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1. Introduction. In a series of papers, J. Marcinkiewicz proved several
theorems concerning conjugate function [6], strong summability of Fourier
series [8], and integrals of Dini type [7]. The crucial point in his proofs is
in the applications of a lemma concerning a metrical property of closed sets,
which is stated as follows :

Let P be a closed set periodic with period 2 iτ, Δn (n = 1,2, ) be its
contiguous intervals, and φ(x) be a function which is equal to | Δw |

 υ on Δn

and vanishes on P, then the integral

φ\x 4- t)
l ĵλΐΓ-Λ, λ > 0,

is finite for almost every x in P.

In a paper above cited [7], Marcinkiewicz introduced an integral of
Dini type :

( L χ ) , ,. x < . \F(x-Vt)+F{x-t) - 2F(x)I;

where F(x) = I fit) dt, and proved that

(1.2)

He also conjectured and A. Zygmund [18] proved that

(1.3) Ap\\f\\r> =S \\μ(f)\\r> ^ A,\\f\L 1<P<°°,
«27E

where in the left side inequality, we suppose that I f{x)dx = 0. The proof
Jo

of Zygmund depends on "complex method" indeed he proved that μ(f) is
majorized by the Littlewood and Paley function g*3).

With the aid of the lemma of Marcinkiewicz, Zygmund [17] proved that
the Fourier series of an integrable function f(x) is strongly summable almost

1) \E\ denotes the measure of a set E.
2) Here and hereafter, A stands for an absolute positive constant, and Ap, etc. stand for

constants depending only on the indicated parameters, The constants A and Ap, etc.
need not be the sames at different occasions.

3) For the function g*, see [4] and [18].
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everywhere for any order, that is, if sn(x) denotes the n-th. partial sum of
the Fourier series of f(x), then for any q > 0

lim Σ, six) - f(x)\" = 0

almost everywhere.
In the same paper, Zygmund proved that the power series of a function

Φ(z) of class H\0 < λ < 1, is (C, 1/λ — 1) summable almost everywhere on
the circle of convergence, and conjectured the maximal inequalities for the

Cesaro means: if Σcnz
n is the power series of Φ(z), and σ^\χ; Φ) is its

72-th Cesaro mean of order a for z = eίx, then

_β sup \σγ-λ\x; Φ)\xdx S AλJ \Φ(eiX)| λlog+1Φ(e ί x)|dx + Λλ,

and

(1. 5) I sup \σ^'ι)(χ; Φ)\λrdx :S Arλ( \Φ(eίx)\λdx) 0 < r < 1.
J-7C n W ^ J-τr / ,

Zygmund himself [20] and G. Sunouchi [15] proved (1. 4) and (1. 5) for 0 <
λ ^ 1/2.

In the present paper, we shall prove the right side inequality of (1. 3)
for 1 </> :£ 2; the maximal theorems for strong summability; and (1.4),
(1. 5) for 0 < X < 1. Our proofs are by "real method", which is a combination
of the lemma of Marcinkiewicz and the lemma of F. Riesz or the maximal
theorem of Hardy and Littlewood.

Our method can be applied to Walsh-Fourier series. In the last section,
we consider the Paley's decomposition theorem for Walsh-Fourier series, where
the lemma of Marcinkiewicz can not be applied directly, but the idea proving
it also survives.4)

During the preparation of this paper, a paper of E. M. Stein [22] was
published, where the results and the method of proofs have close connections
with ours. However, it seems that his main objects are to extend the
problems to higher dimensions, while our main aim is to show the scope of
the lemma of Marcinkiewicz.

2. Fundamental lemmas. In this section, we shall state two lemmas
which are fundamental in the sequels. One of them is a variant of the lem-
ma of Marcinkiewicz stated in the introduction, and the other is a decom-
position lemma of an integrable function which is essentially due to A.

4) In this regard, see also Fine [2] and Yano [16].
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Zygmund. We state them, however, in slightly different forms from the
original ones, so that we give the proofs here for the completeness.

Let P be a closed set periodic with period 2 π on the real axis, Δn

(n = 1,2, ) be its contiguous intervals, Q be the complement of P,

Q = U Δn, D(x) be the distance from x to P.5)

For any λ > 0, define :

(2.1) Λ(*) = £
>*(* + t)

dt.

Then a variant of the lemma of Marcinkiewicz, which is due to Ostrow
and Stein [11], is stated as follows :

LEMMA I. (I) Ik(χ) is finite almost everywhere in P.

(2) For any s > 0,

\{Ux)>s\ n P\ ^—~|Ω|.β)

PROOF. (1) is due to Ostrow and Stein [11], and (2) is the immediate
consequence of their proof. Here we reproduce the proof for completeness.

We can suppose that | Δn | rg 2 *π for all n, since, if otherwise it is obvious
from the periodicity that the set P is of measure zero.

Since D(x) vanishes on P, we have for x € P Π [ — TΓ, 7Γ]

r
_ /•*•'•* pit)

ux~τt \ -A* t- t

where the prime indicates that the summation ranges over the indices n for
which Δw are included in [ — 3 7r, 3 TΓ]. Then

r vvf r __D\t)
J Ik(x)dx^2Lj\ dx I j _ . i λ + i dt

Sλ^ D\t) dt) ~—T^ΓΓάr,

by Fubini's theorem. If x € P and £ € Δ7l, then D(i) < | α: — ί |, thus

5) If P is empty, we define D(x)=zoo for any ̂ . In this case the lemma is trivial.
6) The notation{ }denotes the set which is defined by the property in the paranthese,

and |£|denotes the measure of the set E, and, .if E is periodic, the measure of the part
of E contained in {—ft, it].
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dx r r dx

dt = Aκ\Δn\9

h.

so that

] n h(x) dx^ AJZ |Δn | =Aκ\Q\.

This proves (1). Since

s\\Ux)>s] f] P\sί Ux) dx,

it follows that (2) is true.

The original form of the lemma of Marcinkiewicz can be completed as
follows. Let φ(x) is equal to | Δn | on Δn and to zero on P, and define

(2. 2) ΛU) = /_* ^ | fpT"dt , λ > 0.

Then we have:

LEMMA I'. (1) Jκ(x) is finite almost everywhere in P.

(2) For any s > 0, | (Jλ(x) > s\ | ^ ^ \Q\.
o

PROOF. (1) is due to Marcinkiewicz [6, 8], and also it follows from (1)
of Lemma 1, since the finitenesses of /λ (x) and «/λ (x) are equivalent for
density points of P.

To prove (2), let Δ^ be the open interval concentric with Δw and having
the length 3 | Δn |. Let Q be the union of Δ^'s, and P' be the complement
of Q . Then by a similar consideration as in the proof of lemma 1,

Jκ(x) dx = I dx I
* φ\x + t)

TT dt, ,Tλ+T

r

where the prime has the same meaning as in the proof of Lemma 1.
Then

dx
f Jlx)dx<Σ.\ φ\t) dtf iviW

^ A λ Σ ί φ\t) dtf —^Γ

= ΛλΣ'|Δ,l =
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since \x — t\ ̂  | Δ n | = φ{t) for x € P and t € Δw. This implies that

\\Jlx)>s\ ΠP'| ^(Aλ/s)\Q\.

Now, since {Jλ(x) > 5} is contained in the union of {Jk(x) > s\ Π P and

£2', and \Q'\ ^ 3 | Q | , we get (2).

The following decomposition of an integrable function is due to Zyg-

mund [19], except the explicit statement of the property (5). However, he

proved this lemma in the non-periodic case, and for the proof in the present

form, a slight modification is needed.

LEMMA 2. Let fix) ^ 0 be an integrable function periodic with period

2 7r, Fix) = f f(t) dt,

1 Γf

(2. 3) M(x f) = sup — I f(x + u) du,
0<\t\^τt t JQ

P = Py= {M(x f) ^y] iy > 0). Also let the set Q and the distance func-

tion D(x) have the same meanings as in the beginning of this section. Then

(1) P is closed and

A Γ
\Ω\^~j~J^f(χ) dx.

If P is not empty> there exists a decomposition of Fix):

(2. 4) Fix) = Gix) + Hix\

and that of fix) :

(2. 5) fix) = gix) + hix),

where gix) and hix) are periodic and integrable, G ix) and Hix) are inde-

finite integrals of g ix) and h ix), respectively, and they have the following

properties:

(2) gix) = fix) almost everywhere in P, and 0 5j gix) <Ξ y almost every-

where.

(3) Hix) = 0 for x € P9and in particular, \ hix) dx = 0 for every con-

tiguous interval Δw of P.

(4) f gix) dx = ί fix) dx.
*>-it J-π

(5) \Hix)\ ^ 2yIXx) for any x.

PROOF. It is easy to see that Mix) = Mix f) is periodic and lower semi-

continuous, so that the set P is periodic and closed. The property (1) is a

consequence of the lemma of F. Riesz or the maximal theorem of Hardy and
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Littlewood; see for example, [21; pp. 241,-246].
Let us suppose that P is not empty. If x € P, then

(2.6) W * + O * M £ Λ

hence f(x) Ŝ y almost everywhere in P.

Now, define the continuous function G(x) by

G(x) = F(x) on P

— linear in Δw n = 1,2, ,

and decompose F(x) :

F(x) - G(x) + H(x).
Then it is easy to see that G(x) satisfies the Lipschitz condition of order 1,
and its derivative g(x) = G\x) has the property (2) (see Zygmund [19; § 6]).
Hence H(x) is also an indefinite integral of an integrable h(x). Since, for
any t, F{x + t) — F(x) is periodic with respect to the variable x, so is G(x
Λ t) — G{x) and hence g(x) is periodic. Differentiating (2. 4), we get (2. 5).

Since H(x) = 0 for x € P by definition, h(x) = 0 almost everywhere in
P. If Δw = {an, bn) is an contiguous interval of P, then an, bn € P, so that

h(x) dx - H(bn) - H(an) = 0,

hence (3) is proved.
The property (4) follows from (3) and the periodicity of the set P.
Finally, we shall prove (5). For x € P, (5) is obvious, since H(x) = D(x)

= 0. Let x € Δn = (an, bn) and suppose that x lies to the left of the middle
point of this interval. Then, by (3),

\H(x)\ = \H{x)-H{an)\

^ \F(x) - F(an)\ + \G(x) - G(an)\.

Since an € P, we get by (2. 6)

\F(x) - F(an)\ S y(x - an) =ylXx).

According to the property (2)

I G{x) - G{an)\ S ί g(f) dt S y(χ - an) = yD(x).

In the case where x lies on the right half of Δn? the same estimation can be
obtained, and the proof of Lemma 2 is completed.

REMARK. The conclusion (5) of Lemma 2, of course, can be replaced by

where φ(x) is the function of Marcinkiewicz, and this form of Lemma 2
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combined with Lemma Γ, can be used to prove the theorems in the sequel,
except for Paley's theorem for decomiposition of Walsh-Fourier series, for
which Lemma 2 in term of the function D(x) is needed.

In the proofs of some of the theorems, we need the interpolation theorem
of Marcinkiewicz and Zygmund. Since we use it only for very special cases,
we restrict ourselves to the case which is needed.

Let T be an operator whose domain and range are functions in (— TΓ, TΓ).

Suppose that T satisfies the following two conditions :

(2. 4) T(f) is defined for every f(x) € L(— TΓ, TΓ).

(2. 5) I T(A +/2)\S\ 7X/1) I + I T(/2) I.

For p 2ϊ 1, an operator T is said to be of weak type (p,p), if

(2.6) I I \T(f)(x)\ > y\ | ^ ^ J_ I/to!" dx,

for all y > 0 and for f(x) € Z/(— TΓ, TΓ) and for Ap independent of y and / .
Also an operator T said to be strong type (ρ,p) if

(2.7) Γ I T(/) Γ dx <Ξ Av f I/Ip dx.
J-It J—Λ

It is obvious that if T is strong type (p,p), then it is also of weak

type (ρ,ρ)
Now, the interpolation theorem of Marcinkiewicz and Zygmund [19] can

be stated as follows :

LEMMA 3. Let T be an operator which satisfies the condition (2. 4) and
(2.5). Then

(1) If T is simultaneously of weak type (pi,Pι) and (p2,p2), 1 < Pi < Pi
< oo? then T is of strong type (p,p) for p,px < p < p2.

(2) If T is simultaneously of weak type (1,1) and (p,p), 1 < p < °°,

then

f \Tf\ dx ^ A I \f(x)\ log+|/»i dx + A.

Finally, we state one more lemma which concerns with the integrability
property of an operator of weak type (1.1):

LEMMA 4. Let T be an operator which satisfies (2. 4) and (2. 5) and of
weak type (1,1), then

for any r, 0 < r < 1.
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This is known, for example, see Calderόn and Zygmund [1; Theorem 4].

3. The integral of Marcinkiewicz. Marcinkiewicz [7] introduced the

function (3.1) μix) = μix f):

, , . { [ * \Fjx + t) + Fjx - t) - 2Fjx)\>
(3.1) μix) = ( I ~3 dt

\* ' — it I*

f
where Fix) = I fit) dt, and proved the following result:

LEMMA 5.

He also conjectured and Zygmund proved that

(3. 2) Ap\\f\\p ^ \\Kf)\\v S AP\\f\\p, 1< p < oo,

where in the left side we suppose that that I fix) dx — 0.
^ -It

The proof of Zygmund for (3. 2) depends on "complex method". In the

present section we treat the problem by real method for the case 1 ̂  p ^ 2.

THEOREM 1. (1) Let fix) € L \ - τr,τr), then, for any y>0,

\\μiχ-J)> y\

(2) If fix) ^ L\- 7r, TΓ), 1 < p ^ 2, then \\μif)\\p ̂  Ap\\f\\p.

(3) If \f(x)\ log M/Cr)! € L \ - TΓ, TΓ), then

(4) If fix) e LK-π,π\ then

ί* l^/)!1"'^- ̂ Λλ, l ̂ l dx) ' o < 6 < l.
PROOF. It is sufficient to prove (1), then (2) and (3) follow from Lem-

mas 3 and 5; (4) follows from Lemma 4.

Without loss of generality, we can restrict ourselves to a non-negative

Given 3/ > 0, let us suppose the set P given in Lemma 2 is not empty,

and let Fix) = G{x) + Hix) be the decomposition guaranteed by Lemma 2

and we shall retain the notations there. If we write

AtFix) = Fix + t) + Fix - t) - 2Fix),

then

so that we have
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μ(χ; f) ^ μ(x; g) + μ(x; A).

Since 0 ^ g (x) ^ y almost everywhere by (2) of Lemma 2, g (x) € ZΛ

Hence

(3. 3) f μ(g)2 dx^AΪ g{xf dx

by Lemma 5, and thus

ί g{xj dx^yf g(x)dx = yί f(x) dx.
*f-7t J-It J-Tt

This, together with (3. 3), implies that

(3.4) \\<x;g)>y/2\\^—\ /U) dx.

We next turn to μ{x; h).

Since H(x) = 0 for x € P by Lemma 2, if x € P, then

μ(x; h) = y^ J3 dt

Since \H{x)\ -•; 2yD(x) by Lemma 2,

Let ^ denote the set {I2(x) S 1/4}, where /2(α:) is defined by (2. 1), then

for x € P Π &

Hence the set j μ(.r A) > j//2} is contained in the complement of the set

P Π S, which is contained in the union of Q and the set © = {12(2) >l/4}

Since

Kx) dx,

by Lemma 2 and Lemma 1, it follows that

I {μ(x;h)> y/2] I <Ξ ~y

This, together with (3. 4), implies (1).

If the set P is empty, (1) is trivial for such y by virtue of (1) of Lem-

ma 2, and the proof of Theorem 1 is completed.

More generally, the same reasoning gives the following theorem:

THEOREM 2. Let
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r \F(x + t) + F(x -t)~ 2F(x)\*

J^
tc/λire F(:r) = Γ fit) dt. Then

μ lx f) > y\! ^ ^

The analogous inequality (3.2) for the function μq(x;f) is known, see
Marcinkiewicz [7] and G. Sunouchi [13].

Another extention to non-periodic case of the integral of Marcinkiewicz
will be discussed in § 5.

4. Strong summability of Fourier series. Let f(x) be an integrable
function, and sn(x) be the #-th partial sum of its Fourier series. We say
that the Fourier series of f(x) is strongly summable in order r or summable
Hr at a point x if

Marcinkiewicz [8] proved by the use of Lemma l', that the Fourier
series of an integrable function is summable H2 almost everywhere, and
refining his method, Zygmund [17] extended the result of Marcinkiewicz for
any r > 0.

Let us write

(5. 1) Tτ{x;f) == Tr(x) = { ^

"

(5. 3) / Tr(f) dx^Arf |/0r)|log2(l + \f(x)\) dx + Ar

8\

Now, we shall prove that Tr(x;f) is essentially majorized by the maximal
function M(x;f).

THEOREM 3. Let f(x) be integrable and Tr(x;f) be defined by (5. 1).
Then for any r > 0,

(1) I {Tr(x;f) >y}\^ Ar\ \M(x;f) > Ary\ | .

then it is known that, for any r > 0

(5.2) / Tr(fY dx ̂ Avr\ I Ax) Γ dx, l<p<

and

7) See Sunouchi-Yano [14].
8) See Marcinkiewicz [10].
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(2) If f(x) € Lp, 1 < p < oo, then ί Tr{xf dx ^ Apr [ \f(x)\v dx.

(3) // \f(x)\log+\f(x)\ € L , then

f Tτ(x) dx^Arf \f(x) I log+ \f(x) \dx + Ar.

(4) If Ax) e L\ then f ^ Tlxf-dx ^ An(f ^ \f(x)\ dx) , 0 < S < 1.

PROOF. We can restrict ourselves to f(x) ^ 0 and for r > 2, since
TV tejO is increasing with r. Then the theorem is a consequence of the
following two lemmas. Given y > 0, the set P, Q are those given in Lemma 2
and the functions φ(x) and D(x) and /\(.r) and Jλ(x) ars those defined cor-
respondingly to them.

LEMMA 6. If f(x) is integrable, 1 < p < 2,1/p + 1/q = 1, ^Λ^ Ϊ /or

(5.4) Ti

This is due to Zygmund [17]. We can replace φ(x) by D(x) in (5. 4).
Indeed, the function φ (x) in (5. 4) was introduced by the use of a lemma
of Hardy and Littlewood [3]: Let f(x)'2iθ be integrable and f(p,x) be its
Poisson integral. Then for x € P

(5. 5) f(P, x + t) ̂  Ay[l + γz

It is easy to see that (5. 5) may be stated as follows

φ(x + t) \
(5. 6) / ( A x + t) <g Ay(l

or

(5.7)

If we use (5. 7) instead of (5. 6) in the proof in [17], we can replace φ(x) by
D(x) in (5. 4).

We can prove the theorem by either form of lemma 6. However it is
convienient here to use it in the present form (5. 4).

LEMMA 7. Let us write ίίj> = \JP(x)^ 1). Then for almost all x € δp-i

Π 8 , Π P,

φV-\x + t)f(x + t)
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PROOF. Since fix) > 0 and <p{x) = 0 in P and we can suppose that, for

any contiguous interval Δn of P, | Δn | < 2 ΊΓ, it follows that, for x €

where the prime indicates that the summation ranges over those n for which
Δn are contained in the interval [— 3 7r, 3 7r]. Let /(.r) = #(.r) + A (x) be the

decomposition given by Lemma 2, then

τλ(x;f) = T^X; g) + ^(^ h).

Since 0 ̂  ^(Λ:) SS ̂ y almost everywhere

dt

Hence for i € 5P-i ίl P,

(5. 8) r^x; g) S Avy.

We next estimate τx(χ; A). Let Δw = (an,bn), then

Since = | Δ n | on Δn,

φv-\t)h(t)r»φμ-\t))
L \χ-t

dt =
_x /•"" hit)

x-t\
jdt.

Now, by integration by parts, if x € P coincides neither an nor bny then
κ hit) , !

where Hit) is an indefinite integral of hix) having the property (3) and (5)

of Lemma 2. Thus

\H(t)\

* U-t\p

P + l Λ

dt

since <; 2yD(t) and D(t)<*φ(t). Therefore, if x € gp Π P and is not

an end point of any Δn j then
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Γ3rc φ\x + t)
(5. 9) TX{X'9 h) = Apy I ΓTΓϊTi dt = ApJp{x)y ^ Avy.

J-3τr |ί|

From (5. 8) and (5. 9), it follows that, for x € 3 ^ Π %P Π P, which is not

an end point of any Δw> τ(χ;f)^ Apy. This completes the proof of Lemma

7.

Now, we return to the proof of the theorem. According to Lemmas 6

and 7, it follows that, for almost all x € 3 v i Π ϊ$P Π P,

TQ(x;f)^Aqy+ AQM(x;f).

Hence, if we denote &p = \Jp(x) > 1}, then

lTQ(x;f)>AQy\ a <£„_, U <SP U Q ,

so that

\{TQ(x;f)>AQy\\^ \(£p^\ + \(SP\ + \Q\.

Since |®p-i| ^ -AplQI, |@J ̂  -AplQI by Lemma l ', we obtain the conclusion

(1) of Theorem 3.

The conclusions (2)-(4) are the easy consequences of (1). Indeed, it is

easy to see that, for any measurable g(x) ^> 0,

/ g(xfdx=f \{g{x)v>y\\dy=pϊ \ {g(x) > yWy^dy (p>0).

Hence, according to (1)

/ Tr(x)pdx = / I {TXx) > y] I/"1 dy
J -it J0

\{M{x)>y\\y*-1 dy

= Avr ί M(x)v dx.

Then, from the maximal theorem of Hardy and Littlewood (see, for example,

£21;'p. 246]), the desired conclusions follow.

5. Cesaro summability of power series. Let

(5.1) Φ(z) = Σ,cnz
n

w=0

be a function of class Hκ, λ > 0, that is, Φ(z) is regular for | z \ < 1 and

[ I Φ(reίx) I λ dx = O(l)

as r-> 1.

Let σ(

n

a)(χ) be the z-th Cesaro mean of order a of the series
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oo

(5. 2) 2 L
 c*e

and set

/r o\ /τ^αY ^ «s in ' ίT^Y'λΛ I

Zygmund [17] proved that if Φ(z) € Hk, 0 < λ < 1, then the series (5. 2)

is (C, 1/λ — 1) summable to Φ (eίX) almost everywhere, and also he conject-

ured that

(5. 4) Γ σ^k^ {xfdx ^ Ak Γ I Φ(e*x) I λlog+ | Φ(eίX) \ dx + Ak,
J-1t J-Tl

and

(5. 5) / ^ σ^\χ)rk dx ^ A r(/_ ] Φ(eίx) \k dx) , 0 < r < 1.

Zygmund himself [20] and Sunouchi [15] have proved (5. 4) and (5. 5)

for 0 < λ <, 1/2.

We shall here give the proof of (5. 4) and (5. 5) for 0 < λ < 1 by an ap-

plication of Lemma land Lemma 2.

THEOREM 4. Let Φ{z) e H\ 0 < λ < 1, and σ^\χ) is defined by (5. 3).

Then for any y > 0,

(1) ! [σ^-\χf > Aλy\ \^AK\ {M(x;\Φ(eix)\κ) > y\ I.

(2) We have (5. 4) and (5. 5) for 0 < λ < 1.

PROOF. It is sufficient to prove (1), then (2) follows from the same

argument as in the last part of the proof of Theorem 3.

Let us write f(x) = \Φ(eίx)\k, then f(x) € ZΛ We apply Lemma 2 for

f{x) and retain the notations there and in the proof of Theorem 3. The

conclusion (1) for the case 1/2 ^ λ < 1 is a consequence of Lemma 7 and

the following lemma.

LEMMA 89). If Φ(z) € Hk, 1/2 ^ λ < 1, then for x € P

y J-Λ 1*1

where a = 1/λ — 1.

This is due to Zygmund [17].

The proof of the theorem is now immediate. According to Lemmas 7 and

8, we get

\σ**Xx)\*^ Aκy, (α = l/λ- 1),

9) We can also replace φ{x) by D(x) in this lemma.
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for almost almost all x € %Λ Π $α+i Π P and hence

\σ<«\χy>Aλy\ C ( £ α U ®α+1 U <2

This implies (1).
If Φ(z) € H\ 1/4 <Ξ λ < 1/2, we can suppose Φ(*) ψ 0 for [ z | < 1 and

set ΦO) = Ψ 2 0), Ψ(z) € H a \ and thus

si«\χ; Φ) = Σ>7("-υGr; ̂ > ί Γ 1 } t e Ψ),
y = 0

where $n° (.r; Φ) is the w-th Cesaro sum of the power series of Φ (z) at
z = eίx. Hence

Now, since 1/2^ 2 λ < 1, we have by the preceding case

( H ) ^ 1 ) > 3;}

and this implies (1) for 1/4 ^ λ < 1/2.
The same argument can be applied to the case 1/8 ^ λ < 1/4, and so

on, and the proof of Theorem 4 is completed.

6. Real analogues of the functions of Littlewood and Paley, and
of Lusin. Let f(x) be an integrable function periodic with period 2 π, and
φ(reιX) be the function regular for \z\ < 1 and whose real part is the Pois-
son integral of f(x). Littlewood and Paley [4] introduced the functions g
and g*:

ί Γ1 )1/2

(6. 1) g(x) = g(x;f) = | Jf (I - r)|Ψ\re i x)\2 dr\ ,

(6. 2) g\x) = g%x;f) = \{\l - r) d r ~ £ | φ'W™) \ *P{r, t) dt\[['
where P(r,t) = (1 — r2)/2 (1 + 2rcos t + r2) is the Poisson kernel. Their
main results are

(6.3) \\g

(6.4) \\9*(f)\\,£ Ap\\f\L KP<°°,

where (6.4) was first proved for the case p — 2, 4, 6, by th^m and later
Zygmund completed for the general case 1 < p < 00. Moreover, Zygmund
has recently proved that, if φ(z) € H, then

(6. 5) ||sr*(<p)|| :g A/ |<p(e1*)\log+ |φ(e t x )\dx + A,
_
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(6.6) /_Λ \g*{φ)V-e dx<*A€(J\ \φ(eiX)\

Also, N. Lusin [5] introduced the function

(6.7) S(x) = S(x; φ)=(JJ\ φ\reiι) | W
Ωγ(a )

where <p(z) is regular for \z\ < 1, ί2yGr) is the part of the unit circle limited

by the two chords through eιX at angle y ^0 < γ < ~~̂ ~ )to the radius and the

parpendiculars upon them from the origin, and dω is the Euclidean area

element.

Marcinkiewicz and Zygmund [9] proved that

(6. 8) \\S(φ)\\p <£ Apy\\φ\\p, 0<p<oo,

from which it follows, by a theorem of M. Riesz, that

(6. 9) \\S(φ)\\p f£ Apy\\f\\p, 1 < p < oo.

Moreover, it is known [18] that g*(φ) is a majorant of S(φ), so that

the relation (6. 9) is a consequence of (6. 4).

In the present section we shall consider the real analogues of these

functions.

The real analogue of the function g was first considered by

[18]. Let f(r, x) be the Poisson integral of f(x), and define

(6.10) Kx f) = { £ r-\l - r) j fir, x) | *dr\ T

( Γ1 1 Γ" ) 1

( 6 . 1 1 ) k*(x;f) = j r-%1 - r) dr~- \f£r, x + t) \2 P(r, t) dt\.

It is easily seen that k(x:f)^2k*(x:f)^2g*(x;f).

Zygmund proved that

(6.12) k(x;f) S Aμ(x;f),

where μ(x\f) is the function of Marcinkiewicz, so that, according to Theorem

1, we have the following theorem.

THEOREM 5. (1) For any y > 0,

1/2

\\Kχ;f)>y\<
y

(2) If fa) eLp,l<p^2, then \\k(f)\\p ^ Ap\\f\\p.
We could not succeed in proving by real method the analoguous inequa-

lity for the function k*(f)9 but we can treat the real analogue of the

function of Lusin by the preceding method.
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Let

(6. 13) U(x;f) = ( / / r - 2 \ft(r, t)\* dr dt).
Ωγ(a )

Then we have :

THEOREM 6. (1) For any y > 0,

I \u(χ;f) > yi ( ^ - y

(2) 7//U) € Lp, 1 < p ^ 2, then \\U(f)\\v ^ A

PROOF. Following the method of Zygmund [18], we can argue as fol-
lows.

We can suppose that f(x) 2^ 0.
If f(x) = g(x) + h(x) is the decomposition given by Lemma 2, then

(6. 14) U(x f) ^ U(χ; g) + U(χ; h).

It is easily seen by a direct computation that

from which it follows as before that

(6. 15) I I U(x; g ) > y } \ ^ -f- J f(x) dx.
Jf —It

We now turn to U(x; h). Since I h (x) dx = 0 by (4) of Lemma 2, we
J -Tt

have by integration by parts

3 f*
hx{r, x + t) = ^ — h(u)P(r, x + t - u) du

OX J-π

r a
= h(u) ~^— P(r, x + t - u) du

J _ Tt Oil

= Γ Hjx + u) Ό\ P{rt-u)du

Now

y r ( l - r ) 2 J 2 r sin2 « + 2 (1 + r2) sin2-^- - (1 - r)2

^ ( r , a)
4r sin2-"-

where we set δ = 1 — r. Hence
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U*(x;h)S A ffr-*\kt(r,t)\2dr dt ^ A jJr"21hx(r,x + t)\2 dr dt
Ωγ(X) Ωγ(0)

= Ayfs2dr[ dt\\ H(x + u) 1R> , ," ^r\ ,

since 0 ^ | * | <, aδ(a = ay)for the point reιt in the domain Ωy(0). Then by

Schwarz' inequality,

δ dr H*(x +
sJ •§•

We shall estimate the inner double integral. For this purpose, we divide

the rectanagle O Ŝ \u\ ^7Γ, 0 ^ \t\ ^ aδ into four parts : 0 ^ =b u ^π, 0

^ ± ί ^ ύίδ. Since the arguments are similar for any parts, we consider the

integral for 0 <Ξ z/ <j TΓ, 0 ^ ί ^ αS. Then

o ^ 2 ( X + M ) d

If 0 ^ u ^ 2αδ, 0 ^ t <; αδ, then (« — tf ^ ^47δ
2, so that the first term in

the right side of (6.16) is less than

(6. 17) Λyδ-5) H\x + u) du.

Also, if 2αδ ^ w ̂ 7r, 0 ^ t <Ξ ^ ~ w, then u — t^> ~^u ^ Λδ, hence the

second term (6. 16) is less than

(6.18) Ay H\x + u) dul 2 —Γ^ AyJ du.

J2Λδ Jo U J2a8 U

Therefore, combining (6. 17) and (6. 18), it follows that

r Γ8 dt

I H\x + u) dul {8, + it_uf]>
^ Ay δ"4 dS H\x + u) dx + Ay SdS H ~du

1 J o Jo ^0 J2cύ8 U

= Ay H\x + u) du δ-4 dδ + Ay S dul δdδ
JQ J uβcύ J0 U JQ
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* H\x + u)
du,

from which we conclude that

U\χ;f) S Ayf^ - ^ f j Γ ^ du,

This implies that

U\x:f) ^ Λyff^ ^ p U) du,

since \H(x)\ ^ 2;yZX;r) by Lemma 2.

The remaining part of the proof is quite similar as the preceding one,

and we shall omit it here.

7. Some extensions of the integral of Marcinkiewicz. An extension

of the lemma of Marcinkiewicz has been given by Ostrow and Stein [11] as

follows : Let v be a positive measure on the real axis such that v(E + 2τr)

i rc

= v(E) for any Borel set E and~ dv(x) <̂  A(0 < t <; 2ττ) and the set P,

Q and the function ΣKx) be those which are defined at the beginning of §2,

and I),(x; v) be defined by

D\xr D\x + t)
Iκ(x;i>)= ΓT777I dp. λ > 0.

Then \\Ux\v)>s\ΐ\P\<i^r-\Q\.

Combining this and the decomposition lemma (Lemma 2), and arguing as

in the preceding sections, we have an extent ion of Theorem 1.

THEOREM 7. Let v be a measure described above, and let f(x) € L1( — 7r,

7r), and μ(x;f, v) be defined by

ίF(x + t) + Fix - t ) - 2F(xW • , J 1 / 2

o jz dv(t)\,

where F(x) = I f(t) dt. ThenJ o
(1) For any y > 0,

I \Kχ;f,v) >y}\^^J^ \f(χ)\ dx.

(2) The conclusions (2)-(4) of Theorem 1 hold for μ(x;f, v) instead of

μ(x;f\ and for Apv instead of Ap.

The case p = 2 of (2) was proved by Ostrow and Stein [11].
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Also, we can extend Theorem 1 to non-periodic case. Let f(x) be a
function integrable on the real axis. Let μ(x;f) be defined by

— dt\.

Then we have

THEOREM 8. (l)For any y>0,

I \ti* J) > y\ I ̂  ~ /_ l/ωi dx.

(2) / / / ( J : ) € L p ( - 00,00), 1 < p ^ 2, ίΛ n̂

/^P(Λ:; f)dx<: Ap I | /(^) | P ^ .

This theorem can be proved in a completely similar manner as in § 1,
combining the non-periodic analogues of Lemmas 1 and 2. Since, however, our
main object is not in this extention, we do not enter the details.10)

8. The theorem of Paley on Walsh-Fourier series. In this section,
we consider only functions and sets periodic with period 1, and Lemma 1
and Lemma 2 should be transferred to this case.

Let f{x) be integrable in the interval [0, 1], and its Walsh-Fourier series
be

Define:
2 " - l

(8. 2) S0(x) = S0(x;f) = c0, δn(x) = Sn(x;f) = Σ, 'W"/*) (» D,

and

(8. 3) S(x) = S(x; f) = j f S Gr; /)[!"
Then the fundamental theorem in the theory of Walsh-Fourier series

which is due to R. E. A. C. Paley [12] reads as follows :

THEOREM 9. (l) For p > l,

(8.4) Ap\\f\\P^\\Kf)\\P^Ap\\fh
(2) For any sequence \Sn\ of unit factors arid for any p > 1,

(8 .5)

10) For the extension of the integral of Marcinkiewicz to higher dimensions, see Stein

mi
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The crucial part of the theorem is the right side of (8. 4) for 1 < p r5j 2
or 2 ̂  p < oo? and the remaining parts are deduced from this case. For the
detailed argument for this fact, we refer the reader to Paley's paper [12].

We shall here give an alternative proof of this theorem by the method
developed in the preceding sections.

From the fact above mentioned, it is sufficient to prove the right side
inequality for 1 < p ^ 2, and this is a consequence of the following
theorem.

THEOREM lO. For any j> > 0,

(8.6) Iiδ(*;/)>3ΊI ίS-τ-f LA*)I dx.
y Jo

PROOF. We can restrict ourselves to f(x) Ξ> 0. We shall first require the
explicit formula for Sn(x;f). From the property of Walsh functions

ΨrM = ΨΛxWlx), 0 ̂  j 2S 2",

hence

δB + 1ω= Σ cjψfc) = ~Σ, Ψlχ)ΐf(t)ΨU) dt

J-0'0

Let

an(x) = p2'n Sx<(P+l)2-n = βn(x)

for every x € [0,1], then it is known that
2 » - l

Σ ψfcyψfc) = 2n> f ° r an(χ) ̂  t < βn(χ\

= 0, elsewhere.

Thus

δ -Fί+\yir (f\ rlt

Since ψ2

n(t) = 1 on the left half and = - 1 on the right half of the interval
lcίn(x), βn(x))> respectively, it follows that, if we denote the middle point of
this interval by yn(x)> then

Sn+1(x) = 2n Ψ^x) { jΓ^ f(t) dt - jΓ ̂  f(t) dt}

= 2"ΨAx)\2Fiynix)) - Fictnix)) - F(βn(x))\,

where F{x) = j At) dt.
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Hence

(8. 8) B(x; f) = |>(1)2 + £ 22" {F(an(x)) + F(βn(x)) - 2F(Ύn(x))}»].

Let F(Λ:) = G(x) + H(x) and /(^:) = ί/(j:) + h(x) be the decomposition

given by Lemma 2 (for the interval [0,1]), then

It is known [12] that

which implies that

/1 fδ^ S-) > y] I ̂  ί sΌc)2 dx^yϊ g(x) dx = yί f(x) dx

by (2) and (3) of Lemma 2, hence

(8.10) I \S(x; 9)>y}\^^-ί f(x) dx.
y •' o

We turn to B(x;h). Let P be the set in Lemma 2 and integrate 8*(x;h)

over P o = P Π [0,1], then, since H(ί) = 0 by (4) of Lemma 2,

(8.11) £ BKx h) dx=Σ,22n!P \H(an(x)) + H(/3n(x)) - 2H(yn(x))\* dx

\H(ctn(x))\*dx + / F \H(βn(x))\* dx

4/ \Hfyn(x))\*dx\.

Since the arguments are similar for any of sums in the right side of

(8. 11), we consider the sum

\ \ ( n ( W dx.
n=0 P°

Let Inr denote the interval r 2~n ^ x < (r + l)2" n, 0 ^ r ^ 2W, then ΛW(

= r 2"n for x 6 /„„ so that

V8.12) 5' = Σ 22W Σ / H(an(x)y dx

w=0 r=0

Since H(r2~n) = 0 if r2~n € Po? in the inner sum of the last side of

(8. 12) there remain only terms for which r2~n € Δ^ for some j , where Δ^

denotes the contiguous interval of P. Now, for each n, we divide these
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indices j into two classes An and Bn : j € An if | Δ, | < 2"", and j € Bn if
|Δ ί |^2"". Then

-")21 Po Π /„ (

+ Σ 2 2 r a Σ Σ H(r2-y\Po Π /»rl = T + U,
n=0 JeB«r2—neaj

say.
Since, for each n, if [ Δ^ | < 2~n then there exists at most one index r

such that r2~n€Aj, and ZXr2~w) ^ | Δ,) ^ 2~n for such r and i ? it follows by
(5) of Lemma 2 that

oo

(8.13) T ^ 4 y Σ 2 2 n Σ Σ £>V 2-n)2-n^4y2Σ'lΔ;l2 Σ 2n

where the prime, indicates that the summation ranges over the indices for
which Δj is contained in the interval [— 1,2].

Next, we turn to £7. If 7n r C Δ^ then P o and Inr have no common point,
so that

n=0 jeBn r

where 2-/ denote the sum over those r for which Inτ intersect with some
r

Δ j ? j £ Bn9 but are not included in it.
Then, for each n and j , there exist at most two such indices r, and

I H(r2~n) [ ^ 23;ZXr2-rι) ^ 23;2"rι for such r, so that we get

jeBn r

- Σ 2

Σ

j

where the prime has the same meaning as above.

Combining (8. 13) and (§. 14), and similar ones for other sums in (8.11),

we obtain
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δ\x;h) dx

and the proof is completed by the argument as in precedings.

ADDED IN FEBRUARY 12, 1959. After the preperation of this paper, a
paper of E. M. Stein, "A maximal function with applications to Fourier
series" appeared in Annales of Mathematics, Vol. 68(1958), where he treats
the problems analogous to ours. Especially, the results for Cesaro summability
of power series of functions of Hv class are quite same as ours. The results
of Stein for strong summability of Fourier series are incomplete, as he says,
since he treats only the case of "index" 2. By the method in our paper, we
can complete the results as follows:

THEOREM. Let f(x) € Lp( - τr,7r) and <rίΛ)(x;f) = σ^{x) be the n-th
Cesaro mean of the Fouries of f(x\ and define T(

q

aXx) by

n + l,,_0

with 1 <; p < 2, a = 1/p - 1, 0 < q < p/(p - 1), then

(1) UT'fllr 3S APιQJf\\r if f{x) e V and r>p,

(2) II7TIU ^ AP,J \fix) I log+ I/O) j dx + BPiQ if fix) € U Iog+L,
J - i t

(3) WTlΓψr^ APιQJf\\p if f(x) eLp and 0 < r <p.

PROOF. Since ρ/(ρ — 1) > 2, we can suppose that q > 2. Let P be the
set of points where

1 Γc

sup I I / O + u)\ p du <: y9

0<IΠ^τc t JQ
and Q be the complement of P, then it is proved by Sunouchi*} that for

where φ(x) is the function of Marcinkiewicz corresponding to the set P and
1/q + 1/q = 1 and q > 2. Hence applying Lemmas 7 and 1 we can conclude
that

) \τγ\χ) > APi,y] \^ApJ{M(x; \f\p)>yp\ [,

from which the conclusions of the theorem follow as in the proof of Theo-
rem 3.

*) G. Sunouchi, On the strong summability of power series and Fourier series, Tδhoku
Math. J. 6(1954), 220-225.
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