namely, $^{\mathfrak{G}}$ is a cyclic group or V is absolutely irreducible. The reason for this may be explained by the following considerations.

Let $\mathfrak p$ be a finite or infinite prime. We can consider $\mathfrak p$ -extension $M_{\mathfrak p}$ of the Γ -lattice M and put

$$\{M_{\mathfrak{p}}\,;\;k_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}\,=\,\{M_{\mathfrak{p}}^{(1)};\;\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}\,+\ldots\ldots\ldots+\,M_{\mathfrak{p}}^{(j)};\;\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}.$$

The local class number $j = j(\mathfrak{p})$ is always finite and = 1 if \mathfrak{p} does not divide the order $g = \# \mathfrak{G}$ of the group \mathfrak{G} .

If we define genus of M as

$$\{M\,;\,\widetilde{\mathfrak{o}}/\mathfrak{o}\} = \bigcap_{\mathfrak{p}} \{M\,;\,\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}\}$$

then the number of genera in all Γ -lattices in V is

$$j = \prod_{\mathfrak{p} \mid g} j(\mathfrak{p})$$

and is finite (\S 7). If M is absolutely irreducible we have

$$c = j$$
 (§ 10).

On the other hand, number of classes in a genus is expressible as a kind of class number of a suitable algebraic group (§9), which was considered by T. Ono [17] and its finiteness was proved for commutative case by him. Simple considerations show that if $\mathfrak G$ is cyclic and $k=\mathbf Q$

¹⁾ Number in the bracket refers to the bibliography at the end of this paper.

$$j = 1$$
$$c = h$$

where h is the class number of the field of g-th roots of unity. General cases are somewhat complicated but relate with class number of a suitable algebraic extension K/k (§11).

After this investigation was almost completed, the author found papers by Maranda [15], [16]. He introduced the concept of genus and its product formula (§§7-8), but his definition is a global one and its locality and hence equality with my definition was not proved by him.

Finally, I must express my hearty thanks to Prof. Tannaka for his kind advices and encouragement during the preparation of this paper.

CONTENTS

- 1. Preliminaries on lattices (Gitter).
- 2. Representations by lattices.
- 3. Reducibility of representations.
- 4. Some cohomology groups.
- 5. Maschke pair.
- 6. Representations in p-adic fields.
- 7. Equivalence theory of Γ -lattices.
- 8. Genus of representations.
- 9. Class number in a genus.
- 10. Absolutely irreducible representations.
- 11. Irreducible representations.
- 12. Some examples.

NOTATIONS

S: finite group.

k: algebraic number field of finite degree over the rational field Q.

o: ring of integers in k.

 $\Gamma = \mathfrak{o}[\mathfrak{G}]$: group ring of \mathfrak{G} over \mathfrak{o} .

V: vector space of dimension m over k; mostly Γ -space.

A(x): representation of \mathfrak{G} by GL(V; k).

M: lattice in V; mostly Γ -lattice.

- 1. Preliminaries on lattices (Gitter). By a lattice in an algebraic field k we mean an 0-module M contained in a definite vector space V over k such that
 - 1) M is a finitely generated v-module,
 - 2) M generates over k the vector space V i.e. Mk = V.

Or, equivalently, a lattice is a regular v-module i. e.

- 1') M' is a finitely generated v-module,
- 2') $u \in M'$, $\alpha \in 0$, $u\alpha = 0$ imply u = 0 or $\alpha = 0$.

Namely, a lattice M in former sense is of course a regular \mathfrak{o} -module and regular \mathfrak{o} -module M' is a lattice contained in the vector space M'k = V' of k-extension of M'.

Let \mathfrak{p} be a prime in k. Assume first \mathfrak{p} is finite. $k_{\mathfrak{p}}$, $\mathfrak{o}_{\mathfrak{p}}$ denote respectively \mathfrak{p} -adic completion of k and \mathfrak{p} -adic integers in $k_{\mathfrak{p}}$. If M is a lattice in k, then its \mathfrak{p} -adic extension

$$M_{\mathfrak{p}}=M_{\mathfrak{d}_{\mathfrak{p}}}$$

is a lattice contained in the vector space $V_{\mathfrak{p}} = V k_{\mathfrak{p}}$. For infinite prime \mathfrak{p}_{∞} , we simply put

$$M_{v\infty} = V_{v\infty}$$

in accordance with the convention $\mathfrak{o}_{\mathfrak{p}\infty}=k_{\mathfrak{p}\infty}$

PROPOSITION 1.1. If M is a lattice contained in V, then

$$M = \bigcap_{\mathfrak{p}} (V \cap M_{\mathfrak{p}})$$

where the intersection extends over all finite and infinite primes in k.

A proof is found in Eichler²⁾ [10] and almost clear if we assume Stenitz's basis theorem³⁾.

PROPOSITION 1.2. Let v_1, \ldots, v_m be an arbitrary k-basis of V. Then for any lattice M in V we have

$$M_{\mathfrak{p}} = v_{\mathfrak{1}}\mathfrak{d}_{\mathfrak{p}} \oplus \ldots \oplus v_{\mathfrak{m}}\mathfrak{d}_{\mathfrak{p}}$$

except for a finite number of primes in k.

For, by Steinitz's basis theorem

$$M = u_1 \mathfrak{0} \oplus \ldots \oplus u_{m-1} \mathfrak{0} \oplus u_m \mathfrak{a}$$

with an ideal a in k. For a prime not in a we have

$$M_{\mathfrak{p}}=u_{\mathfrak{1}}\mathfrak{o}_{\mathfrak{p}}\oplus\ldots\ldots\oplus u_{m}\mathfrak{o}_{\mathfrak{p}}.$$

Since (u_1, \ldots, u_m) and (v_1, \ldots, v_m) are two k-basis of V, they are connected by a regular matrix in k which is \mathfrak{p} -unimodular (i. e. a matrix in $\mathfrak{o}_{\mathfrak{p}}$ whose determinant is a \mathfrak{p} -unit) except for a finite number of primes in k.

PROPOSITION 1.3. To each prime $\mathfrak p$ put $M^{(\mathfrak p)}$ for a lattice in $V_{\mathfrak p}$ such that except for a finite number of primes

²⁾ Eichler [10], §12, Satz 12.1.

³⁾ For example: Eichler [10], §12, Satz 12.5.

$$M^{(\mathfrak{p})} = v_1 \mathfrak{o}_{\mathfrak{p}} \bigoplus \ldots \ldots \bigoplus v_m \mathfrak{o}_{\mathfrak{p}}$$

where v_1, \ldots, v_m is a k-basis of V. Then the intersection

$$M = \bigcap_{\mathfrak{p}} (V \cap M^{(\mathfrak{p})})$$

over all primes in k, is a lattice in V such that

$$M_{\mathfrak{p}} = M^{(\mathfrak{p})}$$

for all primes in k.

PROOF. Put $M' = v_1 0 \oplus \ldots \oplus v_m 0$. Since $M'_{\mathfrak{p}} = M^{(\mathfrak{p})}$ except for a finite number of primes. We can fined $\gamma, \gamma' \in \mathfrak{0}$ such that

$$M^{(\mathfrak{p})} \gamma \subseteq M'_{\mathfrak{p}} \subseteq M^{(\mathfrak{p})} \gamma'$$

for all primes in k. From $M \subseteq M'$ γ^{-1} , M is a finite 0-module. On the other hand, $M' \subseteq M \gamma$ implies M k = V. Therefore M is a lattice in V. Next, $M \subseteq M^{(p)}$ implies $M_p \subseteq M^{(p)}$ for all primes in k. Take $u \in M^{(p)}$ arbitrarily, put u_1, \ldots, u_n $(n \ge m)$ for an 0-generator of M, secured by first part of the proof. We have

$$u = u_1 \alpha_1 + \ldots + u_n \alpha_n$$

with $\alpha_i \in k_{\mathfrak{p}}$.

From approximation theorem on valuations, we can take $\beta_i \in k$ such that

$$oldsymbol{eta}_i \equiv oldsymbol{lpha}_i \,\,(\mathfrak{o}_{\scriptscriptstyle \mathfrak{v}})$$

$$\beta_i \equiv 0 \ (\mathfrak{o}_{\mathfrak{p}'}) \ \text{for all primes} \ \mathfrak{p}'(\ \ensuremath{\rightleftharpoons}\ \mathfrak{p}) \ \text{in} \ k.$$

Then

$$v = u_1 \beta_1 + \ldots + u_n \beta_n$$

is a vector in V such that it is contained in $M^{(\mathfrak{p})}$ and $M^{(\mathfrak{p}')}$ for any prime $\mathfrak{p}' + \mathfrak{p}$, i.e.

$$v \in \bigcap_{\mathfrak{p}} (V \cap M^{(\mathfrak{p})}) = M.$$

On the other hand, we have

$$u = v + \sum_{i=1}^{n} u_i (\alpha_i - \beta_i)$$

with $v \in M$, $\alpha_i - \beta_i \in 0$. This means $\sum_{i=1}^n u_i(\alpha_i - \beta_i) \in M_{\mathfrak{p}}$ and finally $u \in M_{\mathfrak{p}}$. qe. d.

2. Representations by lattices. Let \emptyset be a finite group and $\Gamma = \mathfrak{o}[\emptyset]$ be the group ring over \mathfrak{o} . Assume now V is a Γ -left space over k. Any element $x \in \emptyset$ is represented by an automorphism

$$A(x) \in GL(V; k)$$

of the vector space V. Symbolically xV = VA(x).

By a Γ -lattice in V, we mean a lattice M such that

$$MA(x) \subseteq M$$

for all $x \in \mathfrak{G}$.

To a Γ -lattice M we can associate a finite set of matrix representations in the following way. Let v_1, \ldots, v_m be a k-basis of V, since M is a lattice in V by Prop. 1.2, except for a finite system of primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ we have

$$M_{\mathfrak{p}} = v_1 \mathfrak{o}_{\mathfrak{p}} \oplus \ldots \oplus v_m \mathfrak{o}_{\mathfrak{p}}.$$

For exceptional \mathfrak{p}_i $(i = 1, \ldots, r)$ we can put

$$M_{\mathfrak{p}_i} = v_{i1}\mathfrak{o}_{\mathfrak{p}_i} \oplus \ldots \oplus v_{im}\mathfrak{o}_{\mathfrak{p}_i} \qquad i = 1, \ldots r$$

since o, are principal ideal domains.

Put

$$xv_i = \sum_{j=1}^m v_j a_{ji}^0(x)$$
 $a_{ji}^0(x) \in k$

$$xv_{ij} = \sum_{l=1}^{m} v_{il} a_{lj}^{i}(x)$$
 $a_{lj}^{i}(x) \in \mathfrak{O}_{\mathfrak{p}_{i}}$

then matrices:

$$A_i(x) = (a_{ij}(x))$$
 $i = 0, 1, \dots, r$

are (r+1)-matrix representations of the group \mathfrak{G} such that $A_i(x)$ $(i=1,\ldots,r)$ are k_{ν_i} -equivalent to $A_0(x)$. Notice that the elements $a_{ij}^0(x) \in k$ are integral for all prime $\mathfrak{p} + \mathfrak{p}_i(i=1,\ldots,r)$.

Conversely given a matrix representation $A_0(x)$ in k and \mathfrak{p}_i -adic integral matrix representations $A_i(x)$ $(i=1,\ldots,r)$ which are $k_{\mathfrak{p}_i}$ -equivalent to $A_0(x)$ for any prime \mathfrak{p}_i for which $A_0(x)$ is not necessarily \mathfrak{p}_i -integral. Then we can fined a Γ -lattice M whose associated matrix representations are given $A_i(x)$ $(i=0,1,\ldots,r)$. Namely, if v_1,\ldots,v_m be a k-basis of the vector space V, we put

$$M^{(\mathfrak{p})} = v_1 \mathfrak{o}_{\mathfrak{p}} \bigoplus \ldots \ldots \bigoplus v_m \mathfrak{o}_{\mathfrak{p}} \qquad \mathfrak{p} + \mathfrak{p}_i \ (i = 1, \ldots, r)$$

with &-left operation:

$$xv_i = \sum_{j=1}^m v_j a_{ji}^0(x)$$

where $(a_{ji}^0(x)) = A_0(x)$. For an exceptional prime \mathfrak{p}_i let R_i be a regular matrix in $k_{\mathfrak{p}_i}$ such that

$$A_i(x) = R_i^{-1} A_i(x) R_i$$

and put

$$M^{(\mathfrak{n}_i)} = v_{ij}\mathfrak{o}_{\mathfrak{p}_i} \oplus \ldots \oplus v_{im}\mathfrak{o}_{\mathfrak{p}_i}$$

where

$$(v_{i1}, \ldots, v_{im}) = (v_1, \ldots, v_m)R_i$$

is a $k_{\mathfrak{p}_{\iota}}$ -basis of $V_{\mathfrak{p}_{\iota}}$.

Then by Prop. 1.3

$$M = \bigcap_{\mathfrak{p}} (V \cap M^{(\mathfrak{p})})$$

is a desired Γ -lattice in V.

3. Reducibility of representations. We consider now reducibility of a Γ -lattice M in connection with reducibility of matrix representation by the vector space V = Mk.

LEMMA 1. Let M, N be two regular 0-modules. Then we have $(M \cap N)k = Mk \cap Nk$.

PROOF. From $M \cap N \subseteq M$ and $M \cap N \subseteq N$, it is obvious that $(M \cap N)$ $k \subseteq Mk \cap Nk$.

Let $a\alpha = b\beta \in Mk \cap Nk$ with $a \in M$, $b \in N$, α , $\beta \in k$ be given. Take $\gamma \in 0$ such that $\alpha\gamma \in 0$, $\beta\gamma \in 0$, then $a\alpha\gamma = b\beta\gamma \in M \cap N$ and $a\alpha = (a\alpha\gamma)\cdot\gamma^{-1} \in (A \cap B)k$.

We say that a submodule N of a regular v-module M is primitive in M if one of the following, equivalent, condition is satisfied:

- 1) $Nk \cap M = N$,
- 2) Quotient module M/N also is a regular $\mathfrak{0}$ -module,
- 3) $a \in M$, $a\alpha \in N$ with $\alpha \in k$. $\alpha \neq 0$ imply $a \in N$.

LEMMA 2. If N is a primitive submodule of A, then naturally $(M/N)k \simeq Mk/Nk$,

PROOF. The map $\varphi: M/N \to Mk/Nk$ defined naturally by $\varphi(a) = a$ for $a \in M$ is into isomorphic by the primitivity of N in M. (e. g. by 3)). Therefore it remains to show that M/N contains as many linearly independent elements as that of Mk/Nk. But this is obvious since any elements a_1, \ldots, a_r of M that are linearly independent mod Nk are a priori linearly independent mod N.

Now we define reducibility of a Γ -lattice M as follows:

M is reducible if it contains a primitive submodule N neither 0 nor M such that N itself is also a Γ -lattice in Nk = W.

PROPOSITION 3.1. A Γ -lattice M is reducible if and only if the matrix representation defined by V=Mk is reducible.

PROOF. Assume first M is reducible, then there exists a primitive submodule N. Nk is a subspace of Mk = V neither 0 nor V by primitivity of N in M. Of course Nk is a Γ -space and therefore V is reducible.

Next, let Mk = V be reducible, then there exists a Γ -subspace $W \subset V$ different from 0 or V. Put $N = W \cap M$. As a submodule of M, N is a regular 0-module. By lemma 1 Nk = W, it follows that N is a primitive submodule of M. Since N is a Γ -module, M is reducible. q. e. d.

4. Some cohomology groups. Let $A_1(x)$, $A_2(x)$ be two representations of the group \mathfrak{G} by matrices of degree r, s respectively with elements in a commutative ring R with unity element. We now define cohomology groups $H^n(\mathfrak{G}: A_1, A_2)$ as follows:

n-cochains are functions $E(x_1, \dots, x_n)$ from $\mathfrak{G} \times \dots \times \mathfrak{G}$ (*n*-factors) to $R_{r,s}$ where $R_{s,r}$ denotes the set of all matrices consist of *r*-rows and *s*-columns with elements in R.

Coboundary operations are defined by

$$\begin{split} \delta E(x_1, \, \ldots, x_{n+1}) &= A_1(x_1) E(x_2, \, \ldots, x_{n+1}) \\ &+ \sum_{i=1}^n (-1)^i E(x_1, \, \ldots, x_i x_{i+1}, \, \ldots, x_{n+1}) \\ &+ (-1)^{n+1} E(x_1, \, \ldots, \, x_n) A_2(x_{n+1}) \\ &= 0, 1, 2, \, \ldots . \end{split}$$

From these, cohomology groups are defined as usual

$$H^{n}(\mathfrak{G}; A_{1}, A_{2}) = n\text{-cocycle}/n\text{-coboundary}$$
 $n = 0, 1, 2, \dots$

Obviously,

PROPOSITION 4.1. The set $H^0(\mathfrak{G}; A_1, A_2)$ consist of all intertwinning matrices E between A_1, A_2 , namely,

$$A_1(x)E = EA_2(x)$$

for all $x \in \mathfrak{G}$.

If R = k is a field then

$$\dim_k H_0(\mathfrak{G}; A_1, A_2) = I(A_1, A_2)$$

is called intertwinning number.

The "norm" of a matrix $T \in R_{r,s}$ defined by

$$\sum_{y_{a} \in S} A_{1}(y) T A_{2}(y^{-1})$$

is a 0-cocycle.

PROPOSITION 4.2. $H^{1}(\emptyset; A_{1}, A_{2})$ and matrix representations of type

$$\left(\begin{array}{cc} A_1(x) & E(x) \\ 0 & A_2(x) \end{array}\right)$$

classified by

$$\begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}$$

are in one to one correspondences.

PROOF. From

$$\begin{pmatrix} A_{1}(x) & E(x) \\ 0 & A_{2}(x) \end{pmatrix} \begin{pmatrix} A_{1}(y) & E(y) \\ 0 & A_{2}(y) \end{pmatrix}$$

$$= \begin{pmatrix} A_{1}(x)A_{1}(y) & A_{1}(x)E(y) + E(x)A_{2}(y) \\ 0 & A_{2}(x)A_{2}(y) \end{pmatrix}$$

it follows that this is a representation of ® if and only if

$$A_i(x)A_i(y) = A_i(xy)$$
 $i = 1, 2$
 $E(xy) = A_1(x)E(y) + E(x)A_2(y)$

i. e. E(x) is a 1-cocycle. The rest follows from direct computations. q. e. d

Concerning the structure of R-module $H^n(\mathfrak{G}; A_1, A_2)$ we have:

PROPOSITION 4.3. Let $g = \# \mathfrak{G}$ be the order of \mathfrak{G} . Then for any representations A_1, A_2 ,

$$gH^n(\mathfrak{G}; A_1, A_2) = 0, \qquad n > 0.$$

In particular if g is a unit in R,

$$H^n(\mathfrak{G}; A_1, A_2) = 0, \qquad n > 0.$$

PROOF. Let $E(x_1, \ldots, x_n)$ be an *n*-cocycle, i. e.

$$\delta E(x_1, \ldots, x_{n+1}) = A_1(x_1)E(x_2, \ldots, x_{n+1})$$

$$+ \sum_{i=1}^{n} (-1)^i E(x_1, \ldots, x_i x_{i+1}, \ldots, x_{n+1})$$

$$+ (-1)^{n+1} E(x_1, \ldots, x_n) A_2(x_{n+1}).$$

Multiply $A_2(x_{n+1}^{-1})$ from right and add over $x_{n+1} \in \emptyset$ we have

$$A_1(x_1) \sum_{x \in \mathfrak{G}} E(x_2, \dots, x_n, x) A_2(x^{-1})$$

 $+ \sum_{i=1}^{n-1} (-1) \sum_{x \in \mathfrak{G}} E(x_1, \dots, x_i x_{i+1}, \dots, x_n, x) E(x^{-1})$

+
$$(-1)^n \sum_{x \in \Theta} E(x_1, \dots, x_{n-1}, x_n x) A_2(x^{-1})$$

+ $(-1)^{n+1} gE(x_1, \dots, x_n) = 0.$

If we put

$$F(x_1, \ldots, x_{n-1}) = \sum_{x \in \emptyset} E(x_1, \ldots, x_{n-1}, x) A_2(x^{-1})$$

in this equation, we have

$$gE(x_1, ..., x_n) = (-1)^n \delta F(x_1, ..., x_n).$$

q. e. d.

PROPOSITION 4.4. If R is noetherian and R/gR is a finite ring, then $\# H^n(\mathfrak{G}; A_1, A_2) < +\infty$, n > 0.

PROOF. The R-module of n-cochains $C^n(\mathfrak{G}; A_1, A_2)$ is a finite R-module. Since R is noetherian, its submodule of n-cocycles $Z^n(\mathfrak{G}; A_1, A_2)$ is also a finite R-module, hence a priori $H^n(\mathfrak{G}; A_1, A_2)$ is a finite R-module. Since by Prop. 4.3 any element $\mathbf{E} \in H^n(\mathfrak{G}; A_1, A_2)$ has finite order $g \mathbf{E} = 0$. This with the hypothesis $\#(R/gR) < +\infty$ implies

$$#H^{n}(\mathfrak{G}; A_{1}, A_{2}) < + \infty.$$

5. Maschke pair. We say that two representations $A_1(x)$, $A_2(x)$ of the group \mathfrak{G} in matrices with elements in a commutative ring R with unity element form a Maschke pair if

$$H^{1}(\mathfrak{G}; A_{1}, A_{2}) = H^{1}(\mathfrak{G}; A_{2}, A_{1}) = 0,$$

By Prop. 4.3. if p is a prime which does not divide the order g of \mathfrak{G} :

$$g \neq 0(p)$$

and R is a field of characteristic p or R = 0, a ring of p-adic integers with $p \mid p$, any two representations in R are Maschke pair.

Another example is:

PROPOSITION 5.1. Let $\Gamma = R[\mathfrak{G}]$ be the group ring of \mathfrak{G} with coefficients in R. Assume that either representation module of A_1 be Γ -injective or that of A_2 be Γ -projective, then

$$H^1(\mathfrak{G}; A_1, A_2) = 0.$$

Notice that if a representation A(x) is a direct constituent of the regular representation then its representation module is Γ -projective.

⁴⁾ These terminologies are those used in Cartan-Eilenberg's "Homological Algebra".

PROOF. We prove only in case that the representation module A_2 of the representation $A_2(x)$ is Γ -projective, since other case is similar.

By Prop. 4.2 to any element $\mathbf{E} \in H^1(\mathfrak{G}; A_1, A_2)$ there corresponds an R-free Γ -module B such that

$$0 \rightarrow A_1 \rightarrow B \rightarrow A_2 \rightarrow 0$$

is exact. By Γ -projectivity of A_2 there exists a Γ -homomorphism

$$\varphi: A_2 \to B$$

such that

$$A_{\circ} \to B \to A_{\circ}$$

is the identity map.

Let a basis of B be so chosen that

$$x(a_1, \ldots, a_r, b_1, \ldots, b_s) = (a_1, \ldots, a_r, b_1, \ldots, b_s) \begin{pmatrix} A_1(x) & E(x) \\ 0 & A_s(x) \end{pmatrix}$$

with $E(x) \in \mathbf{E}$. Since $(a_1, \ldots, a_r, \varphi(b_1), \ldots, \varphi(b_s))$ is a basis of B, there exist two matrices S, T with regular S such that

$$(a_1, \ldots, a_r, \varphi(b_1), \ldots, \varphi(b_s)) = (a_1, \ldots, a_r, b_1, \ldots, b_s) \begin{pmatrix} 1 & T \\ 0 & S \end{pmatrix}$$

Put

$$(a_1, \ldots, a_r, b_1, \ldots, b_s) \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} = (a_1, \ldots, a_r, c_1, \ldots, c_s).$$

Then $(a_1, \ldots, a_r, c_1, \ldots, c_s)$ is a basis of B such that

$$x(a_1, \ldots, a_r, c_1, \ldots, c_s) = (a_1, \ldots, a_r, c_1, \ldots, c_s) \begin{pmatrix} A_1(x) & 0 \\ 0 & A_2(x) \end{pmatrix}$$

By Prop. 4.2 this means $\mathbf{E} = 0$.

q. e. d.

6. Representations in \mathfrak{p} -adic fields. In this section, \mathfrak{p} is a finite prime in an algebraic number field k, $\mathfrak{o}_{\mathfrak{p}}$ the ring of \mathfrak{p} -adic integers.

THEOREM 1 (HENSEL LEMMA). Let A(x) be a representation of the group \mathfrak{G} in matrices with elements in $\mathfrak{o}_{\mathfrak{p}}$. $\overline{A}(x)$ be the reduction mod \mathfrak{p} of the representation A(x). Assume in the modular field $\mathfrak{f}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}}/\mathfrak{p}$ a direct decomposition:

$$\overline{A}(x) \sim \left(\begin{array}{cc} \mathfrak{A}_1(x) & 0 \\ 0 & \mathfrak{A}_2(x) \end{array}\right)$$

in which \mathfrak{A}_1 , \mathfrak{A}_2 form a Maschke pair (§5) i.e.

$$H^{1}(\mathfrak{G};\mathfrak{A}_{1},\mathfrak{A}_{2})=H^{1}(\mathfrak{G};\mathfrak{A}_{2},\mathfrak{A}_{1})=0.$$

Then there exists a direct decomposition in o_p :

$$A(x) \sim \left(\begin{array}{cc} A_1(x) & 0 \\ 0 & A_2(x) \end{array}\right)$$

such that

$$\overline{A}_i(x) = \Re_i(x)$$
 $i = 1, 2.$

PROOF. Without loss of generality, we may assume

$$\overline{A}(x) = \left(\begin{array}{cc} \mathfrak{A}_1(x) & 0 \\ 0 & \mathfrak{A}_2(x) \end{array}\right).$$

Then the representation A(x) has in $\mathfrak{o}_{\mathfrak{p}}$ the following form

$$A(x) = \begin{pmatrix} A_{11}(x) & \pi A_{12}(x) \\ \pi A_{21}(x) & A_{22}(x) \end{pmatrix}$$

where π is a primitive element for the prime \mathfrak{p} , and $A_{ij}(x)$ are matrices with elements in $\mathfrak{o}_{\mathfrak{p}}$. We prove by induction that representation of the form:

$$egin{pmatrix} A_{11}(x) & m{\pi}^n A_{12}(x) \ m{\pi}^m A_{21}(x) & A_{22}(x) \end{pmatrix}, \qquad n>0, \ m>0$$

with $A_{ij}(x)$ matrices in 0_p , can be transformed by a matrix of type:

$$\left(\begin{array}{cc} 1 & \pi^n T \\ 0 & 1 \end{array} \right)$$
, $T \text{ in } \mathfrak{o}_{\mathfrak{p}}$

into the form

$$egin{pmatrix} A_{11}^{'}(x) & m{\pi}^{n_{+1}}A_{12}^{'}(x) \ m{\pi}^{m}A_{21}^{'}(x) & A_{22}^{'}(x) \end{pmatrix}$$

with matrices $A'_{ij}(x)$ in $\mathfrak{o}_{\mathfrak{p}}$ such that

$$A_{ij}(x) \equiv A'_{ij}(x) \qquad (\mathfrak{p}^{n+m}) \qquad \qquad i = 1, 2$$

under the condition

$$H^1(\mathfrak{G};\mathfrak{A}_1,\mathfrak{A}_2)=0.$$

Similar result holds for m.

For, from

$$\begin{pmatrix} A_{11}(x) & \boldsymbol{\pi}^{n} A_{12}(x) \\ \boldsymbol{\pi}^{m} A_{21}(x) & A_{22}(x) \end{pmatrix} \begin{pmatrix} 1 & \boldsymbol{\pi}^{n} T \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}(x) & \boldsymbol{\pi}^{n} A_{11}(x) T + \boldsymbol{\pi}^{n} A_{12}(x) \\ \boldsymbol{\pi}^{m} A_{21}(x) & \boldsymbol{\pi}^{n+m} A_{21}(x) T + A_{22}(x) \end{pmatrix}$$

$$\begin{pmatrix} 1 & \boldsymbol{\pi}^{n}T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_{11}'(x) & \boldsymbol{\pi}^{n+1}A_{12}'(x) \\ \boldsymbol{\pi}^{m}A_{21}'(x) & A_{22}'(x) \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}'(x) + \boldsymbol{\pi}^{n+m}TA_{11}'(x) & \boldsymbol{\pi}^{n+1}A_{12}'(x) + \boldsymbol{\pi}^{n}TA_{22}'(x) \\ \boldsymbol{\pi}^{m}A_{21}'(x) & A_{22}'(x) \end{pmatrix}$$

the condition for the matrix T is

$$A_{11}(x)T + A_{12}(x) \equiv TA'_{12}(x)$$
 (p).

Since $A_{12}(x) \in Z'(\mathfrak{G}; \mathfrak{A}_1, \mathfrak{A}_2)$ is a 1-cocycle, by hypothesis on $\mathfrak{A}_1, \mathfrak{A}_2$ such matrix T must exist in $\mathfrak{o}_{\mathfrak{p}}$.

Starting from

$$A(x) = \begin{pmatrix} A_{11}(x) & \pi A_{12}(x) \\ \pi A_{21}(x) & A_{22}(x) \end{pmatrix}$$

with n = m = 1 we arrive at the $o_{\mathfrak{p}}$ -equivalence

$$A(x) \sim \begin{pmatrix} A_1(x) & 0 \\ 0 & A_2(x) \end{pmatrix}$$

with
$$\overline{A}_i(x) = \mathfrak{a}_i(x)$$
 $i = 1, 2$.

q. e. d.

COROLLARY⁵⁾. Let $\mathfrak U$ be a directly indecomposable modular representation of the group $\mathfrak G$ contained in the regular representation. Then there exists a representation U in $\mathfrak O_{\mathfrak p}$ such that

$$\overline{U}(x) = \mathfrak{U}(x).$$

For, in the modular field f_{ν} , the regular representation R(x) in 0_{ν} splits as

$$\overline{R(x)} \sim \left(\begin{array}{cc} \mathfrak{U} & 0 \\ 0 & \mathfrak{B} \end{array} \right)$$

with suitable modular representation \mathfrak{D} . Thereby \mathfrak{U} , \mathfrak{D} are represented by Γ -projective modules therefore form a Maschke pair.

THEOREM 2. Let the prime \mathfrak{p} does not divide order g of \mathfrak{G} . Then matrix representation A(x) in $\mathfrak{o}_{\mathfrak{p}}$ and $\mathfrak{A}(x)$ in modular field $\mathfrak{f}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}}/\mathfrak{p}$ are in one to one correspondences by reduction mod \mathfrak{p} :

$$A(x) \to \overline{A}(x) = \mathfrak{A}(x).$$

In other words any representation in $\mathfrak{O}_{\mathfrak{p}}$ is completely reducible and there are as many irreducible representations in $\mathfrak{O}_{\mathfrak{p}}$ as that in $\mathfrak{k}_{\mathfrak{p}}$.

PROOF. Complete reducibility follows from Prop. 4.3. If A(x) is an irreducible representation in $\mathfrak{o}_{\mathfrak{p}}$ then its reduction mod $\mathfrak{p}: \overline{A}(x)$ is also ir-

⁵⁾ This result was announced by Brauer [3].

reducible.

For, suppose contrary to our assertion

$$\overline{A}(x) \sim \begin{pmatrix} \mathfrak{A}_1(x) & 0 \\ 0 & \mathfrak{A}_2(x) \end{pmatrix}$$

then Hensel lemma would yield a decomposition

$$A(x) \sim \begin{pmatrix} A_1(x) & 0 \\ 0 & A_2(x) \end{pmatrix}$$

in $o_{\mathfrak{p}}$. This is a contradiction.

Conversely, assume $\mathfrak{A}(x)$ be an irreducible representation in $\mathfrak{K}_{\mathfrak{p}}$, then the regular representation $\mathfrak{R}(x)$ splits as

$$\Re(x) \sim {\Re(x) \choose 0 \Re(x)}.$$

Apply Hensel lemma to the regular representation R(x) in $\mathfrak{O}_{\mathfrak{p}}$ with $\overline{R}(x) = \mathfrak{R}(x)$ we have

$$R(x) \sim \begin{pmatrix} A(x) & 0 \\ 0 & B(x) \end{pmatrix}$$

with $\overline{A}(x) = \mathfrak{A}(x)$. Of course A(x) is irreducible in $\mathfrak{o}_{\mathfrak{p}}$.

q. e. d.

COROLLARY. In case $g \not\equiv 0$ (p). If two matrix representations $A_1(x)$, $A_2(x)$ are k_p -equivalent then they are o_p -equivalent.

PROOF. Since k_{ν} is a field, ordinary theory of representations shows that

$$A_1(x) \sim \begin{pmatrix} B_1(x) & 0 \\ 0 & B_s(x) \end{pmatrix} \sim A_2(x)$$
 in k_s ,

where $B_1(x), \ldots, B_s(x)$ are irreducible representations in k_p . Since o_p is a principal ideal domain, we may assume without loss of generality that $B_1(x)$,, $B_s(x)$ are matrices with elements in o_p . From the Theorem 2

$$A_1(x) \sim \begin{pmatrix} C_1(x) & 0 \\ 0 & C_2(x) \end{pmatrix}$$
 in $\mathfrak{o}_{\mathfrak{p}}$

where C_1, \ldots, C_t are irreducible representations in $\mathfrak{o}_{\mathfrak{p}}$. Comparing their characters, we see that C_1, \ldots, C_t are permutations of B_1, \ldots, B_s (By suitable $\mathfrak{o}_{\mathfrak{p}}$ -transforms if necessary). The same is true for the representation $A_2(x)$. Therefore

$$A_1(x) \sim \begin{pmatrix} B_1(x) & 0 \\ 0 & B_s(x) \end{pmatrix} \sim A_2(x)$$
 in $\mathfrak{o}_{\mathfrak{p}}$

q. e. d.

Thus, the case \mathfrak{p} with $g \equiv 0(\mathfrak{p})$ are completely studied. We are therefore in a position to investigate the case $g \equiv 0(\mathfrak{p})$. More precisely take integer $e_0 > 0$ such that

$$g \equiv 0 \ (\mathfrak{p}^{e_0})$$
$$g \not\equiv 0 \ (\mathfrak{p}^{e_{0+1}}).$$

PROPOSITION 6.1 (PRINCIPAL GENUS THEOREM⁶⁾). Assume $e \ge e_0$ and $A_1(x)$, $A_2(x)$ are representations in $\mathfrak{o}_{\mathfrak{p}}$. If an n-cocycle $E \in Z^n(\mathfrak{G}; A_1, A_2)$ satisfies

$$E(x_1,\ldots,x_n)\equiv 0 \ (\mathfrak{p}^e)$$

then there exists an (n-1)-cochain $F \in C^{n-1}(\mathfrak{G}; A_1, A_2)$ such that

$$E = \delta F$$

with

$$F(x_1, \ldots, x_{n-1}) \equiv 0 \ (\mathfrak{p}^{e-e_0}).$$

PROOF. Since E is an n-cocycle, by the proof of Prop. 4.3, if we put

$$F_1(x_1, \ldots, x_{n-1}) = \sum_{x \in \emptyset} E(x_1, \ldots, x_{n-1}, x) A_2(x^{-1})$$

then

$$gE = (-1)^n \delta F_1.$$

From the hypothesis $E \equiv 0 \, (\mathfrak{p}^e)$ it follows that

$$F = (-1)^n \frac{1}{q} F_1$$

is indeed an (n-1)-cochain in 0, satisfying

$$F(x_1,\,\ldots,\,x_{n-1})\equiv 0\,(\mathfrak{p}^{e-e_0})$$
 $E=\delta F$ q. e. d.

PROPOSITION 6.2. Let A_1, A_2 be two representations in $\mathfrak{o}_{\mathfrak{p}}$, and $e > e_0$ be an integer. Then equivalences:

$$A_1 \sim A_2$$
 in $\mathfrak{o}_{\mathfrak{p}}/\mathfrak{p}^e$

and

$$A_1 \sim A_2$$
 in $\mathfrak{o}_{\mathfrak{p}}$

are completely equivalent.

PROOF. Equivalence in $0_{\mathfrak p}$ implies equivalence in $0_{\mathfrak p}/\mathfrak p^e$ is trivial. Let us show the converse. Assume

$$A_1 \sim A_2$$
 in $\mathfrak{o}_{\mathfrak{p}}/\mathfrak{p}^e$.

⁶⁾ This proposition has some analogy to a result of Kuniyoshi-Takahashi [14].

In other words there exists a matrix T in v_p such that

$$A_1T - TA_2 \equiv 0 \, (\mathfrak{p}^e), \quad \det T \not\equiv 0 \, (\mathfrak{p}).$$

Then

$$E(x) = A_1(x)T - TA_2(x)$$

is a l-cocycle $\in Z^1(\mathfrak{G}; A_1, A_2)$ and

$$E(x) \equiv 0 \ (\mathfrak{p}^e).$$

Since $e > e_0$, we can apply principal genus theorem (Prop. 6.1) and it yields a matrix S in 0 such that

$$E(x) = A_1(x)S - SA_2(x)$$

$$S \equiv 0 \ (\mathfrak{p}^{e-e_0}).$$

If we put T' = T - S, then T' is a matrix in O_p such that

$$A_1(x)T' = T'A_2(x)$$

det $T' \equiv \det T \not\equiv 0 \ (\mathfrak{p})$

i. e. $A_1(x), A_2(x)$ are $\mathfrak{o}_{\mathfrak{p}}$ -equivalent.

q. e. d.

7. Equivalence theory of Γ -lattices. In this section we use same notations as that of §2. Namely k is an algebraic number field and \mathfrak{o} the ring of integers in k. $\Gamma = \mathfrak{o}[\mathfrak{G}]$ is the group ring over \mathfrak{o} .

PROPOSITION 7.1. There exists at least one Γ -lattice M in V, if V is a Γ -space.

PROOF. If V is written by a k-basis as

$$V = v_1 k + \ldots + v_m k,$$

then the following finite o-module

$$M = \sum_{x \in \mathfrak{G}} \sum_{i=1}^{m} x v_i 0$$

is a Γ -lattice in V.

q. e. d.

If $R \supseteq \emptyset$ is a ring over \emptyset , we put for a Γ -lattice M; $\{M; R/\emptyset\} = \{N \in \Gamma$ -lattices in $V \mid NR \simeq MR$ as ΓR -modules $\}$.

In particular

$$\{M; k/0\}$$

is the set of all Γ -lattices in V, for any Γ -lattice M in V.

Since M_1 , $M_2 \in \{M; R/0\}$ lie in the same class $\{M; k/0\}$, we can write $\{M; k/0\} = \{M_1; R/0\} + \dots + \{M_c; R/0\}$

as a disjoint union of finite or infinite number of subclasses. We put

$$c = c(R/\mathfrak{o})$$

and call it the class number of Γ -lattices with respect to R.

If K/k is an extension field with a maximal order $\mathfrak{D}\supseteq \mathfrak{0}$, we can define $\Gamma\mathfrak{D}$ -lattices in VK and the symbol

$$\{M: R/\mathfrak{D}\}$$

with a ring $R \supseteq \mathfrak{P}$. There exists always a map

$$\{M; R/\mathfrak{o}\} \ni M_1 \to M_1 \mathfrak{O} \in \{M; R/\mathfrak{O}\}$$

called injection.

Main examples of R and \mathfrak{D} are:

 $K = k_{\rm p}$: p-adic completion of the field $k_{\rm p}$, $\mathfrak{D} = \mathfrak{o}_{\rm p}$: p-adic integers in $k_{\rm p}$,

$$R = \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r) = \bigcap_{i=1}^r (k \cap \mathfrak{o}_{\mathfrak{p}_i}) \supseteq \mathfrak{o}$$
 where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are finite primes in k .

PROPOSITION 7. 2.7) The injection

$$\{M: k/0\} \rightarrow \{M_{0_n}: k_n/o_n\}$$

is an onto map with same class number

$$c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}) = c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}}).$$

PROOF. Take an $M^{(\mathfrak{p})} \in \{M\mathfrak{d}_{\mathfrak{p}}; k_{\mathfrak{p}}/\mathfrak{d}_{\mathfrak{p}}\}$, we can define a Γ -lattice $M_1 \in \{M; k/\mathfrak{d}\}$ such that $M_1\mathfrak{d}_{\mathfrak{p}} = M^{(\mathfrak{p})}$. Namely, let M be a Γ -lattice in V. Put

$$M_{{}_{\scriptscriptstyle{\bullet}}}^{(\mathfrak{p})}=M^{(\mathfrak{p})}$$

$$M_1^{(\mathfrak{q})} = M\mathfrak{o}_{\mathfrak{q}}$$
 for prime $\mathfrak{q} + \mathfrak{p}$.

Then

$$M_{\scriptscriptstyle 1} = \bigcap_{\scriptscriptstyle 1} (M_{\scriptscriptstyle 1}^{\scriptscriptstyle (\mathfrak{q})} \cap V)$$

is a desired Γ -lattice with $M_1\mathfrak{o}_{\mathfrak{p}}=M^{(\mathfrak{p})}$ by Prop. 1.3.

As to class numbers $c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o})$, $c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}})$,

$$M_1, M_2 \in \{M_3; o_p/o\}$$

imply $M_1\mathfrak{o}_{\mathfrak{p}} \simeq M_2\mathfrak{o}_{\mathfrak{p}}$ as $\Gamma\mathfrak{o}_{\mathfrak{p}}$ -modules.

Therefore

$$M_1 o_n, M_2 o_n \in \{M_3 o_n, o_n/o_n\}$$

and conversely.

q. e. d.

PROPOSITION 7.3. For any Γ -lattice M

$$\{M; \mathfrak{o}(\mathfrak{p})/\mathfrak{o}\} = \{M; \mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}\}.$$

PROOF. Since $M_1\mathfrak{o}(\mathfrak{p}) \simeq M_2\mathfrak{o}(\mathfrak{p})$ as $\Gamma\mathfrak{o}(\mathfrak{p})$ -modules implies $M_1\mathfrak{o}_{\mathfrak{p}} \simeq M_2\mathfrak{o}_{\mathfrak{p}}$ as

⁷⁾ This and following Prop. 7. 3 give a proof for locality of Maranda [16]'s concepts of \$\phi\$-equivalence and genus, noticed in the introduction.

Γo_s-modules, it ts trivial that

$$\{M; \mathfrak{o}(\mathfrak{p})/\mathfrak{o}\} \subseteq \{M; \mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}\}.$$

Conversely, suppose M_1 , $M_2 \in \{M; \mathfrak{o}_{\nu}/\mathfrak{o}\}.$

Since o(p) is a principal ideal domain, we can write

$$M_1\mathfrak{o}(\mathfrak{p}) = u_1\mathfrak{o}(\mathfrak{p}) \oplus \ldots \oplus u_m\mathfrak{o}(\mathfrak{p})$$

$$M_2\mathfrak{o}(\mathfrak{p}) = v_1\mathfrak{o}(\mathfrak{p}) \bigoplus \ldots \bigoplus v_m\mathfrak{o}(\mathfrak{p})$$

with matrix representations with elements in o(p):

$$x\mathfrak{u} = \mathfrak{u}A_{\mathfrak{l}}(x)$$

$$x\mathfrak{v} = \mathfrak{v}A_2(x).$$

The $\Gamma \mathfrak{o}_{\mathfrak{p}}$ -isomorphism $\varphi: M_2 \mathfrak{o}_{\mathfrak{p}} \to M_1 \mathfrak{o}_{\mathfrak{p}}$ can be written as

$$\varphi(\mathfrak{v}) = \mathfrak{u} \cdot T$$

with matrix T in $\mathfrak{o}_{\mathfrak{p}}$ such that $\det T \not\equiv 0$ (\mathfrak{p}).

In terms of matrix representations $A_1(x)$, $A_2(x)$ we have

$$A_1(x)T = TA_2(x).$$

Take an exponent $e > e_0$ with $g = \# \mathfrak{G} \equiv \mathfrak{o}(\mathfrak{p}^{e_0})$ but $g \not\equiv 0$ (\mathfrak{p}^{e_0+1}), there exists a matrix T in \mathfrak{o} such that

$$T_1 \equiv T \ (\mathfrak{p}^e).$$

Consider a 1-cocycle

$$E(x) = A_1(x)T_1 - T_1A_2(x) \equiv 0 \ (\mathfrak{p}^e)$$

in o(p). By the principal genus theorem⁸⁾ (Prop. 6.1) we can find a matrix S in o(p) such that

$$E(x) = A_1(x)S - SA_2(x)$$

with $S \equiv 0$ (\mathfrak{p}^{e-e_0}) and hence $S \equiv 0$ (\mathfrak{p}).

Then $T_2 = T_1 - S$ is a matrix in $\mathfrak{O}(\mathfrak{p})$ intertwines $A_1(x)$, $A_2(x)$:

$$A_1(x)T_2 = T_2A_2(x)$$

such that

$$\det T_2 \equiv \det T_1 \equiv \det T \not\equiv 0 \ (\mathfrak{p}).$$

Therefore the new map

$$\psi(\mathfrak{v}) = \mathfrak{u} T_2$$

is a $\Gamma \mathfrak{o}(\mathfrak{p})$ -isomorphism $M_1 \mathfrak{o}(\mathfrak{p}) \simeq M_2 \mathfrak{o}(\mathfrak{p})$ i. e.

$$M_1, M_2 \in \{M; \mathfrak{o}(\mathfrak{p})/\mathfrak{o}\}.$$
 q. e. d.

PROPOSITION 7.4. If $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are finite primes in k,

⁸⁾ This holds for the ring 0(\$) instead of 0, if we consider its proof.

$$\{M; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}\} = \bigcap_{i=1}^r \{M; \mathfrak{o}_{\mathfrak{p}_i}/\mathfrak{o}\}.$$

PROOF. From preceding Prop. 7.3 we have only to prove

$$\{M; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}\}\$$

$$= \bigcap_{i=1}^r \{M; \ \mathfrak{o}(\mathfrak{p}_i)/\mathfrak{o}\}.$$

Since $o(\mathfrak{p}_1, \ldots, \mathfrak{p}_r) \subseteq o(\mathfrak{p}_i)$, it is clear that

$$\{M; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}\} \subseteq \bigcap_{i=1}^r \{M; \mathfrak{o}(\mathfrak{p}_i)/\mathfrak{o}\}.$$

Take an $M_1 \in \bigcap_{i=1}^r \{M; \mathfrak{o}(\mathfrak{p}_i)/\mathfrak{o}\}$ and put

$$\mathfrak{o}' = \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r).$$

Since \mathfrak{o}' is a principal ideal domain, we can express the proposition, if we take suitable \mathfrak{o}' -basis of Γ -lattices in consideration, by words of matrix representations. Namely, if $A_1(x)$, $A_2(x)$ be two matrix representations in \mathfrak{o}' , such that there exist matrices T_i in $\mathfrak{o}(\mathfrak{p}_i)$ ($i=1,\ldots,r$) with det $T_i \not\equiv 0$ (\mathfrak{p}_i) and

$$A_1(x)T_i = T_iA_2(x)$$
 $i = 1, ..., r,$

we can find a matrix T in 0' with T^{-1} in 0' and

$$A_1(x)T = TA_2(x).$$

Take elements $\omega_i \in \mathfrak{0}'$ such that

$$\omega_i \neq 0 (\mathfrak{p}_i), \ \omega_i \equiv 0 (\mathfrak{p}_i^{e_j}) \qquad j \neq i, \ 1 \leq i, \ j \leq r,$$

whose exponents $e_i > 0$ are taken as

$$\pi_j^{e_j}T_i\equiv 0 \ (\mathfrak{p}_j)$$

with primitive element π_j of \mathfrak{p}_j .

Then the matrix

$$T = \sum_{i=1}^{r} \boldsymbol{\omega}_i T_i$$

is a desired matrix in o'. Since

det
$$T \equiv \det \ oldsymbol{\omega}_j T_j \equiv oldsymbol{\omega}_j^m \ \det \ T_j \not\equiv 0 \, (\mathfrak{p}_j)$$
 $j=1,\,\ldots,r.$ q. e. d.

PROPOSITION 7.5. If a finite prime \mathfrak{p}_r is different from $\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1}$, then

$$\{M_1; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1})/\mathfrak{o}\} \cap \{M_2; \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\} \neq \phi$$

for any Γ -lattices M_1 , M_2 in V.

PROOF. Put $o' = o(p_1, \dots, p_r)$. This is a principal ideal domain and each ideal in o' is of the form:

$$\left(\prod_{i=1}^r \pi_i^{e_i}\right)$$

with primitive elements π_i of \mathfrak{p}_i with $\pi_j \not\equiv 0 \ (\mathfrak{p}_j)$ for $i \not= j$. We can also prove the proposition by words of matrix representations. Since two matrix representations $A_1(x)$, $A_2(x)$ in 0' are k-equivalent, there exists a non-singular matrix T such that

$$A_1(x)T = TA_2(x)$$

with elements in $\mathfrak o$ if we multiply T by an element in $\mathfrak o$ if necessary. By elementary divisor theory in $\mathfrak o'$ we can find "unimodular" matrices R, S in $\mathfrak o'$ such that

$$RTS = \begin{pmatrix} \prod_{i=1}^{r} \pi_i^{e_{i1}} & 0 \\ 0 & \prod_{i=1}^{r} \pi_i^{e_{i_m}} \end{pmatrix}$$

with exponents

$$e_{i1} \leq \dots \leq e_{im}, \qquad i = 1, \dots, r.$$

Put $RTS = T_1T_2$ with

$$T_1 = egin{pmatrix} m{\pi_r}^{e_{r_1}} & 0 \ 0 & m{\pi_r}^{e_{r_m}} \end{pmatrix}, \ T_2 = egin{pmatrix} \prod_{i=1}^{r-1} m{\pi_i}^{e_{i1}} & 0 \ 0 & \prod_{i=1}^{r-1} m{\pi_i}^{e_{im}} \end{pmatrix}$$

then these are matrices in o' such that

$$\det T_1 \not\equiv 0 (\mathfrak{p}_i) \qquad 1 \leq i \leq r-1; \det T_2 \not\equiv 0 (\mathfrak{p}_r)$$

From the computations:

$$RA_1(x)R^{-1} \cdot RTS = RTS \cdot S^{-1}A_2(x)S$$

 $T_1^{-1}RA_1(x)R^{-1} \cdot T_1 = T_2S^{-1}A_2(x)S \cdot T_2^{-1} = A_2(x)$

we see that $A_1(x)$ and $A_3(x)$ are $\mathfrak{o}(\mathfrak{p}_1,\ldots,\mathfrak{p}_{r-1})$ -equivalent while $A_2(x)$ and $A_3(x)$ are $\mathfrak{o}(\mathfrak{p}_r)$ -equivalent.

If we write M_3 for a Γ -lattice which represents \mathfrak{G} by matrices $A_3(x)$, we have

$$M_3 \in \{M_1; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1})\}$$

$$\bigcap \{M_2; v(\mathfrak{p}_r)\} \neq \phi.$$
 q. e. d.

THEOREM 3. If $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are mutually different finite primes in k, then we have for class numbers:

$$c(\mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}) = \prod_{i=1}^r c(\mathfrak{o}_{\mathfrak{p}_i}/\mathfrak{o}).$$

PROOF. It will be sufficient to prove

$$c(\mathfrak{o}(\mathfrak{p}_1,\ldots,\mathfrak{p}_r)/\mathfrak{o}) = \prod_{i=1}^r c(\mathfrak{o}(\mathfrak{p}_i)/\mathfrak{o}).$$

We prove this by induction on r. For r=1 this is trivial. Let r>1, we have by definition:

$$egin{aligned} \{M;\, k/\mathfrak{o}\} &= \{M_1;\, \mathfrak{o}(\mathfrak{p}_1,\, \ldots ,,\, \mathfrak{p}_{r-1})/\mathfrak{o}\} \ &+ \ldots \ldots + \{M_c;\, \mathfrak{o}(\mathfrak{p}_1,\, \ldots ,,\, \mathfrak{p}_{r-1})/\mathfrak{o}\} \ &= \{N_1;\, \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\} \, + \, \ldots \ldots + \{N_d;\, \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\}, \ &= \sum_{i,j} [\{M_i;\, \mathfrak{o}(\mathfrak{p}_1,\, \ldots ,,\, \mathfrak{p}_{r-1})/\mathfrak{o}\} \, \, \, \cap \, \, \{N_j;\, \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\}] \end{aligned}$$

with $c = c(\mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1})/\mathfrak{o})$ and $d = c(\mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o})$. From the preceding Prop. 7.5 we have

$$\{M_i; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1})/\mathfrak{o}\} \cap \{N_j; \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\} \neq \phi.$$

If we take a Γ -lattice M_{ij} in this intersection we have

$$\begin{aligned} \{M_i; \, \mathfrak{o}(\mathfrak{p}_1, \, \ldots, \, \mathfrak{p}_{r-1})/\mathfrak{o}\} \, \cap \, \{N_j; \, \mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}\} \\ &= \{M_{ij}; \, \mathfrak{o}(\mathfrak{p}_1, \, \ldots, \, \mathfrak{p}_r)/\mathfrak{o}\} \end{aligned}$$

by Prop. 7.4.

Since

$$\{M\,;\,k/\mathfrak{o}\}\,=\sum_{i,j}\,\{M_{ij}\,;\,\mathfrak{o}(\mathfrak{p}_1,\,\ldots,\,\mathfrak{p}_r)/\mathfrak{o}\}$$

is disjoint, we have finally

$$c(\mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}) = c(\mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_{r-1})/\mathfrak{o}) \cdot c(\mathfrak{o}(\mathfrak{p}_r)/\mathfrak{o}).$$
q. e. d.

8. Genus of representations. Let \widetilde{k} be the adèle ring (or ring of valuation vectors) of k. \widetilde{o} denotes subring of \widetilde{k} consists of all integral elements of \widetilde{k} i. e. a direct sum

$$\widetilde{\mathfrak{o}} = \sum_{\mathfrak{v}} \mathfrak{o}_{\mathfrak{v}}$$

of all p-adic integers o_p for finite primes p and $o_p = k_p$ for infinite primes

 $\mathfrak{p} = \mathfrak{p}_{\infty}$.

As in the preceding §7, we define

$$\{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}$$

and call Γ -lattices in them as belonging to the same genus. The class number j=c (0/0) defined by

$$\{M; k/0\} = \{M_1; \widetilde{0}/0\} + \dots + \{M_i; \widetilde{0}/0\}$$

is called the genus number of Γ -lattices in V.

$$\{M\,;\,\,\widetilde{\mathfrak{o}}/\mathfrak{o}\}\,=\bigcap_{\mathfrak{p}\mid g}\,\{M\,;\,\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}\}.$$

From this we have

$$j = \prod_{\mathfrak{p} \mid g} c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}) < + \infty.$$

PROOF. M_1 , $M_2 \in \{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}$ imply by definition $M_1\widetilde{\mathfrak{o}} \simeq M_2\widetilde{\mathfrak{o}}$

as $\Gamma \sigma$ -modules. Since $\widetilde{\sigma} = \sum_{n} \sigma_{n}$ is a direct sum, we have for all primes \mathfrak{p}

$$M_{\scriptscriptstyle 1}{\scriptscriptstyle 0}_{\scriptscriptstyle \mathfrak{p}}\simeq M_{\scriptscriptstyle 2}{\scriptscriptstyle 0}_{\scriptscriptstyle \mathfrak{p}}$$

as $\Gamma \mathfrak{o}_{\mathfrak{p}}$ -modules. Since this is trivially verified for infinite primes $\mathfrak{p} = \mathfrak{p}_{\infty}$, it is sufficient to prove that if $\mathfrak{p} \nmid g$

$$\{M; k/0\} = \{M; 0, 0\}.$$

But this follows at once from Coroll. to Theorem 2. The formula for j follows from

$$\{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\} = \bigcap_{\mathfrak{p}|g} \{M; \mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}\} = \{M; \mathfrak{o}(\mathfrak{p}_1, \ldots, \mathfrak{p}_r)/\mathfrak{o}\}.$$

if we write $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ for all different primes dividing g. Finally finiteness of $c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o})$ follows from Prop. 6.2. q. e. d.

9. Class number in a genus. Let V be a vector space over k, which has as in preceding sections \mathfrak{G} as left operators and induces a representation

$$\mathfrak{G} \ni x \to A(x) \in GL(V; k)$$

by automorphism of V.

Similarly, for any prime \mathfrak{p} , the \mathfrak{p} -extension $V_{\mathfrak{p}} = V k_{\mathfrak{p}}$ induces a representation which we write by the same symbol

$$A(x) \in GL(V_{\mathfrak{p}}; k_{\mathfrak{p}}).$$

Moreover, the vector space $\widetilde{V} = V\widetilde{k}$ over adèle ring \widetilde{k} of k induces a representation which will be also written by

$$A(x) \in GL(\widetilde{V}; \widetilde{k}).$$

There group $GL(\widetilde{V}; \widetilde{k})$ consists of elements

$$\widetilde{\widetilde{S}} = (S_{\mathfrak{p}}), \ S_{\mathfrak{p}} \in GL(V_{\mathfrak{p}}; \ k_{\mathfrak{p}})$$

such that except for a finite set of primes, S_{ν} being \mathfrak{p} -unimodular. Now,

$$G = v(A(\mathfrak{G})) = \{ S \in GL(V; k) | A(x)S = SA(x) \text{ for all } x \in \mathfrak{G} \}$$

is an algebraic group of automorphisms of V. Its idèle group⁹⁾ is given by

$$\widetilde{G} = \widetilde{v}(A(\mathfrak{G})) = \{\widetilde{S} \in GL(\widetilde{V}; \widetilde{k}) \mid A(x)\widetilde{S} = \widetilde{S}A(x) \text{ for all } x \in \mathfrak{G}\}.$$

 \widetilde{G} contains G as a discrete subgroup with its natural topology.

Let M be a lattice in V. We define $M \cdot \widetilde{S}$ with $\widetilde{S} \in GL(\widetilde{V}; \widetilde{k})$ by

$$M \cdot \widetilde{S} = \bigcap_{\mathfrak{v}} (V \cap M_{\mathfrak{v}} S_{\mathfrak{v}}) \text{ if } \widetilde{S} = (S_{\mathfrak{v}}).$$

It is readly seen that $M \cdot \widetilde{S}$ is a lattice. Moreover if M is a Γ -lattice and $\widetilde{S} \in \widetilde{G}$ then $M \cdot \widetilde{S}$ is also a Γ -lattice.

PROPOSITION 9.1. Let M be a Γ -lattice in V, then

$$\{M: \widetilde{\mathfrak{o}}/\mathfrak{o}\} = \{M \cdot \widetilde{S} \mid \widetilde{S} \in \widetilde{G}\}.$$

PROOF. "The fact that $M \cdot \widetilde{S}$ is a also a Γ -attice" is already remarked. $M \cdot \widetilde{S}$ is contained in $\{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}$. For if we fix a prime \mathfrak{p} , then

$$(M\widetilde{S})_{\mathfrak{p}}=M_{\mathfrak{p}}S_{\mathfrak{p}}$$

$$\varphi_{\mathfrak{p}}; M_{\mathfrak{p}} \to M_{\mathfrak{p}} S_{\mathfrak{p}}$$

is a Γο_ν-isomorphism by virtue of

$$A(x)S_{v} = S_{v}A(x)$$

for all $x \in \mathcal{G}$.

Conversely, take an $M_1 \in \{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}$ arbitrarily. For any prime \mathfrak{p} , we have by definition:

$$M_{1\mathfrak{p}} \simeq M_{\mathfrak{p}}$$
 as $\Gamma \mathfrak{o}_{\mathfrak{p}}$ -modules.

Since these are $\mathfrak{o}_{\mathfrak{p}}$ -free modules, we can find $S_{\mathfrak{p}} \in GL(V_{\mathfrak{p}}; k)$ such that

$$M_{1p} = M_p S_p$$
.

From the fact that M, M_1 are lattices in V it follows that S_p are p-unimodu-

⁹⁾ Idèle group of an algebraic group was considered by Ono [17], Tamagawa and Weil.

lar except for a finite number of primes, i. e.

$$\widetilde{S} = (S_{\mathfrak{p}}) \in GL(\widetilde{V}; \widetilde{k}).$$

Now, for any prime p we have

$$xM_{1\mathfrak{p}}=M_{1\mathfrak{p}}A(x)$$

$$xM_{\mathfrak{p}}=M_{\mathfrak{p}}A(x)$$

hence $A(x)S_{\mathfrak{p}}=S_{\mathfrak{p}}A(x)$. This shows that $\widetilde{S}\in\widetilde{G}$ and

$$M_1 = M \cdot \widetilde{S}$$
. q. e. d.

PROPOSITION 9.2. Let M be a Γ -lattice in V, then

$$\{M; \mathfrak{o}/\mathfrak{o}\} = \{MS \mid S \in G\}.$$

PROOF. If $S \in G$, then the fact $M \to M \cdot S$ is a Γ -isomorphism is trivial. Take an $M_1 \in \{M; \mathfrak{o}/\mathfrak{o}\}$ arbitrarily, there exists a Γ -isomorphism

$$\varphi: M \to M_1$$
.

Since lattices in V generate V over k and are regular 0-modules, we can generate V extend φ uniquely to a Γk -isomorphism¹⁰⁾

$$\varphi: Mk = V \to M_1 k = V.$$

Therefore there exists $S \in GL(V; k)$ such that

$$M_1 = MS$$
.

Finally Γ -isomorphism of φ implies $S \in G$.

q. e. d

THEOREM 5. Let M be a Γ -lattice in V. Put

$$\widetilde{U} = \{\widetilde{T} \in \widetilde{G} \mid M\widetilde{T} = M\}$$

for a subgroup which fixes M. Then classes in a genus

$$\{M; 0/0\} = \{M_1; 0/0\} + \dots + \{M_c; 0/0\}$$

are in one to one correspondences with double cosets

$$\widetilde{U} \backslash G / \widetilde{G}$$

of \widetilde{G} with respect to two subgroups \widetilde{U} and G. Explicitly, its correspondences are given by

$$\widetilde{G} \ni \widetilde{S} \to M \cdot \widetilde{S} \in \{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}\$$

$$M\widetilde{S}_1 \simeq M\widetilde{S}_2 \text{ as } \Gamma\text{-lattices,}$$

if and only if

$$\widetilde{S}_1 = \widetilde{T}\widetilde{S}_2 \cdot S$$

with suitable $\widetilde{T} \in \widetilde{U}$, $S \in G$.

¹⁰⁾ The proof is straightforward e.g. Chevalley [6].

PROOF. That the mapping

$$\widetilde{G} \ni \widetilde{S} \to M\widetilde{S} \in \{M; \widetilde{\mathfrak{o}}/\mathfrak{o}\}\$$

is onto was already given by Prop. 9.1. From

$$\widetilde{MS_1} \simeq \widetilde{MS_2}$$
 as Γ -lattices,

we can find by Prop. 9.2 and $S \in G$ such that

$$M\widetilde{S}_1 = M\widetilde{S}_2 \cdot S.$$

This finally means an existence of $\widetilde{T} \in \widetilde{U}$ with

$$\widetilde{S}_1 = \widetilde{T} \cdot \widetilde{S}_2 \cdot S$$
 q. e. d.

Notice that in a recent paper by Ono[17] it was proved that the number of double cosets $\# \widetilde{U} \backslash \widetilde{G} / G$ is always finite if G is a commutative algebraic group.

10. Absolutely irreducible representations. In the preceding §9, we have seen that class number in a genus is expressible as the number of double cosets

$$\widetilde{U} \setminus \widetilde{G} \diagup G$$

of a suitable algebraic group G of automorphisms.

In this and following sections we shall consider more closely this double cosets.

PROPOSITION 10.1. If M is a lattice in V, then the ring

$$R = \{\alpha \in k \mid M\alpha \subseteq M\}$$

coincides with o.

PROOF. Since M is an o-module, $Mo \subseteq M$, therefore

$$R \supseteq \mathfrak{o}$$
.

Take an $\alpha \in k$ such that $M\alpha \subseteq M$. We have to show for any finite prime \mathfrak{p} that

$$\alpha \in \mathfrak{o}_{\mathfrak{v}}$$
.

Since o, is a principal ideal domain we can write

$$M_{\mathfrak{p}} = u_{\mathfrak{p}} \mathfrak{o}_{\mathfrak{p}} \oplus \ldots \oplus u_{\mathfrak{m}} \mathfrak{o}_{\mathfrak{p}}$$

as a direct sum. $M_{\mathfrak{p}}\alpha\subseteq M_{\mathfrak{p}}$ implies in particular

$$u_1\alpha = u_1\beta_1 + \ldots + u_m\beta_m$$

with $\beta_i \in \mathfrak{o}_{\mathfrak{p}}$. Take $\gamma \neq 0$, $\gamma \in \mathfrak{o}_{\mathfrak{p}}$ such that $\alpha \gamma \in \mathfrak{o}_{\mathfrak{p}}$, then

$$u_1 \alpha \gamma = u_1 \beta_1 \gamma + \ldots + u_m \beta_m \gamma$$

hence we have

$$\alpha \gamma = \beta_1 \gamma$$
.

This implies $\alpha = \beta_1 \in \mathfrak{o}_{\mathfrak{p}}$.

q. e. d.

Theorem 6. If V is an absolutely irreducible space and M is a Γ -lattice in V, then

$$\begin{split} \widetilde{G} &= \widetilde{\alpha} I \text{ with } \widetilde{\alpha} \in J = J(k) \\ G &= \alpha I \text{ with } \alpha \in k^{\times} \\ \widetilde{U} &= \widetilde{\epsilon} I \text{ with } \widetilde{\epsilon} \in U = U(k) \end{split}$$

where, J(k) is the group of idèles of k with principal idèles k^{\times} and units idèles U(k). Therefore

 \widetilde{U} , $\widetilde{G}/G \simeq absolute ideal class group of k.$

PROOF. Since V is absolutely irreducible, so also is $V_{\mathfrak{p}}$ for any prime \mathfrak{p} . Therefore the structures of \widetilde{G} and G are as in the theorem. For the structure of

$$\widetilde{U} = \widetilde{\varepsilon}I, \ \widetilde{\varepsilon} \in U(k)$$

we have to notice Prop 10.1 or more precisely its proof, since by definition

$$\widetilde{U} = \{ \alpha I \mid \widetilde{\alpha} \in J, \ M\widetilde{\alpha} = M \}.$$
 q. e. d.

COROLLARY. If V is absolutely irreducible and M is a Γ -lattice in V, then the class number c=c(0/0):

$${M; k/0} = {M_1; 0/0} + \dots + {M_c; 0/0}$$

can be expressed as

$$c = \prod_{\mathfrak{p} \mid g} j(\mathfrak{p}) \cdot h$$

where

$$j(\mathfrak{p}) = c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}})$$

is the local class number and

$$h = h(k)$$

is the number of absolute classes of ideals in k. In particular

$$c < + \infty$$
.

11. Irreducible representations. Let V be an irreducible representation space over k. The group \mathfrak{G} is represented by automorphisms of V as

$$\mathfrak{G}\ni x\to A(x)\in GL(V;\,k).$$

Put the enveloping algebra

$$A_k = \sum_{x \in \mathfrak{G}} A(x) k \subseteq \mathfrak{E}(V; k)$$

and commuting algebra D defined by

$$D = \{S \mid \forall x \in \emptyset; A(x)S = SA(x)\} \subseteq \mathfrak{E}(V; k)$$

where $\mathfrak{E}(V;k)$ is the endomorphism algebra of V over k. Since V is irreducible, D is a division algebra and A_k is a full matric algebra over the division algebra D^* inversely isomorphic to D.

PROPOSITION 11.1. Let M be a Γ -lattice in V, then

$$\mathfrak{D} = \mathfrak{D}(M) = \{ S \in D \mid MS \subseteq M \}$$

is an order in D.

PROOF. a) Since M is an σ -module, $\mathfrak D$ contains $\mathfrak o$. b) Any element $S\in\mathfrak D$ is integral over $\mathfrak o$. For, let

$$f(S) = S^{n} + \alpha_{1}S^{n-1} + \dots + \alpha_{n} = 0 \ (\alpha_{i} \in k)$$

be the irreducible equation in k satisfied by S and $S = S^{(1)}, \ldots, S^{(n)}$ be the conjugates of S over k. In the extended vector space

$$Vk(S^{(1)},, S^{(n)})$$

we have

$$MS^{(i)} \subseteq M$$
 $i=1,\ldots,n$.

Since α_i are symmetric functions of $S^{(j)}$'s we have

$$M\alpha_i \subseteq M$$
.

Therefore $\alpha_i \in 0$ by Prop. 10.1.

c) $\mathfrak{O}k = D$. For, take an $S \in D$, $S \neq 0$, arbitrarily. Since

is a Γ -lattice in V, we can find $\alpha \in \mathfrak{o}$ such that

$$MS\alpha \subseteq M$$
.

This shows that $S\alpha \in \mathfrak{D}$.

q. e. d.

We say that M is maximal if

$$\mathfrak{D} = \mathfrak{D}(M)$$

is a maximal order in D.

Any Γ -lattice can be embeded in a maximal Γ -lattice. Namely,

PROPOSITION 11.2. If \mathfrak{D}^- is a maximal order containing $\mathfrak{D} = \mathfrak{D}(M)$, then

$$M^- = M\mathfrak{D}^-$$

is a maximal Γ -lattice in V, with

$$\mathfrak{D}(M^-) = \mathfrak{D}^-.$$

PROOF. Since \mathfrak{D}^- is a finite $\mathfrak{0}$ -module, M^- is a lattice in V. From

$$MA(x) = M\mathfrak{D}^{-}A(x) = MA(x)\mathfrak{D}^{-} \subset M\mathfrak{D}^{-} = M^{-}$$

 M^- is a Γ -lattice. And finally

$$M^-\mathfrak{D}^- = M\mathfrak{D}^-\mathfrak{D}^- = M\mathfrak{D}^- = M^-$$

implies

$$\mathfrak{Q}(M^-) \supset \mathfrak{Q}^-$$
.

By Prop. 11.1 $\mathfrak{D}(M^{-1})$ is an order in D it follows from maximality of \mathfrak{D}^- that

$$\mathfrak{Q}(M^{-}) = \mathfrak{D}^{-}.$$
 q. e. d.

Theorem 7. If M is a maximal Γ -lattice in an irreducible representation space V over k, then the double cosets

$$\widetilde{U}\widetilde{G}/G$$

of Theorem 5 correspond in one to one way to the $\mathfrak{D} = \mathfrak{D}(M)$ left ideal classes in the commuting algebra D of A(x)'s.

PROOF. Since $\mathfrak{D} = \mathfrak{D}(M)$ is a maximal order in D, G is the idèle group¹¹⁾ of the division algebra D. The correspondences:

$$\widetilde{G}\ni\widetilde{S}\to\mathfrak{a}(\widetilde{S})=\bigcap_{\mathfrak{p}}(\mathfrak{o}_{\mathfrak{p}}S_{\mathfrak{p}}\cap D)\subset D$$

are onto D-left ideals in D. Its kernel is just

$$\widetilde{U} = \{\widetilde{T} \mid M\widetilde{T} = M\}$$
 i. e. $\mathfrak{a}(\widetilde{T}\widetilde{S}) = \mathfrak{a}(\widetilde{S})$.

Therefore, double cosets

$$\widetilde{U}\setminus\widetilde{G}/G$$

corresponds in one to one way to D-left ideal class i. e.

$$\mathfrak{a}(\widetilde{TS} \cdot S) = \mathfrak{a}(\widetilde{S}) \cdot S$$

with
$$\widetilde{T} \in \widetilde{U}$$
, $\widetilde{S} \in \widetilde{G}$, $S \in G$.

q. e. d.

COROLLARY. In addition to the assumptions on the Theorem 7, suppose D has degree > 2 or ramified infinite primes, then the class number

$$\{M; k/0\} = \{M_1; 0/0\} + \dots + \{M_c; 0/0\}$$

can be expressed as

$$c = \prod_{\mathfrak{p} \mid g} j(\mathfrak{p}) \cdot h$$

¹¹⁾ Cf. Fujisaki [11] for idèle group of a simple algebra.

where $j(\mathfrak{p}) = c(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{o}_{\mathfrak{p}})$ are local class numbes and h is the number of absolute ideal classes of the center K of D.

PROOF. This follows from Theorem 7 and a theorem of Eichler¹²⁾ concerning class number of algebras. q. e. d.

THEOREM 8. Let M be an arbitrary Γ -lattice in irreducible V, then the number of double cosets

$$\widetilde{U} \backslash \widetilde{G} / G$$

is always finite.

PROOF. Let $M^- \supset M$ be a maximal Γ -lattice in V. Then the number

$$\# \widetilde{U}^- \backslash \widetilde{G}/G$$
,

as a class number of $\mathfrak{D}^- = \mathfrak{D}(M^-)$ -left ideals of D, is finite.

Since $\widetilde{U}^-\supseteq\widetilde{U}$ it is sufficient to prove

$$[\widetilde{U}^-:\widetilde{U}]<+\infty.$$

Since $M^- \supseteq M$ are lattices, except for a finite set of primes we have

$$M_{\mathfrak{p}}^- = M_{\mathfrak{p}}$$

and hence

$$[U_{\mathfrak{p}}^{-}:U_{\mathfrak{p}}]=1.$$

Take an exceptional prime \mathfrak{p} . $U_{\mathfrak{p}} \supset U_{\mathfrak{p}}$ are compact and open subgroups in $D_{\mathfrak{p}}^{(1)}$, therefore

$$[U_{\mathfrak{p}}^{-}:U_{\mathfrak{p}}]<+\infty.$$
 q. e. d.

12. Some examples. Let $\mathfrak{G} = \mathbf{Z}/(n)$ be a cyclic group of order n. Consider faithful irreducible integral representation in the field of rationals \mathbf{Q} . Let V be a representation space of dimension

$$m = \varphi(n)$$

$$A_k = \sum_{i=0}^{n-1} A(x^i) \mathbf{Q} = D \simeq K = \mathbf{Q}(\zeta)$$

where ζ is a primitive *n*-th roots of unity.

It is readily seen that

$$A_k \ni A(x) \to \zeta \in K$$

is an isomorphism over \mathbf{Q} , if $x \in \mathbb{S}$ is a fixed generator.

PROPOSITION 12.1. Any Γ -lattice M in V is maximal.

¹²⁾ Eichler [9], n=2 and total definite case was also treated by him [8].

PROOF. By definition

$$\mathfrak{O} = \{ S \in D \mid MS \subset M \}.$$

As a Γ-module:

$$MA(x^i) \subseteq M$$

therefore we have

$$\mathfrak{O}\supseteq\sum_{i=0}^{n-1}A(x^i)\mathbf{Z}.$$

Since $\mathbf{Z}[\zeta] = \sum_{i=0}^{n-1} \zeta^i \mathbf{Z}$ is the maximal order of $K = \mathbf{Q}(\zeta)$ we see that

$$\mathfrak{D} = \sum_{i=0}^{n-1} A(x^i) \mathbf{Z}$$

is the maximal order of D.

q. e. d.

The class number defined by

$$\{M; \mathbf{Q/Z}\} = \{M_1; \mathbf{Z/Z}\} + \dots + \{M_c; \mathbf{Z/Z}\}$$

is therefore given by

$$c = \prod_{p|n} j(p) \cdot h$$

where

$$h = h(\mathbf{Q}(\zeta))$$

is the absolute ideal class number of the field of n-th roots of unity. Now consider j(p). If n is a prime power and

$$n \equiv 0 (p)$$

then

$$(p-1, n)=1$$

i.e. GF(p) contains no *n*-th roots. Therefore *p*-modular representation of A(x) for $n \equiv 0$ (p) are irreducible. By a theorem of Brauer¹³⁾

$$j(p) = 1$$

And hence

$$c = h$$
.

As a next example, consider the symmetric group

$$\mathfrak{S}_3$$

of order g = 6 in the field of rationals Q. Let A(x) be the 2-dimensional absolutely irreducible representation with Γ -lattice M.

¹³⁾ Brauer [4], Theorem 10 or Artin-Nesbitt-Thrall [1], Lemma 9.8 D.

If p=2,

$$\frac{6}{2} = 3 \neq 0 \ (2)$$

implies that A(x) is irreducible mod 2, therefore 13)

$$j(2) = 1.$$

If p = 3, A(x) is reducible mod 3 and contains two modular irreducible constituents. Therefore by a deep theorem of Brauer¹⁴⁾

$$j(3) = 2.$$

Finally, since $h(\mathbf{Q}) = 1$, we have

$$c = \prod_{p \mid 6} j(p) = j(3) = 2.$$

BIBLIOGRAPHY

- [1] E. ARTIN-C. J. NESBITT-R. M. THRALL, Rings with minimum condition. Ann Arbor 1944
- [2] L. BIEBERBACH, Ueber die Minkowskische Reduktion der positiven quadratischen Formen und die endlichen Gruppen linearer ganzzahliger Substitutionen. Gött. Nach. 1912, 207-216.
- [3] R. BRAUER, On modular and \$\partial -adic representations of algebras. Proc. N. A. S. 25 (1939), 252-258.
- [4] R. BRAUER, Investigations on group characters. Ann. of Math. 42(1941), 936-958.
- [5] R. BRAUER, Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Zeitschr. 63 (1956), 406-444.
- [6] C. CHEVALLEY, L'arithmétique dans les algèbres des matrices. Actualités Sci. et Ind. 323 (1936).
- [7] F. E. DIEDERRICHSEN, Ueber die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmeticher Aequivalenz. Hamb. Abh. 13 (1939), 357-412.
- [8] M. EICHLER, Ueber die Idealklassenzahl total definiter Quaternionenalgebren. Math. Zeitschr. 43(1938), 102-109.
- [9] M. EICHLER, Ueber die Idealklassenzahl hyperkomplexer Systeme. Math. Zeitschr. 43 (1938), 481-494.
- [10] M. EICHLER, Quadratische Formen und orthogonale Gruppen. Berlin 1952.
- [11] G. FUJISAKI, On the zeta-function of the simple algebra over the field of rational numbers. J. Faculty of Sci. Univ. of Tokyo, Sec. I, VII (1958) 567-604.
- [12] W. GASCHUETZ, Ueber den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen. Math. Zeitschr. 56 (1952), 379-387.
- [13] C. JORDAN, Mémoire sur l'équivalence des formes. Journ. éc. pol. XXIX, 1880.
- [14] H. KUNIYOSHI-S. TAKAHASHI, On the principal genus theorem. Tohoku Math. J. 5(1953) 128-131.
- [15] J. M. MARANDA, On \$\psi\$-adic integral representations of finite groups. Canad. J. of Math. 5(1953)344-355.
- [16] J. M. MARANDA. On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings. Canad. J. of Math. 7(1955), 516– 526.
- [17] T. ONO, Sur une propriété arithmétique des groupes algébriques commutatifs. Bull. Soc. Math. France 85(1957), 307-323,

¹⁴⁾ Brauer [4], Theorem 11,

- [18] I. REINER, Maschke modules over Dedekind rings. Canad. J. of Math. 8(1956), 329-334.
- [19] I. REINER, Integral representations of cyclic groups of prime order. Proc. A. M. S. 8 (1957) 142-146.
- [20] A. SPEISER, Die Theorie der Gruppen von endlicher Ordnung. Berlin, 3 Aufl. 1937.
 [21] H. ZASSENHAUS, Neuer Bewsis der Endlichkeit der Klassenzahl bei unimodularer Aequivalenz endlicher ganzzahliger Substitutionsgruppen. Hamb. Abh. 12(1937-1938), 276, -288.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.