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Let © be a finite group, k be an algebraic field of finite degree over the

field of rationale Q. In a representation space V over k we consider a Γ =

0 [@]-lattice (Gitter) M in V which is a regular o-right module and ©-left

module where 0 is the ring of integers in k. The set of all Γ-lattices which

we denotes by \M; k/o} can be classified into Γ-isomorphic Γ-lattices in

the following way :

[M; k/o} = {Mr, o/o} + + {Mc; o/oj.

If k = Q is the field of rationals and V is irreducible, this class number is

always finite and was proved by C. Jordan [13]°.

In the book of Speiser [20] this theorem was proved only in two special

cases, namely, © is a cyclic group or V is absolutely irreducible. The

reason for this may be explained by the following considerations.

Let p be a finite or infinite prime. We can consider p-extension Mp of

the Γ-lattice M and put

\MP; k,/o9) = {M,<1); op/op} + + Mf»; op/o,}.

The local class number j = j(p) is always finite and = 1 if p does not divide

the order g = # ® of the group ©.

If we define genus of M as

(M; o/o} = Π \M; o,/o,}

then the number of genera in all Γ-lattices in V is

j = Π fa)
p \ σ

and is finite (§7). If M is absolutely irreducible we have

c = j (§ 10).

On the other hand, number of classes in a genus is expressible as a

kind of class number of a suitable algebraic group (§9), which was consider-

ed by T. Ono [17] and its finiteness was proved for commutative case by

him. Simple considerations show that if © is cyclic and k = Q

1) Number in the bracket refers to the bibliography at the end of this paper.
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έ: = A

where A is the class number of the field of g-th roots of unity. General
cases are somewhat complicated but relate with class number of a suitable
algebraic extension K/k (§11).

After this investigation was almost completed, the author found papers
by Maranda [15], [16]. He introduced the concept of genus and its product
formula (§§7-8), but his definition is a global one and its locality and hence
equality with my definition was not proved by him.

Finally, I must express my hearty thanks to Prof. Tannaka for his kind
advices and encouragement during the preparation of this paper.
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NOTATIONS

@ : finite group.
k: algebraic number field of finite degree over the rational field Q.
0 : ring of integers in k.
Γ = 0 [©]: group ring of © over 0.
V: vector space of dimension m over k; mostly Γ-space.
A(x): representation of @ by GL(V k).
M: lattice in V mostly Γ-lattice.

1. Preliminaries on lattices (Gitter). By a lattice in an algebraic field
k we mean an o-module M contained in a definite vector space V over k
such that

1) M is a finitely generated o-module,
2) M generates over k the vector space V i. e. Mk = V.
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Or, equivalently, a lattice is a regular ϋ-module i. e.

1) M' is a finitely generated o-module,

2') u € M\ a € o, ua = 0 imply « = 0 or a = 0.

Namely, a lattice M in former sense is of course a regular o-module and
regular o-module M is a lattice contained in the vector space M'k = F ' of
^-extension of M .

Let p be a prime in k. Assume first p is finite. kΰ, 09 denote respectively

p-adic completion of k and p-adic integers in k9. If M is a lattice in k, then

its p-adic extension

Mv = Mθp

is a lattice contained in the vector space Vj, = V^p. For infinite prime p^,

we simply put

M^ = V^

in accordance with the convention opoQ = kVoa

PROPOSITION 1.1. If M is a lattice contained in V, then

n M9)

where the intersection extends over all finite and infinite primes in k.

A proof is found in Eichler2) [10] and almost clear if we assume Stenitz's

basis theorem3).

PROPOSITION 1.2. Let vl9 vm be an arbitrary k-basis of V. Then

for any lattice M in V we have

except for a finite number of primes in k.

For, by Steinitz's basis theorem

M= ufi® @um^o@uma

with an ideal d in k. For a prime not in Ct we have

Since (u1} um) and (vl9 vm) are two ^-basis of V, they are connected

by a regular matrix in k which is p-unimodular (i. e. a matrix in Op whose

determinant is a p-unit) except for a finite number of primes in k.

PROPOSITION 1. 3. To each prime p put M ( p ) for a lattice in V» such

that except for a finite number of primes

2) Eichler [10], §12, Satz 12.1.
3) For example:Eichler [10], §12, Satz 12.5.
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where vu vm is a k-basis of V. Then the intersection

M = f~}(V Π M< p ))

over all primes in k, is a lattice in V such that

for all primes in k.

PROOF. Put M' = v 1 o φ (&vmo. Since M'p = M ( p ) except for a
finite number of primes. We can fined y, y' € 0 such that

for all primes in k. From iW"$Ξ M' γ"1, Λί is a finite o-module. On the
other hand, MS My implies Mk = V. Therefore M i s a lattice in V.
Next, M^M{P) implies M9^MW for all primes in k. Take u € M(p) ar-
bitrarily, put #!, un (n^im) for an o-generator of M, secured by first
part of the proof. We have

u = iiyCίi + -f unan

with oίi € kp.

From approximation theorem on valuations, we can take βt € k such that

fit = ctt (o,)

βi = 0 (OpO for all primes p'( =f= p) in £.
Then

z; = uιβ1 4- + wn^n

is a vector in V such that it is contained in M ( p ) and Λ/(p) for any prime
p/=f=P, i e.

v e i^ίV Π M(p)) = M.

On the other hand, we have

U= V

with v € M9 cίi — βι € . Op. This means ^ ^(a:* — βt) € Mo and finally u €
ί = l

Λfp. q e. d.

2. Representations by lattices. Let © be a finite group and Γ = o[®]
be the group ring over 0. Assume now V is a Γ-left space over k. Any
element x € © is represented by an automorphism
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A(x)e GL(V; k)

of the vector space V. Symbolically xV= VA(x).

By a Γ-lattice in V, we mean a lattice M such that

for all x € ©.
To a Γ-lattice M we can associate a finite set of matrix representations

in the following way. Let vu vm be a £-basis of V, since M is a lattice

in V by Prop. 1.2, except for a finite system of primes pl9 pr we have

For exceptional pt (i = 1, r) we can put

MPt = ΌtιΌPt@ @vimpn i = 1,

since 0,,t are principal ideal domains.

Put

then matrices :

At(x) = (a\j(x)) i = 0,l, r

are (r+1)- matrix representations of the group © such that Ai(x)(i = 1, , r)

are ^.-equivalent to Ao(^:). Notice that the elements a%(x) € k are integral

for all prime p =+= pt(ί = 1, r).

Conversely given a matrix representation A0(x) in £ and }Vadic integral

matrix representations At(x) (i = 1, , r) which are &Pi-equivalent to -Ao(^)

for any prime pt for which A0(x) is not necessarily t)t-integral. Then we

can fined a Γ-lattice M whose associated matrix representations are given

Ai(x)(i = 0,1, , r). Namely, if ϋu , vm be a έ-basis of the vector

space V9 we put

with ©-left operation :

where (aji(j:)) = -A0(ΛΓ). For an exceptional prime pέ let R% be a regular
matrix in kH such that

and put
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where

is a £Pί-basis of V9i.

Then by Prop. 1. 3

M = ^(V f]

is a desired Γ-lattice in V.

3. Reducibility of representations. We consider now reducibility of a
Γ-lattice M in connection with reducibility of matrix representation by the
vector space V = Mk.

LEMMA I. Let M, N be two regular o-modules. Then we have

(M Π N)k = Mk fl Nk.

PROOF. From M i l N^M and M Π N^N, it is obvious that

( M i l N) k^Mk Π iV£.

Let aa = bβ € Mk Π iV& with a € M, 6 € N, a, β € £ be given. Take
7 € 0 such that ay € 0, βγ € 0, then <zα:γ = &/3γ ^ M ί l i V and αΛ =

" 1 € (A Π 5 )£. q. e. d.

We say that a submodule N of a regular 0-module M is primitive in
M if one of the following, equivalent, condition is satisfied :

1) Nk Π M = JV,
2) Quotient module M/N also is a regular o-module,
3) tf € M, ad € iV with α ^ i . rt=|=0 imply a ζ N.

LEMMA 2. If N is a primitive submodule of A, then naturally

(M/N)k c~ Mk/Nk,

PROOF. The map φ: M/N-> Mk/Nk defined naturally by φ(a) = a for
a € M is into isomorphic by the primitivity of JV in M. (e. g. by 3)). The-
refore it remains to show that M/N contains as many linearly independent
elements as that of Mk/Nk. But this is obvious since any elements al9 ar

of M that are linearly independent mod Nk are a priori linearly independent
mod N. q. e. d.

Now we define reducibility of a Γ-lattice M as follows :
M is reducible if it contains a primitive submodule N neither 0 nor M

such that N itself is also a Γ-lattice in Nk = W.
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PROPOSITION 3.1. A Γ-lattice M is reducible if and only if the matrix
representation defined by V = Mk is reducible.

PROOF. Assume first M is reducible, then there exists a primitive sub-
module N. Nk is a subspace of Mk = V neither 0 nor V by primitivity of
N in M. Of course Nk is a Γ-space and therefore V is reducible.

Next, let Mk = V be reducible, then there exists a Γ-subspace W a V
different from 0 or V. Put N = W Π M. As a submodule of M, N is a
regular 0-module. By lemma 1 Λ% = W9 it follows that N is a primitive
submodule of M. Since N is a Γ-module, M is reducible. q. e. d.

4. Some cohomology groups. Let Ax(x\ A2(x) be two representations
of the group © by matrices of degree r, 5 respectively with elements in a
commutative ring JR with unity element. We now define cohomology groups
H\& : Al9 A2) as follows :
w-cochains are functions E(x1} ... ,xn) from & X X ® (^-factors) to i?r>s

where Rsr denotes the set of all matrices consist of r-rows and s-columns
with elements in R.
Coboundary operations are defined by

8E(xl9 ,#«+i) = Ax(xλ)E(x2, 9xn+i)

From these, cohomology groups are defined as usual

Hn(® Al9 A2) = 7z-cocycle/w-coboundary n = 0,1, 2,

Obviously,

PROPOSITION 4.1. The set H°(& A1? A2) consist of all intertwinning
matrices E between Al9 A2, namely,

Aλ{x)E = EA2(x)

for all x € @.

If R = k is a field then

is called intertwinning number.
The "norm" of a matrix T € Rr,s defined by
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is a 0-cocycle.

PROPOSITION 4. 2. Hι(® ', Al9 A2) and matrix representations of type

/A,{x) E(x)

V 0 A2(x)

classified by

/ I T \

V 0 1 /

in one to one correspondences.

PROOF. From

fAx(x) EixY/A^y) E(y)\/Ax{x) E&Y/Ah) E(y)\

V 0 A2(x))\ 0 A2(y))

= /A1(x)A1(y) Ax{x)E{y) + £(^)A2(

V 0 -4a(^M.Cy)

it follows that this is a representation of ® if and only if

Aί(x)Ai(y) = Alxy) i = 1, 2

i. e. E(x) is a 1-cocycle. The rest follows from direct computations, q. e. d.

Concerning the structure of jR-module Hn(& Al9 A2) we have:

PROPOSITION 4. 3. Let g = # © έe Λ̂e o r ^ r of ®. TÂ w /or

representations Au A2,

gHn(& Al9 A2) = 0, n > 0.

/w particular if g is a unit in R9

H\&; A19A2) = 09 n>0.

PROOF. Let E(xί9 ,xn) be an n-cocycle, i. e.

Multiply A2(xn+\) from right and add over xn+ι € © we have

, xn, x)A2(x~1)

xe®
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If we put

F(xl9 ,Xn-l) =ΣE(Xl> 9 Xn-l9 x)As(x'1)

in this equation, we have

gE(xu ,xn) = ( - l)n SFfe, xn).

q. e. d.

PROPOSITION 4. 4. If R is noetherian and R/gR is a finite ring, then

# Hn(β A19 A2) < + oo, n > 0.

PROOF. The i?-module of /z-cochains C"(®; Al9 A2) is a finite i?-module.

Since R is noetherian, its submodule of #-cocycles Zn(βb Al9 A2) is also a

finite jR-module, hence a priori H\&; Al9 A2) is a finite i^-module. Since by

Prop. 4.3 any element E € Hn(@>; A19 A2) has finite order g E = 0. This
with the hypothesis # (R/gR) < + oo implies

#Hn(&; Al9A2)< + oo.

5. Maschke pair. We say that two representations Ax(x\ A2(x) of the
group © in matrices with elements in a commutative ring R with unity
element form a Maschke pair if

Hι(β Al9 A2) = HK® Af3 A,) = 0,

By Prop. 4. 3. if p is a prime which does not divide the order g of ® :

J * 0 ( ί )

and i? is a field of characteristic p or i? = 0p a ring of p-adic integers with

t>|/>, any two representations in R are Maschke pair.

Another example is :

PROPOSITION 5.1. Let Y = /?[©] fe ίA^ group ring of & with coeffici-

ents in R. Assume that either representation module of A1 be Y-injective^

or that of A2 be Y-projective^, then

HX®;A19A2) = 0.

Notice that if a representation A(x) is a direct constituent of the regu-

lar representation then its representation module is Γ-projective.

4) These terminologies are those used in Cartan-Eilenberg's Ήomological Algebra".
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PROOF. We prove only in case that the representation module A2 of

the representation A2(x) is Γ-projective, since other case is similar.

By Prop. 4.2 to any element E € Hι(®>; Al9 A2) there corresponds an

Z?-free Γ-module B such that

is exact. By Γ-projectivity of A2 there exists a Γ-homomorphism

φ : A2 -» B

such that

A2-+B-> A2

is the identity map.

Let a basis of B be so chosen that

9 ,ar9bλ, ,bs) = (a19 , ar, bu ,b8) /A^x) E(x)^x) E(x)\

0 A2(x)J

with E(x) € E. Since (al9 , ar, φib^, , φ(bs)) is a basis of B, there

exist two matrices S, T with regular S such that

(aί9 9ar9 φ(bx), , φ(bs)) = (a19 , ar, b19 ,bs)/ 1 T

V 0 S ) .

Put

(#15 j ar9 b19 , bs)/ 1 T \ = (al9 , α r , c19 ,cs).

V 0 1 /

Then (^i, 9ar, cl9 9cs) is a basis of JB such that

x(a19 9ar9 cl9 ,cs) = («!, 9ar, c19 ,cs) /Aλ(x) 0\

\0 Λ,(Λ:)/

By Prop. 4. 2 this means E = 0. q. e. d.

6. Representations in p-adic fields. In this section, p is a finite prime

in an algebraic number field k9 op the ring of p-adic integers.

THEOREM I (HENSEL LEMMA). Let A(x) be a representation of the

group © in matrices with elements in op. A(x) be the reduction mod P of

the representation A(x). Assume in the modular field ΐp = Oχ,/p a direct

decomposition

δίiU) o

0 2ί2O)
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in which Sίl5 5ί2 form a Maschke pat?' (§5) i. e.

IP(β «!, «,) = fΓ(® Sί2, SIJ = 0.

Then there exists a direct decomposition in op:

such that

Af(x) = ^(Λ:) i = 1,2.

PROOF. Without loss of generality, we may assume

Then the representation A(x) has in op the following form

where π is a primitive element for the prime p, and Ai}(x) are matrices with
elements in o,,. We prove by induction that representation of the form :

τrnAl2(x)\

(x) A22(x)), n > 0, m > 0

with Aij(x) matrices in Op, can be transformed by a matrix of type :

1 τrnT \

0 1 / , T in 0,

into the form

Au(x) τrn+'Arl

with matrices A[){x) in op such that

under the condition

£P(© Six, a,) = 0.

Similar result holds for m.

For, from

An(x) ff"AM

. ,(*))( 0 1 )
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A'n(x) 7rn+1Avz{.1 irnT W An(x)

0 1 J\7rmAn{x)0

\ πmA21(x) A22(x)

the condition for the matrix T is

An(x)T + A12(x) = TAΊlx) (p).

Since Aι2(x) € Z'(@; 5ί15 3ί2) is a 1-cocycle, by hypothesis on δίj, 3ί2 such matrix
T must exist in op.
Starting from

V τrA2ι(x) A22{x)

with n = m = 1 we arrive at the Op-equivalence

with At(x) = afe) i = 1, 2. q. e. d.

CθROLLARY5). Let U be a directly indecomposable modular representa-
tion of the group © contained in the regular representation. Then there
exists a representation U in op such that

U(x) = U(x).

For, in the modular field fB, the regular representation R(x) in ov splits
as

/ U 0

V 0 35

with suitable modular representation 95, Thereby U, 35 are represented by
Γ-projective modules therefore form a Maschke pair.

THEOREM 2. Let the prime p does not divide order g of ®. Then
matrix representation A(x) in 0p and ^(x) in modular field fp = 0v/$ are in
one to one correspondences by reduction mod p :

A(x) —> ~A(x) = 2ί(.r).

In other words any representation in op is completely reducible and there
are as many irreducible representations in 0β as that in ΐp.

PROOF. Complete reducibility follows from Prop. 4.3. If A(x) is an

irreducible representation in op then its reduction mod p : A(x) is also ir-

5) This result was announced by Brauer [3].
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reducible.

For, suppose contrary to our assertion

λ /«,(*) 0 \

then Hensel lemma would yield a decomposition

& 0
A(x)~[ o

in Oj,. This is a contradiction.

Conversely, assume Sί(^) be an irreducible representation in ϊ», then the

regular representation ϋl(x) splits as

ω o
0 5&Ga.

Apply Hensel lemma to the regular representation R(x) in op with i?Gr)

= 9ΐ(.r) we have

Ά(x) 0 \

0 B(x)/

with A(.r) = Sϊ(.r). Of course A(#) is irreducible in 0c. q. e. d.

COROLLARY. In case ^ Φ O (p). T/7 ίwo matrix representations Aλ(x),

A2(x) are ^-equivalent then they are 0^equivalent.

PROOF. Since kϋ is a field, ordinary theory of representations shows that

BiCz) 0 \
*•- 1 ~*_ A ( T*) i τi J?

I ^ ^ /lίVXy HI Kpf

0 B.U)/
where BI(Λ:), , Bs(x) are irreducible representations in kp. Since 0p is a

principal ideal domain, we may assume without loss of generality that Bι(x\

, Bs(x) are matrices with elements in op. From the Theorem 2

-. I in 0p

0 Ct(x)/

where Cl9 ,Ct are irreducible representations in 0p. Comparing their

characters, we see that C1? , Ct are permutations of Bl9 , Bs (By sui-

table Op-transforms if necessary). The same is true for the representation

A2(x). Therefore
(Bx(x) 0 \

\ 0 Blx)l
q. e. d.
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Thus, the case p with g Φ 0(p) are completely studied. We are therefore

in a position to investigate the case g = 0(p). More precisely take integer

e0 > 0 such that

9 = 0 (t>e°)

<? Φ 0 (pe°+1).

PROPOSITION 6. 1 (PRINCIPAL GENUS THEOREM6)). Assume e ^ e0 and

Ax{x\ A2(x) are representations in 0,. If an n-cocycle E € Z"(® A19 A2)
satisfies

then there exists an {n — l)~cochain F € Cn'\% Al9 A2) such that

E=8F

with

PROOF. Since E is an rc-cocycle, by the proof of Prop. 4. 3, if we put

then

flrE=(-l)B8F1.

From the hypothesis E = 0 (pe) it follows that

is indeed an (w — l)-cochain in op satisfying

£ = BF q. e. d.

PROPOSITION 6. 2. L ^ A1?A2 δ^ two representations in oP9 and e > e0

be an integer. Then equivalences :

Ax ~ A2 in

-Ai — A2 in Op

completely equivalent.

PROOF. Equivalence in op implies equivalence in 09/pe is trivial. Let us

show the converse. Assume

Ax — A2 in op/pe.

6) This proposition has some analogy to a result of Kuniyoshi-Takahashi [14].
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In other words there exists a matrix T in op such that

AλT - TA2 = 0 (pe), d e t T Φ

Then

E(x) = A£x)T - TA2(x)

is a 1-cocycle € Zα(@; A1 ? A2) and

Since £ > e0, we can apply principal genus theorem (Prop. 6. 1) and it yields
a matrix S in 0 such that

E(x)= Ax(x)S - SA2(x)

5 ^ 0 (pe-e°).

If we put T'' = T — S, then T' is a matrix in op such that

det T' = det T Φ O (p)

i. e. A1(x\A2(x) are Op-equivalent. q. e. d.

7. Equivalence theory of Γ-lattices. In this section we use same nota-
tions as that of §2. Namely k is an algebraic number field and 0 the ring of
integers in k. Γ = o[@] is the group ring over 0.

PROPOSITION 7. 1. There exists at least one Y-lattice M in V, if V is

a T-space.

PROOF. If V is written by a &-basis as

V = vλk+ ...... + vmk,

then the following finite o-module

M =

is a Γ-lattice in V. q. e. d.

If Λ 3 o is a ring over o, we put for a Γ-lattice M

{M; R/ΰ\ = {N € Γ-lattices in V \ NR ^ MR as TR-modules}.

In particular

\M k/o\

is the set of all Γ-lattices in V, for any Γ-lattice M in V.

Since Ml9 M2 € \M; R/θ\ lie in the same class {M; k/o\, we can write

\M; k/o] = \Mι; R/o] + + \MC; R/o\

as a disjoint union of finite or infinite number of subclasses. We put
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c = c(R/o)

and call it the class number of Γ-lattices with respect to R.
If K/k is an extension field with a maximal order D ID 0, we can define

ΓD-lattices in VK and the symbol

\M; R/D]

with a ring i? 3 $• There exists always a map

IAf; Λ/o} BMX-+ Mλ€) € jM; Λ/O}

called injection.
Main examples of R and D are:

K — k^: p-adic completion of the field k, D = op: p-adic integers in k9>

r

R = o(pl9 , pr) = f~\(k Π oBt) 3 o where pJ? , p r are finite primes in &.

PROPOSITION 7. 2.7) TΛ^ injection

{M; k/o] -• {Mop;

// o/zίo mαί ze ίίA 5αme c/α^ number

PROOF. Take an M (B) € |Mop; £p/op}, we can define a Γ-lattice Mι

jM; */°l such that Mfi^ = M ( p ). Namely, let M be a Γ-lattice in V. Put

M/p) = M ( p )

Mχ(0 ='Mo, for prime q =f= p.
Then

M1 = Γ\(M,W Π

is a desired Γ-lattice with MjOp = Λf(p) by Prop. 1. 3.
As to class numbers c(p9/o)9 c(op/op),

Ml9 M2e |M3;θp/o}

imply Mχθo ^ M2ov as Γop-modules.
Therefore

Λίiop, M2op € {M3op, op/oβ|

and conversely. q. e. d.

PROPOSITION 7.3. For #?ry VΊatϋce M

\M;o(p)/Ό\ ={M;op/o\.

PROOF. Since ilfio(p) ^ Λf2o(p) as Γo(p)-modules implies Mxop c- M2op as

7) This and following Prop. 7. 3 give a proof for locality of Maranda [16]' s concepts of
^-equivalence and genus, noticed in the introduction.
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ΓiVmodules, it ts trivial that

Conversely, suppose Ml9 M2 € \M; oP/o}.
Since o(p) is a principal ideal domain, we can write

0 Ump(p)

with matrix representations with elements in o(p) :

The Γθp-isomorphism <p: M20p —> Mβv can be written as

φ(p) = u T

with matrix T in 0β such that det T Φ O (p).

In terms of matrix representations Ax{x\ A2(x) we have

Ax(x)T = TAlx).

Take an exponent e > e0 with p = # © = o (pe°) but j Φ O (ί3e°+1), there exists

a matrix T in 0 such that

Tλ = T (pe).

Consider a 1-cocycle

£(^) = AX^T, - 7V42Gr) = 0 (pe)

in θ(p). By the principal genus theorem8) (Prop. 6. 1) we can find a matrix *S

in o(p) such that

E(x) = A£x)S - SAlx)

with 5 = 0 (Pe"e°) and hence 5 = 0 (p).

Then T 2 = T2 — 5 is a matrix in o(p) intertwines -AJCΛΓ), -A2(J:) :

Aλ(x)T2 = T.Alx)

such that

det T2 = det Γx = det T Φ O (p).

Therefore the new map

is a Γθ(p)-isomorphism MxO^) ^ M2o(fi) i. e.

M1 ? M 2 € (M;o(p)/o|. q. e. d.

PROPOSITION 7. 4. If pl9 9pr are finite primes in k,

8) This holds for the ring o (fj) instead of oΰ if we consider its proof.
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r

;o(p l 5 , Pr)/o\ = f~\{M;oJo\.

PROOF. From preceding Prop. 7. 3 we have only to prove

ofp,, ,pr)/o)

= Γ\\M;θ(pi)/o\.

Since ϋ(fil9 , Pr)So(Pi), it is clear that

Take an M^ € f \ \M; θ(pέ)/o} and put
ί - l

Since o' is a principal ideal domain, we can express the proposition, if we

take suitable o'-basis of Γ-lattices in consideration, by words of matrix

representations. Namely, if Aλ{x\ A2(x) te two matrix representations in o',

such that there exist matrices T% in θ(Pi) (i = 1, , r) with det T jΦO

(Pi) and

A^xyΓ, = TiAt(x) i = l, ,r,

we can find a matrix T in o' with T " 1 in o' and

A (rXΓ — ΎΆ (<r)

Take elements <o% € o' such that

^ΦO(PO, ω, ^ o(p/0 i4= ί, i ^ ί, i ^ r,

whose exponents ^ > 0 are taken as

with primitive element TΓJ of fy.

Then the matrix
r

ί = l

is a desired matrix in o'. Since

det T = det ωόTj = ωf det Tό Φ 0 (p, )

i = 1, , r. q. e. d.

PROPOSITION 7.5. If a finite prime pr is different from P1? , Pr-i>

o(pj, , P^-O/o} Π



234 SHUICHI TAKAHASHI

for any T-lattices Mu M2 in V.

PROOF. Put o' = ofa, ...,P r). This is a principal ideal domain and
each ideal in o' is of the form :

r

with primitive elements TΓ* of pt with τr} Φ 0 (pj) for iφj. We can also prove
the proposition by words of matrix representations. Since two matrix repre-
sentations Ax{x\ A2(x) in o' are ^-equivalent, there exists a non-singular
matrix Ύ such that

Alx)T = TA2(x)

with elements in 0 if we multiply T by an element in 0 if necessary.
By elementary divisor theory in o' we can find "unimodular" matrices R, S in
o' such that

f ί - l

RTS= '

TL-π-i11 o

0 Πτrt

e<™
t = l

with exponents

Put RTS = T,T2 with
r - l

I, τ 2 = I -
0 7r>/ \ o ff,rΛ

ί = l

then these are matrices in o' such that

det T ^ O fa) 1 ̂  i ^ r - 1; det T2 Ψ 0 (pr)

From the computations :

, = T2S-τA2(x)S TΓ1 = A2(x)

we see that -ΛI(ΛT) and A3(x) are o(p1? , p^^O^Quivalent while A2(Λ;) and
A3(.r) are o(p,.)-equivalent.
If we write M3 for a Γ-lattice which represents © by matrices A3(x), we
have

M3€ iMi;ofa, ,pr.,)}
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Π {M2;θ(pr)}+φ. q.e.d.

THEOREM 3. If pl9 ,pr are mutually different finite primes in k,

then we have for class numbers :

PROOF. It will be sufficient to prove

r

<Φ(ϊ>l, , Pr)/0) =Tίc(θ(pi)/θ).
f - 1

We prove this by induction on r. For r = 1 this is trivial. Let r > 1, we

have by definition :

\M;k/o\ = |Λf i ;o(p,, ,PP_ι)/o|

+ + {Me;θ(filt ,ίJr_,)/0|

= liV.; o(pr)/o} + + \Nd; o(pr)/o|,

°(Pi» ,Pr-i)/o| n Uv,;o(pP)/o}]

with c = c(p(pl9 ,Pr-i)/θ) and ύ? = t(

From the preceding Prop. 7. 5 we have

ofa, .Pr-O/ol Π UV,;o(ϊ>P)/o|+φ.
If we take a Γ-lattice Mi} in this intersection we have

{Mi;o(p1} , ^ - 0 / D I n {Nj;o(pr)/o}

= {Mw; o(p1? ,Pr)/ol

by Prop. 7. 4.

Since

is disjoint, we have finally

, t>r)/0) = ^θ(ί)1? Pr-O/O) c(0(pr)/0). q. e. d.

8. Genus of representations. Let k be the adele ring (or ring of

valuation vectors) of k. 0 denotes subring of k consists of all integral ele-

ments of k i. e. a direct sum

of all p-adic integers op for finite primes p and Oj, = kv for infinite primes
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P - Poo.

As in the preceding §7, we define

[M 'o/o]

and call Γ-lattices in them as belonging to the same genus. The class

number j = c (o/o) defined by

{M; k/o} = [M, o/o} + + {M,; 0/0}

is called the genus number of Γ-lattices in V.

THEOREM 4. Let g = # ® be the order of ®, ίλe/z /or <z/ry Y-lattice
M in V

From this we have

3 = ΠdA/o) < + oo.

PROOF. Ml9 M2 € {M; o/o} imply by definition

MjO ^ M2o

as Γo-modules. Since 0 = ^ op is a direct sum, we have for all primes p

Mi Op ̂  M 2 o p

as Γθp-modules. Since this is trivially verified for infinite primes p = p^ it is
sufficient to prove that if p \ g

{M k/o} = {M;op/o|.

But this follows at once from Coroll. to Theorem 2. The formula for j fol-
lows from

"ϊ o(pu ,pr)/o\.

if we write pl9 ,pr for all different primes dividing g.
Finally finiteness of c(op/o) follows from Prop. 6. 2. q. e. d.

9. Class number in a genus. Let V be a vector space over k, which
has as in preceding sections © as left operators and induces a representation

© 5x->A(x) e GL(V; k)

by automorphism of V.
Similarly, for any prime p9 the p-extension Vv = Vkv induces a represent-

ation which we write by the same symbol

A(x) € GL(VP; h).
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Moreover, the vector space V = Vk over adele ring k of k induces a
representation which will be also written by

A(x) € GL(V;Ί).

There group GL(V; k) consists of elements

S= (S,), S, € GL(V,; *,)

such that except for a finite set of primes, S^ being p-unimodular.
Now,

G = v(A(®)) = {S e GL(V; k)\A(x)S = SA(x) for all x € @}

is an algebraic group of automorphisms of V. Its idele group9) is given by

G = v(A(®)) = {S € GL(V; ΐ) I A(x)S= SA(x) for all x € ®}.

G contains G as a discrete subgroup with its natural topology.

Let M be a lattice in V. We define M 5 with 5 € GL(F; &) by

if 5 =

It is readly seen that M S is a lattice. Moreover if M is a Γ-lattice and

5 € G then M 5 is also a Γ-lattice.

PROPOSITION 9. 1. Let M be a V-lattice in V, then

\M; o/oI = 1M 5 ' 5 € G|.

PROOF. "The fact that M 5 is a also a Γ-attice" is already remarked.

M *S is contained in \M; o/o}. For if we fix a prime p, then

(MS\ = MVSV

is a Γo^-isomorphism by virtue of

^(^)5 P = 5PAU)

for all x € ®.

Conversely, take an Mj € (M; o/o} arbitrarily. For any prime p, we have
by definition :

Mιp ^ Mp as Γθp-modules.

Since these are op-free modules, we can find Sp € GLCî p; ^) such that

M 1 P = MPΛ;.

From the fact that M, Mγ are lattices in V it follows that Sp are p-unimodu-

9) Idele group of an algebraic group was considered by Ono [17], Tamagawa and Weil.
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lar except for a finite number of primes, i. e.

5 = (S,) e GL(V; I).
Now, for any prime p we have

xMn = Mlx>A(x)

xMp = M*A(x)

hence A(x)Sv — S^A(x). This shows that S € G and

M, = M S. q.e.d.

PROPOSITION 9. 2. Lei M be a T-lattice in V, then

{M o/o} = {MS \ S€ G\.

PROOF. If S € G, then the fact M-> M - S is a Γ-isomorphism is trivial.

Take an Mx € {M; ϋ/oj arbitrarily, there exists a Γ-isomorphism

φ: M-> Mi.

Since lattices in V generate V over k and are regular o-modules, we can

generate V extend φ uniquely to a Γ£-isomorphism10)

φ: Mk= V-> M,k = V.

Therefore there exists S € GL(V; k) such that

M1 = MS.

Finally Γ-isomorphism of φ implies S ^ G. q. e. d

THEOREM 5. Let M be a Y-latίice in V. Put

U= (f € G ( MT = M\

for a subgroup which fixes M. Then classes in a genus

{M;7/o} = [MI;O/Ό\ + + |Mc;o/o}

are in one to one correspondences with double cosets

U\G/G

of G with respect to two subgroups U and G. Explicitly, its corresponden-

ces are given by

G 3 5->M ^ € {Λf; o/o}

MS1 ^ MS2 as Y-lattices,

if and only if

Si = TS2 S

with suitable T € U, S € G.

10) The proof is straightforward e. g. Chevalley [6].
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PROOF. That the mapping

G 3 £->M$€ [MCO/O]

is onto was already given by Prop. 9. 1.
From

MSi ^ MS2 as Γ-lattices,

we can find by Prop. 9. 2 and S € G such that

MS, - MS, S.

This finally means an existence of T € U with

S, = T 52 S q.e.d.

Notice that in a recent paper by Ono [17] it was proved that the number
of double cosets # U\G/G is always finite if G is a commutative algebraic
group.

10. Absolutely irreducible representations. In the preceding §9, we
have seen that class number in a genus is expressible as the number of
double cosets

ΊJ\G/G

of a suitable algebraic group G of automorphisms.
In this and following sections we shall consider more closely this double

cosets.

PROPOSITION 10.1. // M is a lattice in V, then the ring

JR = \ae k I Ma^M)

coincides with o.

PROOF. Since M is an o-module, Mo £ M, therefore

Take an a € k such that Ma <Ξ M. We have to show for any finite prime
p that

a € Op.

Since op is a principal ideal domain we can write

M, = ^Opφ ®wmop

as a direct sum. ΛfpΛ £ Mp implies in particular

with /?i € 0D. Take γ =f= 0, γ € op such that Λγ € 0p, then

+ + umβmy
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hence we have

ay = βλy.

This implies a = βx € 0p. q. e. d.

THEOREM 6. If V is an absolutely irreducible space and M is a Γ-
lattice in V, then

G = al with a € J = «/(£)

G = al with a€ kx

U = 7l with ϊe U= U(k)
where, J(k) is the group of ideles of k with principal ideles kx and units
ideles U(k). Therefore

U ,G/G ^ absolute ideal class group of k.

PROOF. Since V is absolutely irreducible, so also is Vv for any prime p.

Therefore the structures of G and G are as in the theorem. For the structure

of

ΰ = 7i,Ίe u(k)
we have to notice Prop 10.1 or more precisely its proof, since by definition

U = \al\lt€ J, Ma = M\. q. e. d.

COROLLARY. If V is absolutely irreducible and M is a V-lattice in V,
then the class number c = c(θ/o) :

{M; k/o\ = \Mi; o/o} + + {Mc; o/oj

can be expressed as

c = Π JiP) h

where

is the local class number and

h = h{k)

is the number of absolute classes of ideals in k. In particular

c < + oo.

11. Irreducible representations. Let V be an irreducible representation
space over k. The group © is represented by automorphisms of V as

8 3 ^ A(x) e GL(V; k).

Put the enveloping algebra
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and commuting algebra D defined by

D = {S I Vx € © A(x)S = SA(*)} c ®(F; k)

where &(V; k) is the endomorphism algebra of V over k. Since Vis irreduci-
ble, D is a division algebra and Ak is a full matric algebra over the division
algebra D* inversely isomorphic to D.

PROPOSITION 11. 1. Let M be a Γ- lattice in V, then

is an order in D.

PROOF, a) Since M is a n o-module, D c o n t a i n s 0. b) A n y element 5 ^ 0

is integra l over o. For , let

f(S) = Sn + a^71'1 + + an = 0 fa € *)

be the irreducible equation in ^ satisfied by S and 5 = Sσ\ Sin) be the
conjugates of S over k. In the extended vector space

we have

Since â^ are symmetric functions of AS(J)'S we have

Ma, £ M.

Therefore ^ € 0 by Prop. 10. 1.
c) 0^ = D. For, take an S € D, 5 += 0, arbitrarily. Since

MS

is a Γ-lattice in V, we can find a € 0 such that

This shows that Sa € O. q. e. d.

We say that M is maximal if

D = D(M)

is a maximal order in D.
Any Γ-lattice can be embeded in a maximal Γ-lattice. Namely,

PROPOSITION 11. 2. If €)" is a maximal order containing D = O(M),

Z5 α maximal Y-lattice in V, with
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D(M") = D".

PROOF. Since D" is a finite o-module, M~ is a lattice in F. From

MA(x) = MQ~A{x) = MA(α;)D- cz MD" = M"

M" is a Γ-lattice. And finally

irαplies

D(M-) =) D-.

By Prop. 11. 1 C^M"1) is an order in D it follows from maximality of D"

that

D(M-) = D-. q. e. d.

THEOREM 7. / / M /s <z maximal YΊattice in an irreducible representa-

tion space V over k, then the double cosets

U G/G

of Theorem 5 correspond in one to one way to the D = 0(M) left ideal

classes in the commuting algebra D of A(x)'s.

PROOF. Since D = D(M) is a maximal order in D, G is the idele group1 0

of the division algebra D. The correspondences :

G^S-> a{S) = /°\(op5, ί l D ) c D

are onto C-left ideals in D. Its kernel is just

U = IT I MT = M) i. e. α(ΓS) = α(5).

Therefore, double cosets

U\G/G

corresponds in one to one way to D-left ideal class i. e.

a(TS-S) = α(3) S

with T € U, 5 € G, 5 € G. q. e. d.

COROLLARY. /# addition to the assumptions on the Theorem 7, suppose

D has degree ~> 2 or ramified infinite primes, then the class number

\M; k/o\ = {Mi; o/o| + + \MC; 0/0}

can be expressed as

c = Π i(p) h

11) Cf. Fujisaki [11] for idele group of a simple algebra.
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where j(p) = c(θp/θ») are local class numbes and h is the number of absolute

ideal classes of the center K of D.

PROOF. This follows from Theorem 7 and a theorem of Eichler12) con-

cerning class number of algebras. q. e. d.

THEOREM 8. Let M be an arbitrary YΊattice in irreducible V, then the

number of double cosets

U\G/G

is always finite.

PROOF. Let M~ 3 M be a maximal Γ-lattice in V.

Then the number

# UΛG/G,

as a class number of D" = D(M")-left ideals of D, is finite.

Since U~ 3 U it is sufficient to prove

[U- : C7] < + oo.

Since M~ 3 M are lattices, except for a finite set of primes we have

M; = Mp

and hence

[I/,- : U91 = 1.

Take an exceptional prime p. U* 3 Up are compact and open subgroups in

DJυ, therefore

iU7ι Up]< + oo. q.e.d.

12. Some examples. Let ® = Z/(n) be a cyclic group of order n. Con-

sider faithful irreducible integral representation in the field of rationals Q.

Let V be a representation space of dimension

m = φ(n)

ί-0

where ζ is a primitive z-th roots of unity.

It is readily seen that

Ak 3 A(x) -> ζ € K

is an isomorphism over Q, if x €Ξ ® is a fixed generator.

PROPOSITION 12. 1. ^Tz y Y-lattice M in V is maximal

12) Eicbler [9], n=*2 and total definite e&se was also treated by him [8],
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PROOF. By definition

D = {S <a D\MSaM\.

As a Γ-module:

therefore we have

Since Z[f] = Σ %*Z is the maximal order of K = Q(f) we see that
έ=0

i=0

is the maximal order of D. q. e. d.

The class number defined by

\M; Q/Z} = {Mr, Z/Z| + + \MC; Z/Z(

is therefore given by

c = Πi(/>) h
p\n

where

is the absolute ideal class number of the field of r t h roots of unity.
Now consider j(p). If n is a prime power and

n^O(p)

then

(p - 1, n) = 1

i. e. GF(p) contains no ?z-th roots. Therefore /^-modular representation of
A(x) for n = 0 (p) are irreducible. By a theorem of Brauer13)

J(J>) = 1
And hence

c = h.

As a next example, consider the symmetric group

of order g = 6 in the field of rationals Q. Let A{x) be the 2-dχmensional
absolutely irreducible representation with Γ-lattice M.

13) Brauer [4], Theorem 10 or Artin-Nesbitt-Thrall [1], Lemma 9. 8 D.
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HP =2,

y = 3 Φ 0 ( 2 )

implies that A(x) is irreducible mod 2, therefore13'

i(2) = l.

If p = 3, A(x) is reducible mod 3 and contains two modular irreducible con-

stituents. Therefore by a deep theorem of Brauer14)

i(3) = 2.

Finally, since Λ(Q) = 1, we have

c = UKP) = A3) = 2.
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