CORRECTION: CERTAIN TYPES OF GROUPS OF AUTOMORPHISMS OF A FACTOR

(This Journal, Vol. 11, pp. 314-320)

Noboru Suzuki

(Received October 31, 1958)

In my paper above indicated, Lemma 3 is false in the case $\alpha=0$, i. e. if φ is a function on Δ such that $\varphi(0)=1$ on the unit 0 of Δ and =0 elsewhere.

At the beginning of the section 1, the outer automorphic representation of a countably infinite group G should be corrected as follows;

page	line	for	read
314	10 ↑	Δ	$\Delta \times G$
314	10 ↑	$\varphi(\gamma) = 0$	$\varphi(\gamma, g) = 0$
314	9↑	γ 's	(γ, g) 's
314	9↑~8↑	$[\varphi + \psi](\gamma) = \varphi(\gamma) + \psi(\gamma)$	$[\varphi + \psi](\gamma, g) = \varphi(\gamma, g) + \psi(\gamma, g)$
314	5↑	$m{arphi}^{\scriptscriptstyle{f B}}\!(m{\gamma}) = m{arphi}(m{\gamma} + m{eta})$	$\varphi^{\beta}(\gamma, g) = \varphi(\gamma + \beta, g)$
315	3	$[T_{artheta}^{'}arphi](\gamma)=arphi(T_{artheta^{-1}}\!\gamma)$ for all $\gamma\in\Delta$	
$[T'_{g}\varphi](\gamma,g')=\varphi(T_{g-1}\gamma,\ gg') \text{ for all } (\gamma,g')\in\Delta\times G.$			

Therefore, the sentence "we shall recall the construction in [4] of the outer automorphic representation of a countably infinite group G" in the line $15 \sim 14$ from below on p. 314 should be replaced by "we shall construct the outer automorphic representation of a countably infinite group G in the following manner."

Then, in the proof of Lemma 1, the paragraph " $\varphi(\gamma) = 1$ on an $\alpha \in \Delta$ " in the line 18 on p. 315 is replaced by " $\varphi(\alpha, g') = 1$ on a finite subset $(\alpha, F) = \{(\alpha, g'); g' \in F\}$ of $\Delta \times G$ ", and " $[T'_{g}\varphi](\gamma) = 1$ if $\gamma = T_{g}\alpha = \alpha$ " in the line 20 on p. 315 is replaced by " $[T'_{g}\varphi](\gamma, g') = 1$ if $(\gamma, g') \in (\alpha, F) \subset \Delta \times G$ ". Further, in the proof of Lemma 3, " $\varphi(\gamma) = 1$ on a finite subset Δ_0 of Δ and $\alpha = 0$ elsewhere. Putting $G_0 = \bigcup_{\gamma \in \Delta_0} \{g' : \gamma(g') = 1\}$," in the line $5 \sim 3$ from

478

below on p. 315 is replaced by " $\varphi(\gamma, g') = 1$ on a finite subset (Δ_0, G_0) of $\Delta \times G$ and = 0 elsewhere.".

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.