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Let & be a finite group, % be an algebraic field of finite degree over the
field of rationals Q. In a representation space V over %2 we consider a T' =
0 [®]-lattice (Gitter) M in V which is a regular o-right module and ®-left
module where 0 is the ring of integers in 2 The set of all I'-lattices which
we denotes by {M; k/o} can bte classified into I'-isomorphic I-lattices in
the following way:

{M; k/o} = {M,; o/o} +......... + {M,; o/o}.

If 2= Q is the field of rationals and V is irreducible, this class number is
always finite and was proved by C. Jordan [13]".

In the book of Speiser [20] this theorem was proved only in two special
cases, namely, @ is a cyclic group or V is absolutely irreducible. The
reason for this may be explained by the following considerations.

Let b be a finite or infinite prime. We can consider p-extension M, of
the I'-lattice M and put

{M,; k,,/D,,} = {M; 0,/09} T + Mv(j)§ 0,/0,}.
The local class number j = j(p) is always finite and = 1 if » does not divide
the order ¢ = H#® of the group ©.
If we define genus of M as
{M; o/o} = N {M; 0,/0,]

b
then the number of genera in all I'-lattices in V is

J =TI »)
vlg
and is finite (§7). If M is absolutely irreducible we have
c=17j (§ 10).
On the other hand, number of classes in a genus is expressible as a
kind of class number of a suitable algebraic group (§9), which was consider-

ed by T. Ono [17] and its finiteness was proved for commutative case by
him. Simple considerations show that if ® is cyclic and 2 = Q

1) Number in the bracket refers to the bibliography at the end of this paper.
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Jj=1
c=~h

where % is the class number of the field of g¢-th roots of unity. General
cases are somewhat complicated but relate with class number of a suitable
algebraic extension K/k (§11).

After this investigation was almost completed, the author found papers
by Maranda [15], [16]. He introduced the concept of genus and its product
formula (§§7-8), but his definition is a global one and its locality and hence
equality with my definition was not proved by him.

Finally, I must express my hearty thanks to Prof. Tannaka for his kind
advices and encouragement during the preparation of this paper.
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NOTATIONS

& : finite group.

k: algebraic number field of finite degree over the rational field Q.
0: ring of integers in k.

I' =0[®]: group ring of ® over o.

V': vector space of dimension 7z over k; mostly I'-space.

A(x): representation of & by GL(V'; k).

M : lattice in V; mostly I'-lattice.

1. Preliminaries on lattices (Gitter). By a lattice in an algebraic field
E we mean an 0-module M contained in a definite vector spacc V over k

such that

1) M is a finitely generated 0-module,
2) M generates over k the vector space V i.e. Mk = V.
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Or, equivalently, a lattice is a regular o-module i. e.

1) M’ is a finitely generated 0-module,
2) ueM,aco ua=0 imply u=0 or a=0.

Namely, a lattice M in former sense is of course a regular 0-module and
regular 0-module M’ is a lattice contained in the vector space M’k = V' of
k-extension of M.

Let p be a prime in k. Assume first P is finite. %, 0, denote respectively
p-adic completion of %2 and p-adic integers in &, If M is a lattice in %, then
its P-adic extension

M, = Mo,
is a lattice contained in the vector space V, = V&, For infinite prime p.,
we simply put

Mo = Vieo
in accordance with the convention 0,. = &,..

PROPOSITION 1.1. If M is a lattice coniained in V, then
M = ﬂ( VN M)
»

where the intersection extends over all finite and infinite primes in k.

A proof is found in Eichler? [10] and almost clear if we assume Stenitz’s
basis theorem?®.

PROPOSITION 1.2. Let vy, ...... V. be an arbitrary k-basis of V. Then
for any lattice M in V we have

M, = v, ...... b v,.0,
except for a finite number of primes in k.
For, by Steinitz’s basis theorem
M = 5,0 @ ...... @ Upy-10 @ Upa

with an ideal a in k. For a prime not in a we have

Since (#,, -..... #,) and (v, ...... v,,) are two k-basis of V, they are connected
by a regular matrix in £ which is p-unimodular (i.e.a matrix in 0, whose
determinant is a P-unit) except for a finite number of primes in k.

PROPOSITION 1.3. To each prime 9 put M® for a lattice in V, such
that except for a finite number of primes

2) Eichler [10], §12, Satz 12.1.
3) For example:Eichler [10], §12, Satz 12.5.
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M® =0, ...... P v,.0,
where vy, ...... U, 2s @ k-basis of V. Then the intersection

M=ﬂ(V n M®)

over all primes in k, is a lattice in V such that
M,, = M(v)
for all primes in k.

PROOF. Put M =00 ..... @Puv,0. Since M,= M® except for a
finite number of primes. We can fined v,y € 0 such that

M» 'yg M;E M® ,y’

for all primes in 2 From M & M &', M is a finite 0-module. On the
other hand, M' &< M implies Mk = V. Therefore M is a lattice in V.
Next, ME& M® implies M, = M® for all primes in . Take v« € M™ ar-
bitrarily, put =, -..... u, (n = m) for an o0-generator of M, secured by first
part of the proof. We have

u=ua, + ...... + u,a,
with a; € k,.
From approximation theorem on valuations, we can take B8; € £ such that
;= a,; (0,)
B, =0 (0,) for all primes P'(==p) in A
Then

v=wB + ... + w8,
is a vector in V such that it is contained in M® and M®" for any prime
Py, e
v E ['\(V N M®)y= M.
»

On the other hand, we have

u=7v-+ Zui(ai -8

with v € M, a, — 8, €.0,. This means Y u(a;, — B,) € M, and finally « €
i=1

M,. qe.d.

2. Representations by lattices. Let & be a finite group and T' = o[®]
be the group ring over 0. Assume now V is a I'-left space over k. Any
element x € ® is represented by an automorphism
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Alx) € GL(V; k)
of the vector space V. Symbolically 2V = VA(z).
By a TI'-lattice in V, we mean a lattice M such that

MA(x)E M
for all z € &.

To a I'-lattice M we can associate a finite set of matrix representations
in the following way. Let vy, ...... v, be a k-basis of V, since M is a lattice
in V by Prop. 1.2, except for a finite system of primes p,, ...... p, we have

M, = v0,H ...... b v,.0,.
For exceptional p,(: =1, ...... r) we can put
M, = 0,0, B ...... D vinoy, i=1,.... r
since 0,, are principal ideal domains.
Put
m
xv, = ) viay(x) al(x) €k
=1
jm
LUy = Z 'v“ai,(x) ai(z) € o,
=1

then matrices :

Afx) = (ai;(x)) i=0,1,.... r
are (+1)-matrix representations of the group ® such that A,(x)(G =1, ...... ,7)
are k,-equivalent to A,(x). Notice that the elements ai;(z) € & are integral
for all prime p==p,: =1, ...... 7).

Conversely given a matrix representation A,(x)in % and p;-adic integral
matrix representations A (zx) (i =1, ...... ,7) which are k,-equivalent to A,(x)
for any prime p; for which Ay (x) is not necessarily p,-integral. Then we
can fined a T'-lattice M whose associated matrix representations are given
Alx)(i=0,1,...... ,7). Namely, if v, ...... ,Un be a k-basis of the vector
space V, we put

M(v) = 7)10,, @ """ @ vmob p =,= pz (Z = 1’ '''' s 7‘)
with &-left operation :

m
xv;, = ) vay(x)
=1

where (a}i(x)) = Ax). For an exceptional prime P, let R, be a regular
matrix in 4, such that

Ai(x) = Rt-lAO(x)Ri
and put



ARITHMETIC OF GROUP REPRESENTATIONS 291

M®™ = v,0,, D ...... @D vim0y,
where

is a ky-~basis of V.
Then by Prop. 1.3
M = m(V n M®)

is a desired T'-lattice in V.

3. Reducibility of representations. We consider now reducibility of a
T-lattice M in connection with reducibility of matrix representation by the
vector space V = Mk.

LEMMA 1. Let M, N be two regular 0-modules. Then we have

(M N Nk = Mk N Nk.
PROOF. From M N N&E M and M N NZ N, it is obvious that
(M N N) k< Mk N Nk
Let aa =b8 € MEN Nk with a€ M, b€ N, a, 8< k be given. Take
vy €0 such that ay€ o, By€ o, then aay=068y€ M N N and aa=
(aay)yt € (AN B)k q.e.d.

We say that a submodule N of a regular 0-module M is primitive in
M if one of the following, equivalent, condition is satisfied :

1) Nt N M= N,
2) Quotient module M/N also is a regular 0-module,
3)a€ M, aa € N with a € k. a==0 imply a € N.

LEMMA 2. If N is a primitive submodule of A, then naturally
(M/N)k ~ MFk/Nk,
PROOF. The map @: M/N — Mk/Nk defined naturally by ¢@(a) = a for

a € M is into isomorphic by the primitivity of N in M. (e.g. by 3)). The-
refore it remains to show that M/N contains as many linearly independent

elements as that of Mk/Nk. But this is obvious since any elements a, ..-... a,
of M that are linearly independent mod Nk are a priori linearly independent
mod N. q.e.d.

Now we define reducibility of a I'-lattice M as follows :
M is reducible if it contains a primitive submodule N neither 0 nor M
such that N itself is also a I'-lattice in Nk = W.
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PROPOSITION 3.1. A T-lattice M is reducible if and only if the matrix
representation defined by V = Mk is reducible.

PROOF. Assume first M is reducible, then there exists a primitive sub-
module N. Nk is a subspace of Mk = V neither 0 nor V by primitivity of
N in M. Of course Nk is a I'-space and therefore V is reducible.

Next, let Mk = V be reducible, then there exists a I'-subspace WC V
different from 0 or V. Put N= W M. As a submodule of M, N is a
regular 0-module. By lemma 1 Nt = W, it follows that N is a primitive
submodule of M. Since N is a I''module, M is reducible. q.e.d.

4. Some cohomology groups. Let A,(x), A)x) be two representations
of the group ® by matrices of degree r, s respectively with elements in a
commutative ring R with unity element. We now define cohomology groups
H'G: A, A,) as follows:
n-cochains are functions E(x,, ... ., x,) from & x ...... X & (n-factors) to R,
where R, , denotes the set of all matrices consist of 7-rows and s-columns
with elements in R.
Coboundary operations are defined by

SE(xu ------ ’ xn+1) = Al(xl)E(x% ------ s xn+l)

+ Z(—_ l)lE(.Z‘“ """ s Liljt1sy -oveee xn-l—l)
i=1

+ (_ 1)"+1E(.’L'1, e 3xn)A2(xn+l)

n=0,1,2,......
From these, cohomology groups are defined as usual
H'®; A, A,) = n-cocycle/n-coboundary n=0,1,2,......

Obviously,

PROPOSITION 4. 1. The set H(®; A,, A,) consist of all intertwinning
matrices E between A,, A,, namely,

A(x)E = EA)x)
for all x € G,
If R==%is a field then
dim Hy(® ; A,, A,) = I(A,, A,)

is called intertwinning number.
The “norm” of a matrix T € R,,, defined by

2 AWMTA(y™)

Ye®
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is a O-cocycle.
PROPOSITION 4. 2. H'(® ; A,, A,) and matriz representations of type

0 Ax(x)
classified by

(o )

are in one 1o one correspondences.
PROOF. From
(Al(x) E(x)> <A1(y) E(y)>
0 Ay(x) 0 Ay
_ (Al(x')Al(y) A(x)E(y) + E(x)Az(y)>
0 Ax(x)As(y)

it follows that this is a representation of & if and only if

A(2)Ay) = Alxy) i=1,2

E(zy) = A(2)E() + E(x)A(y)
i.e. E(x) is a 1-cocycle. The rest follows from direct computations. gq.e.d.

Concerning the structure of R-module H"(® ; A,, A,) we have:

PROPOSITION 4.3. Let g =1 ©® be the order of ®. Then for any
representations A,, As,

gH"(® ; A,, A,) =0, n > 0.
In particular if 9 is a unit in R,
HY®; A, A;) =0, n > 0.
PROOF. Let E(x,, ---... , ,) be an n-cocycle, i. e.

SE(II, ------ s xn+1) = A1(11)E(x2s ------ ’ xn+l)

+ (— 1)"+1E(x1’ ----- ’ x1z)A2(xn+1)'
Multiply A(x,371) from right and add over z,,, € & we have

A(x) D Ezy, ... s Ty LA (2
re®

n-—-1

+ Z(~ I)ZE(.Z‘], ------ s LiTigyy cevees xn’x)E(x_l)

Ze®
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+ (= D" > E(zy, ...... s Toe1s L)AL x™?)

ze®
+ (= )" gE(xy, ...... x,) =
If we put
Flxy,...... s Tpey) =2 E(zy, ... s Ty, T)AN(Z™)

re®

in this equation, we have
gE(x,, -..... y o) = (— 1) 8F(xy, ......x,).
q.e.d.

PROPOSITION 4. 4. If R is noetherian and R/gR is a finite ring, then
HH(G; A,A,) < + oo, n> 0.

PROOF. The R-module of n-cochains C"(®; A,, A,) is a finite R-module.
Since R is noetherian, its submodule of n-cocycles Z"(® ; A, A,) is also a
finite R-module, hence a priori H"(®; A,, A,) is a finite R-module. Since by
Prop. 4.3 any element E € H'(®; A,, A,) has finite order ¢ E = 0. This
with the hypothesis 3 (R/¢gR) < + oo implies

H H'(®; A,, A,) < + oo.

5. Maschke pair. We say that two representations A,(x), A«(x) of the
group ® in matrices with elements in a commutative ring R with unity
element form a Maschke pair if

H1(® 3 Ay, Az) = H1<@ ; A, Al) =0,
By Prop. 4.3. if p is a prime which does not divide the order ¢ of &:

9% 0(p)
and R is a field of characteristic p or R = 0, a ring of p-adic integers with
p|p, any two representations in R are Maschke pair.
Another example is:

PROPOSITION 5.1. Let T' = R[®] be the group ring of & with coeffici-
ents in R. Assume that either representation module of A, be T-injective®
or that of A, be T-projective®, then

H'(®; A, A,)=0.

Notice that if a representation A(x) is a direct constituent of the regu-
lar representation then its representation module is I'-projective.

4) These terminologies are those used in Cartan-Eilenberg’s “Homological Algebra”.
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PROOF. We prove only in case that the representation module A, of

the representation A,(x) is I'-projective, since other case is similar.
By Prop. 4.2 to any element E € H'(®; A,, A,) there corresponds an
R-free I-module B such that

0-A —-B—>A4,—>0
is exact. By I'-projectivity of A, there exists a I'-homomorphism
@: A, — B
such that
A, > B—> A,

is the identity map.
Let a basis of B be so chosen that

x(agy ... T ,b)="(ay, ...... R TR , 0,) <A,(x) E(x))
0 Ayx)

with E(x) € E. Since (a;, ------ s @y P(by)y e , @(b,)) is a basis of B, there
exist two matrices S, 7 with regular S such that

(@ys ----- s @ry P(B1)s eee... , 9(8) = (ay --... s Qs Oy oenen. s bs)< 1 T )

0o S

Put

(al, ...... s Arps bl’ ...... N bs)< 1 T > = (d“ ------ s Aypy Cps vvvnne s cs)

0 1

Then (a,, -..... s Qs Crs oeeres ,C,) is a basis of B such that

x(@ys oeenn. S @y Cpy ovene ,¢s) = (g -v.... s Qps Cpy wnvens , Cs) <A,(x) 0)

0 A2(x)

By Prop. 4.2 this means E = 0. g.e. d.

6. Representations in p-adic fields. In this section, P is a finite prime
in an algebraic number field %, o, the ring of p-adic integers.

THEOREM 1 (HENSEL LEMMA). Let A(x) be a representation of the
group ® in matrices with elements in v,. A(x) be the reduction mod p of
the representation A(x). Assume in the modular field t, =0,/v a direct
decomposition :

A(x) O )

Rx)’v( 0 Uyx)
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in which U,, N, form a Maschke pair (§5) i.e.
H1(® ; Q’IUQQ) = H(@ ; QI2,9”[1):: O

Then there exists a direct decomposition in 0,:

A(x) 0
A ~
@~ 5" A
such that
Ax) = R(2) i=1,2.
PROOF. Without loss of generality, we may assume
— A(x) O
@ = )
@={0 aw) /.

Then the representation A(x) has in 0, the following form
A(Z) =< A (z) 7TA12(.23)>
A, (x) A,(x)
where 7 is a primitive element for the prime p, and A,,(x) are matrices with
elements in 0,. We prove by induction that representation of the form :
( A(x) WﬂAlz(-r))
" A (z) Ag(x)/, n>0, m>0

with A,;,(x) matrices in 0,, can be transformed by a matrix of type:
( 1 =T )
0 1 , T in o,

< An(z) #="Alx)
7" An(x) A u(x))
with matrices Aj,(z) in 0, such that

Aizx) = Ajy(x) (™) i=12

into the form

under the condition

Hl(@ 5 9’(13 g[2) = 0.
Similar result holds for m.
For, from

A (x) AN/ 1 =T
<'77'mAzl($) A22(-T))< 0 1 )
_ < A (x) 7"A ()T + 7" A(x)
B 7" Ay(x) 7" Ay ()T + An(-l')>
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( 1 #='T )( An(z) 7" 1Al x)
0 1 " Au(x) A(x)
_ An(z) + 7" TALN(x) 71 A(x) + 7" T Ax(x)
- ( 7" An(x) Ax(x) )
the condition for the matrix T is
A ()T + A,(x) = TA2) 0.
Since A, ,(z) € Z'(®; U, A,) is a l-cocycle, by hypothesis on U, ¥, such matrix
T must exist in 0,.
Starting from

Au(x) 7TA12(.Z‘)
Alz) =
® <wA21<x> An(x))
with » = m = 1 we arrive at the 0,-equivalence
All(x) 0
Alz) ~
(=) ( 0 A2<x)>
with A(zx) = a(z) i = 1, 2. g.e. d.

COROLLARY?®. Let U be a directly indecomposable modular representa-
tion of the group ® contained in the regular representation. Then there
exists a represeniation U in 0, such that

Ulz) = UW(x).

For, in the modular field f,, the regular representation R(x) in 0, splits
as

mo~(2 )
* 0 B
with suitable modular representation LB, Thereby U, B are represented by
T-projective modules therefore form a Maschke pair.

THEOREM 2. Let the prime d does not divide order g of ®. Then
matriz representation A(x) in 0, and W(zx) in modular field t, = 0,/9 are in
one to one correspondences by reduction mod D :

In other words any representation in 0, is completely reducible and there
are as many irreducible representations in 0, as that in ¥,

PROOF. Complete reducibility follows from Prop. 4.3. If A(z) is an
irreducible representation in 0, then its reduction mod p: A(z) is also ir-

5) This result was announced by Brauer [3].
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reducible.
For, suppose contrary to our assertion
— A(x) 0
Al ~( )
@~ @
then Hensel lemma would yield a decomposition
Alx) O
A ~<
($) 0 Az(x)>

in 0,. This is a contradiction.
Conversely, assume (x) be an irreducible representation in f,, then the
regular representation R(x) splits as

R(x) ~ (2[(:) 58(()3;)),

Apply Hensel lemma to the regular representation R(z) in 0, with R(z)
= R(x) we have

with A(z) = A(z). Of course A(z) is irreducible in o,. q.e. d.

COROLLARY. In case g0 (p). If two mairix representations A,(x),
Ay(x) are kyequivalent then they are 0,-equivalent.

PROOF. Since %, is a field, ordinary theory of representations shows that

Bl(.’L‘) 0
Ax) ~ ~ Ax) in k&,
0 Bx)
where B,(z), --.... , B{x) are irreducible representations in k, Since 0, is a

principal ideal domain, we may assume without loss of generality that B,(x),
...... , B{(x) are matrices with elements in 0,. From the Theorem 2

C(zx) 0
Al(x)~( ) in o,

0 C:(x)
where C,, ......... ,C, are irreducible representations in 0, Comparing their
characters, we see that Ci, ...... , C, are permutations of By, ...... , B, (By sui-

table 0,transforms if necessary). The same is true for the representation

Ay(x). Therefore

B(z) 0O
) ~ Afx) in 0,

0 By(x)

g.e.d.
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Thus, the case p with ¢ 3= 0(b) are completely studied. We are therefore
in a position to investigate the case ¢ = 0(p). More precisely take integer
€, > 0 such that

g=0 (¥
g =0 (p**).

PROPOSITION 6.1 (PRINCIPAL GENUS THEOREM®). Assume e = e, and
A(x), Alx) are representations in 0, If an n-cocycle E € Z'(® ; A,, A,)
satisfies

Ezx, ...... y ) =0 (0°)
then there exists an (n — 1)-cochain F € C*Y® ; A,, A,) such that
E =38F
with
Flzy, ... s Tn—1) = 0 (7).

PROOF. Since E is an n-cocycle, by the proof of Prop. 4.3, if we put

Fzy ooy Znot) = 2 E(Z1y ooy Zamry ) Ag(z7)
ze®
then
gE = (— 1)"8F,.
From the hypothesis E = 0(p°) it follows that
!
F = (— 1) g F,

is indeed an (# — 1)-cochain in o0, satisfying
F(xl, ...... s xn_l) =0 (pe—eo)
E = 8F q.e.d.

PROPOSITION 6.2. Let A,,A, be two representations in 0,, and e > e,
be an integer. Then equivalences :

A~ A, in 0,/p°
and

A ~A, in 0,
are completely equivalent.

PROOF. Egquivalence in 0, implies equivalence in 0,/9° is trivial. Let us
show the converse. Assume

Al —~ A2 in U‘,/pe.

6) This proposition has some analogy to a result of Kuniyoshi-Takahashi [14].
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In other words there exists a matrix 7" in 0, such that
AT — TA, = 0(°), det T == 0(p).
Then
Ex) = A\(2)T — TAy(x)
is a l-cocycle € ZY(®; A,, A,) and
‘ E(z) =0 (v°).
Since e > e¢,, we can apply principal genus theorem (Prop. 6.1) and it yields
a matrix S in 0 such that

E(z) = A/(2)S — SASx)
S=0 ().
If we put 7" =T — S, then 7" is a matrix in 0, such that
A(2)T = T Alx)
det T"=det T == 0 (p)
i.e. A,(x),A)(x) are 0,-equivalent. q.e.d.
7. Equivalence theory of I'-lattices. In this section we use same nota-

tions as that of §2. Namely % is an algebraic number field and o the ring of
integers in k. I' = 0[®] is the group ring over o.

PROPOSITION 7.1. There exists at least one I'-lattice M in V, if V is

a T-space.

PROOF. If V is written by a k-basis as

then the following finite 0-module

M=> % zvp0

Tre® i=1

is a I'-lattice in V. g.e. d.

If R Do is a ring over 0, we put for a I'-lattice M ;
{M; R/o} = {N € T-lattices in V| NR =~ MR as I'R-modules}.
In particular

{M; k'of

is the set of all T'-lattices in V, for any I'-lattice M in V.

Since M,, M, € {M; R/o} lie in the same class {M; k/0}, we can write

{M; k/o} = {M,; R/o} + ...... + {M,; R/o}

as a disjoint union of finite or infinite number of subclasses. We put
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¢ = c(R/0)
and call it the class number of I'-lattices with respect to R.

If K/k is an extension field with a maximal order O D 0, we can define
I'D-lattices in VK and the symbol

{M; R/D}
with a ring R D . There exists always a map
{M; R/o} > M, > M,D € {M; R/D}
called injection.

Main examples of R and © are:
K = k,: p-adic completion of the field k2, O = 0,: p-adic integers in k,,

R=o0o(p,  ..... ,0,) = ﬂ(k N 0,) D0 where p,, ...... , P, are finite primes in k.

i=1
PROPOSITION 7.2.” The injection
{M; k/U} MU‘,, n/o
is an onto map with same class number
C(Un/o) = C(D»/Uv)~
PROOF. Take an M® € {Mo,; k,/0,}, we can define a I'lattice M, €
{M; k/o} such that M0, = M®. Namely, let M be a I'-lattice in V. Put
M,® = M®
M,® = Mo, for prime q == p.
Then
M, = m(Mrl(q) nv
q

is a desired I'-lattice with M0, = M by Prop. 1.3.
As to class numbers ¢(0,/0), <(0,/0,),

M, M, € {M;,; 0»/0}

imply M0, ~ M,0, as I'o,-modules.
Therefore
Mlom M2OD 6 M3 Dy \/0

and conversely. q.e.d.
PROPOSITION 7. 3. For any T'-lattice M
{M; o(p)/0} = {M; 0,/0}.
PROOF. Since M, 0(p) =~ M,0(p) as I'o(p)-modules implies M,0, =~ M,0, as

7) This and following Prop. 7. 3 give a proof for lo:ality of Maranda [16] s concepts of
p-equivalence and genus, noticed in the introduction.
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T'o,-modules, it ts trivial that
{M; o(p)/o} < {M; 0,/0}.
Conversely, suppose M,, M, € {M;0,/o}.
Since o(p) is a principal ideal domain, we can write
Mo(®) = u,0(P)P ...... B u,0(p)
M,o(p) = 0,00 P ...... P v.0(p)
with matrix representations with elements in o(b):
zu = uA,(x)
v = A (x).
The T'o,-isomorphism ¢ : M,0, - M,0, can be written as
p)=u-T
with matrix T in 0, such that det 7" == 0 (p).
In terms of matrix representations A,(x), A,(x) we have
A;(x)T = TAz(x).
Take an exponent e > e, with ¢ = F® = 0 (p*) but g == 0 (p**!), there exists
a matrix 7 in 0 such that
T, =T ().
Consider a 1-cocycle
Ez) = A(2)T, — T Alx) = 0 (%)
in o(p). By the principal genus theorem® (Prop. 6.1) we can find a matrix S
in o(p) such that
Elz) = A/(x)S — SA,(x)
with S =0 (p°~*) and hence S=0 (p).
Then T, = T, — S is a matrix in 0(p) intertwines A,(z), A(x):
A ()T, = T,Ax)
such that
det T, =det T, =det T 5= 0 (p).
Therefore the new map
Y(v) = T,
is a T'o(p)-isomorphism M, 0(p) =~ M,0(p) i.e.
M,, M, € {M; o(p)/o}. q.e. d.

PROPOSITION 7.4. If py, ...... 0, are finite primes in k,

8) This holds for the ring 0(p) instead of 0y if we conmsider its proof.
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{M ;0(py,...... s p,)/0}=ﬂ{M;ov‘/U}.

PROOF. From preceding Prop. 7.3 we have only to prove
{M;o(p,, ...... »9,)/0}

="\ {M; o(p,)/0}.
i=1
Since o(p,, ...... ,0,) & o(p;), it is clear that

(M; 00, ..., p.)/0} S [\ {1M; o(p,)/o}.

(=1
Take an M, € m {M; o(p,)/0} and put
i=1

. 0 = D(‘pu ~~~~~ » pr)
Since 0" is a. principal ideal domain, we can express the proposition, if we
take suitable 0'-basis of T'-lattices in consideration, by words of matrix
representations. Namely, if A,(z), Ay(x) te two matrix representations in 0’,
such that there exist matrices 7 in o();) (=1, ...... ,7) with det T, £ 0

(b:) and
A(2)T, = T:Alx) i=1,...... 7
we can find a matrix 7" in 0" with 77°! in 0" and
A ()T = TA(x).
Take elements @, € 0" such that
w; = 0 (h,), “’iEO(pje’) i, 1=4 j<r,
whose exponents e; > 0 are taken as
T, =0 (b))
with primitive element 7; of p;.
Then the matrix

T=> oT,
i=1
is a desired matrix in 0". Since
det T =det o,T;, = o} det T; £ 0(p,)
J=1, .. , 7. a.e.d.

PROPOSITION 7.5. If a finite prime 9, is different from 9, ...... > P15
then

{M,; 0, ...... B pr—l)/o} N {M,; o(p,)/D} +¢
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Sfor any T-lattices M,, M; in V.

PROOF. Put 0" =o0(p,, ...,P,). This is a principal ideal domain and
each ideal in 0 is of the form:

(I=)

with primitive elements m; of b, with =; 2= 0 (b;) for i9=j. We can also prove
the proposition by words of matrix representations. Since two matrix repre-
sentations A,(z), Ax(x) in 0 are k-eguivalent, there exists a non-singular
matrix 7" such that

A(x)T = TAyx)
with elements in 0 if we multiply 7" by an element in 0 if necessary.

By elementary divisor theory in 0" we can find “unimodular” matrices R, S in
0" such that

”
Hw.ied O
1=l
RTS =
0 l__['lT,;e""
i=1
with exponents
€ = oiinnn. = €im, i=1,......... , 7

r—-1
'n-re” 0 ].I'"'ie‘l 0
i=1 -
T, = s T, = k“‘l
r—
0 ’7T,.e""‘ 0 I_I'lT,;e""

then these are matrices in 0" such that
det T, =0 () 1Z5:i<r—1; det T, =0(®,)
From the computations :
RA(x)R™'+ RTS = RTS S 'A,(x)S
TTRA ()R T, = T,S'Ay(x)S - T:' = Ay(x)
we see that A,(x) and A,(x) are o(p,, --.... , P._1)-equivalent while A,(x) and
A,(x) are 0o(p,)-equivalent.

If we write M, for a T'lattice which represents ® by matrices A(x), we
have

M3 e {Ml; D(ply crteees ‘pr—l)}
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N {M,; o(0,)} +=¢. q.e.d.

THEOREM 3. If Py, .eeennnnn » P, are mutually different finite primes in k,
then we have for class numbers .

PROOF. It will be sufficient to prove
@y, -....., 9,)/0) = Il c(0(p,)/0).
i=1
We prove this by induction on . For » =1 this is trivial. Let »>> 1, we
have by definition :
{M) k/D} = {MI;O(‘pl’ """ ’pr—l)/o}
+ o + {M,; o(p,, ...... ,P,-1)/0}
= {Ny; 0(p)/0} + ... + {Ng; o(p,)/o},

= Z[{Mia 0031, """ H pr-l)/D} n {Nh 0(13,.)/0}]
4J

with ¢ = c(o(p,, -..... ,9,-1)/0) and d = ¢(o(p,)/0).
From the preceding Prop. 7.5 we have
{My; 0y, oo, 0,2)/08 0 (NG5 0(,)/0} == ¢.
If we take a T'-lattice M;; in this intersection we have
{M,; oy, ... » P.-1)/0f N {Ny; o(p,)/0}
= {Mij; o(pls """ H p?)/o}
by Prop. 7. 4.
Since

{M; k/fo} =2 {My; o, ...... p,)/0}

i
is disjoint, we have finally

Oy, --vee5 P2)/0) = 0y, - P,-1)/0) = (0(p,)/0). q.e.d.

8. Genus of representations. Let % be the adedle ring (or ring of
valuation vectors) of k. 0 denotes subring of £ consists of all integral ele-

ments of £ i.e.a direct sum
D=0,
1

of all p-adic integers 0, for finite primes p and 0, = &, for infinite primes
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P = P
As in the preceding §7, we define
(M5 0/0]
and call T-lattices in them as belonging to the same genus. The class
number j = ¢ ('5'/0) defined by
{M; k/o} = (M, ; 0/} + ...... + {M;; 0/o}
is called the genus number of I'-lattices in V.

THEOREM 4. Let g =G be the order of ®, then for any T'-lattice
MinV

(M; ofo} = [\ {M; 0,/0}.

olg
From this we have

j= Hc(o,,/o) < + oo,
»lg
PROOF. M,, M, € {M; 0/o} imply by definition
M;:z M2~D

as T'o-modules. Since 0 =) 0, is a direct sum, we have for all primes p
b

M0, = M,0,
as T'o,-modules. Since this is trivially verified for infinite primes P = p.., it is
sufficient to prove that if p f ¢
{M; k/o} = {M; 0,/0}.
But this follows at once from Coroll. to Theorem 2. The formula for j fol-
lows from

(M;0fo} = (\{M; 0,/o} = {M;0(@,, ..., 9,)/o}.
»lg ’
if we write by, ...... , b, for all different primes dividing ¢.
Finally finiteness of ¢(0,/0) follows from Prop. 6. 2. g.e. d.

9. Class number in a genus. Let V be a vector space over k, which
has as in preceding sections & as left operators and induces a representation

&>z Alx) € GL(V; k)
by automorphism of V.
Similarly, for any prime P, the p-extension V, = Vk, induces a represent-
ation which we write by the same symbol

Alzx) € GL(Vy; k).
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~

Moreover, the vector space V = Vk over adéle ring £ of k induces a
representation which will be also written by

A(z) € GL(V; %)
There group GL(T/; 75) consists of elements
S=(8), S, € GL(V,; k)

such that except for a finite set of primes, S, being P-unimodular.
Now,

G = v(A®)) = {S € GL(V; k)| A(x)S = SA(x) for all x € &}
is an algebraic group of automorphisms of V. Its idéle group® is given by
G = WA®)) = |S € GL(V; B | A(2)S = SA(z) for all 2 € B}.
5 contains G as a discrete subgroup with its natural topology.

Let M be a lattice in V. We define M-S with §€ GL(?/;'E) by
M-S =M\ 0 MS) if S=(S,).

It is readly seen that M - S is a lattice. Moreover if M is a I-lattice and
S e G then M-S is also a T-lattice.
PROPOSITION 9. 1. Let M be a T-lattice in V, then
(M;0/0} = (M-S S e G}.
PROOF. “The fact that M-S is a also a T-attice” is already remarked.
M§ is contained in {M;F/D}. For if we fix a prime p, then
(MS). = M,S,
@y; M, — M,S,
is a I'o,-isomorphism by virtue of
A(x)S, = S,Ax)
for all x € ©.

Conversely, take an M, € {M ;AE)/D} arbitrarily. For any prime p, we have
by definition :

M,, ~ M, as T'o,-modules.
Since these are 0,-free modules, we can find S, € GL(V,; k) such that
M,, = M,S,.

From the fact that M, M, are lattices in V it follows that S, are p-unimodu-

9) Idele group of an algebraic group was considered by Ono [17], Tamagawa and Weil.
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lar except for a finite number of primes, i.e.
S=(S) € GL(V; ).
Now, for any prime P we have
xM,, = M,,A(x)

M, = M,A(x)
hence A(x)S, = S,A(x). This shows that Se G and
M,=M-3S. q.e.d.

PROPOSITION 9. 2. Let M be a T'-lattice in V, then
{M;o/o} = {MS|S e G}.
PROOF. If S € G, then the fact M — M-S is a I'-isomorphism is trivial.
Take an M, € {M; o/o} arbitrarily, there exists a I'-isomorphism
@: M— M,

Since lattices in V generate V over k£ and are regular 0-modules, we can
generate V extend @ uniquely to a T'k-isomorphism!?

@ M=V > MkEk=1V.
Therefore there exists S € GL(V; k) such that
M, = MS.
Finally T'-isomorphism of @ implies S € G. q.e.d
THEOREM 5. Let M be a T-lattice in V. Put
U= (T e€G|MT =M

for a subgroup which fixes M. Then classes in a genus

(M;0/o} = (M,;0/0} + ...... + {M,; 0/o}
are in one to one correspondences with double cosets
U\G/G

of G with respect to two subgroups U and G. Explicitly, its corresponden-
ces are given by

G>S—>M-Se (M;0/o}
M:S"; ~ Mgz as T-lattices,
if and only if

§1 = ?;;;;2 . S
with suitable T € 5, SeG.

10) The proof is straightforward e.g. Chevalley [6].
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PROOF. That the mapping
G >S8— MSe [M; /o
is onto was already given by Prop. 9. 1.
From
]\431 o~ MS’Z as I'-lattices,
we can find by Prop. 9.2 and S € G such that
MS, = M8, - S.
This finally means an existence of T € U with
3"‘1:?’-52-5 g.e.d.
Notice that in a recent paper by Ono[17]it was proved that the number
of double cosets 3 U\G/G is always finite if G is a commutative algebraic
group.

10. Absolutely irreducible representations. In the preceding §9, we
have seen that class number in a genus is expressible as the number of
double cosets

E\E//G
of a suitable algebraic group G of automorphisms.
In this and following sections we shall consider more closely this double
cosets.
PROPOSITION 10.1. If M is a lattice in V, then the ring
R=la€ k| Ma= M|
coincides with 0.
PROOF. Since M is an 0-module, Mo = M, therefore
R Do
Take an a € %k such that Ma < M. We have to show for any finite prime
p that

a € o,

Since 0, is a principal ideal domain we can write

wa=uf + ... + unBn
with 8, € v,. Take ¥ =5=0, ¥ € 0, such that ay € o0,, then
way = uBy + ... + unBny
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hence we have
ay = By.
This implies a@ = B, € v,. q.e.d.
THEOREM 6. [f V is an absolutely irreducible space and M is a T-
lattice in V, then '
G = al with a € J = J(k)
G = al wiih a € k*
U =&l with € € U= Uk)
where, J(k) is the group of ideles of k with principal ideles k* and units
ideles U(E). Therefore
U G/G = absolute ideal class group of k.

PROOF. Since V is absolutely irreducible, so also is V, for any prime p.

Therefore the structures of G and G are as in the theorem. For the structure

of
U =2¢l, & e Uk
we have to notice Prop 10.1 or more precisely its proof, since by definition
U= {al|a€J, Ma=Mj. q.e.d.

COROLLARY. If V is absolutely irreducible and M is a T-lattice in V,
then the class number ¢ = ¢(0/0):

{M; k/o} = {M,;0/0} + ... + {M.; 0/o}
can be expressed as

c=1ljw-n

vlg

where
J(P) = c(0,/0,)

is the local class number and

h = hk)
is the number of absolute classes of ideals in k. In particular
c < + oo,

11. Irreducible representations. Let V be an irreducible representation
space over k. The group ® is represented by automorphisms of V as

G >z—> Alx) € GL(V; k).

Put the enveloping algebra
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A=Y A@ESEV; k)

ze@®
and commuting algebra D defined by

D= {S|vze®; Alx)S = SA(x)} S C(V; &)
where € (V; k) is the endomorphism algebra of V' over k. Since V is irreduci-
ble, D is a division algebra and A, is a full matric algebra over the division
algebra D¥* inversely isomorphic to D.
PROPOSITION 11.1. Let M be a T-lattice in V, then
O=0WM)={Se D|MS<= M}
is an order in D.
PROOF. a) Since M is an 0-module, O contains 0. b) Any element S € ©
is integral over 0. For, let
(H=S"+aS" 1+ ... +a,=0(a, €k)
be the irreducible equation in % satisfied by S and S =S@,...... S™ be the
conjugates of S over k. In the extended vector space

VES®, ...... , S™)
we have
MSYE= M i=1,...... , 7.
Since a; are symmetric functions of S“’s we have
Mea, & M.

Therefore a; € 0 by Prop. 10. 1.
c) Ok = D. For, take an S € D, S==0, arbitrarily. Since

MS
is a I'-lattice in V, we can find a € 0 such that
MSa & M.
This shows that Sa € ©. q.e.d.

We say that M is maximal if
0 =92(M)

is a maximal order in D.
Any T'-lattice can be embeded in a maximal I'-lattice. Namely,

PROPOSITION 11.2. If ©° is a maximal order containing O = D(M),
then

M~ = MY~

is a maximal T-lattice in V, with
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O(M™) =9~
PROOF. Since D~ is a finite 0-module, M~ is a lattice in V. From
MA(x) = MO~ A(x) = MA(2)D~ < MO~ = M-
M~ is a T'-lattice. And finally
MO = M2 0" = MO~ = M-
implies
QM) DD,
By Prop. 11.1 O(M™) is an order in D it follows from maximality of O~
that
O(M™) =D q.e.d.
THEOREM 7. If M is a maximal T-lattice in an irreducible representa-
tion space V over k, then the double cosets
U G/G
of Theorem 5 correspond in one to one way to the O = O(M) left ideal

classes in the commuting algebra D of A(x)’s.

PROOF. Since £ = O(M) is a maximal order in D, G is the idéle group'
of the division algebra D. The correspondences :

G>8—-al) =\@S, ND)cD
v

are onto O-left ideals in D. Its kernel is just

U= {T|MT = M} i.e. o(TS) = a(S).
Therefore, double cosets

(~J\(~;/G
corresponds in one to one way to -left ideal class i.e.
a(TS-8) = aS)- S

with 7’65,3;6 E,SG G. q.e.d.

COROLLARY. In addition to the assumptions on the Theorem 7, suppose
D has degree > 2 or ramified infinite trimes, then the class number

{M; k/o} = {M,; 0/0} + ...... + {M,; o/o}

can be expressed as

c=11jw)-n

vlg

11) Cf.Fujisaki [11] for idéle group of a simple algebra.
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where j(p) = ¢(0,/0,) are local class numbes and h is the number of absolute
ideal classes of the center K of D.

PROOF. This follows from Theorem 7 and a theorem of Eichler!® con-
cerning class number of algebras. q.e.d.

THEOREM 8. Let M be an arbitrary T-lattice in irreducible V, then the
number of double cosets

~

U\G/G
is always finite.
PROOF. Let M~ D M be a maximal I'-lattice in V.
Then the number
# U\G/G,
as a class number of O~ = D(M~)-left ideals of D, is finite.
Since U~ QTJ it is sufficient to prove
[E' : ?]] < + oo,
Since M~ D M are lattices, except for a finite set of primes we have
M; = M,
and hence
[Us: U,]=1.
Take an exceptional prime p. U, D U, are compact and open subgroups in
D}, therefore
[Us: U < + oo. q.e.d.

12. Some examples. Let & = Z/(») be a cyclic group of order n. Con-
sider faithful irreducible integral representation in the field of rationals Q.
Let V be a representation space of dimension
m = @(n)

n-1

Ay =2_A@E"NQ=D=K =Q(®)

im0
where ¢ is a primitive zn-th roots of unity.
It is readily seen that
A, > Alw) >t e K

is an isomorphism over Q, if £ € & is a fixed generator.

PROPOSITION 12.1. Any T-lattice M in V is maximal.

12) Eichler [9], #»=2 and total definite case was also treated by him [8].
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PROOF. By definition
O=1{SeD|MSc M.
As a Tmodule:
MAGEH)E M

therefore we have

n—1

D DY ALY,

i=0

Since Z[{] = >_ §'Z is the maximal order of K = Q() we see that
=0

n-1
0 => A2"Z
i=0
is the maximal order of D. g.e.d.

The class number defined by
{M; Q/Z} = {M,; Z/Z} + ...... + {M,; Z/Z}
is therefore given by

c=1lip)-n
»[n
where
k= KQ())

is the absolute ideal class number of the field of #n-th roots of unity.
Now consider j(p). If » is a prime power and

n=0(p)
then
i.e. GF(p) contains no z-th roots. Therefore p-modular representation of
A(z) for n =0 (p) are irreducible. By a theorem of Brauer!®

i(p) =1
And hence

c=h.
As a next example, consider the symmetric group
S,

of order g = 6 in the field of rationals Q. Let A(x) be the 2-dimensional
absolutely irreducible representation with I'-lattice M.

13) Brauer [4], Theorem 10 or Artin-Nesbitt-Thrall [1], Lemma 9.8 D.
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If p=2,
6
5 =3%0(2

implies that A(x) is irreducible mod 2, therefore!®
J(2) = 1.

If p =3, A(x) is reducible mod 3 and contains two modular irreducible con-
stituents. Therefore by a deep theorem of Brauer?

J(3) = 2.
Finally, since A(Q) = 1, we have

c=1lip) =iB) =2

p|6

BIBLIOGRAPHY

[11 E.ARTIN-C. J.NESBITT-R. M. THRALL, Rings with minimum condition. Ann Arbor 1944

[2] L.BIEBERBACH, Ueber die Minkowskische Reduktion der positiven quadratischen For-
men und die endlichen Gruppen linearer ganzzahliger Substitutionen. Gétt. Nach.
1912, 207-216.

[3] R.BRAUER, On modular and $-adic represzntations of algebras. Proc.N. A.S.25(1939),
252-258.

[47 R.BRAUER, Investigations on group characters. Ann. of Math. 42(1941), 936-958.

[5]1 R.BRAUER, Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Zeitschr.
63(1956), 406-444.

[6] C.CHEVALLEY, L’arithmétique dans les algébres des matrices. Actualités Sci. et Ind.
323(1936).

[71 F.E.DIEDERRICHSEN, Ueber die Ausreduktion ganzzahliger Gruppendarstellungen bei
arithmeticher Aequivalenz. Hamb. Abh. 13(1939), 357-412.

[81 M.EICHLER, Ueber die Idealklassenzahl total definiter Quaternionenalgebren. Math.
Zeitschr. 43(1938), 102-109. ’

[9]1 M.EICHLER, Ueber die Idealklassenzahl hyperkomplexer Systeme. Math. Zeitschr. 43
(1938), 481-494.

[10] M. EICHLER, Quadratische Formen und orthogonale Gruppen. Berlin 1952.

[11]1 G.FUJISAKI, On ihe zeta-function of the simple algebra over the field of rational num-
bers. J.Faculty of Sci. Univ. of Tokyo, Sec.I, VII(1958)567-604.

[12] W.GASCHUETZ, Ueber den Fundamentalsatz von Maschke zur Darstellungstheorie der
endlichen Gruppen. Math. Zeitschr. 56(1952), 379-387.

[13] C.JORDAN, Mémoire sur I'’équivalence des formes. Journ. éc. pol. XXIX, 1880.

{141 H.KUNIYOSHI-S. TAKAHASHI, On the principal genus theorem. Tohoku Meth. J. 5(1953)
128-131.

[15] J.M.MARANDA, On #$-adic integral representations of finite groups. Canad.J. of Math.
5(1953) 344-355.

[16] J.M.MARANDA, On the equivalence of represzntations of finite groaps by groups of
automorphisms of modules over Dedzkind rings. Canad. J. of Math. 7(1955), 516-
526.

[17] T.ONO, Sur une propriété arithmétique des groupes algébriques commutatifs. Bull. Soc.
Math. France 85(1957), 307-323,

14) Brayer [4], Theorem 11,



246 SHUICHI TAKAHASHI

[18] I.REINER, Maschke modules over Dedekind rings. Canad. J. of Math. 8(1956), 329-334.

[19] I REINER, Integral representations of cyclic groups of prime order. Proc. A.M.S. 8
(1957) 142-146.

[20] A. SPEISER, Die Theorie der Gruppen von endlicher Ordnung. Berlin,3 Aufl. 1937.

[21] H.ZASSENHAUS, Neuer Bewsis der Endlichkeit der Klassenzahl bei unimodularer Ae-

quivalenz endlicher ganzzahliger Substitutionsgruppen. Hamb. Abh. 12(1937-1938),
276, -288.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY.





