ON THE ($K, 1, \alpha$) METHODS OF SUMMABILITY

Hiroshi Hirokawa

(Received March 30, 1960)

1. Zygmund [5] defined the ($K, 1$) method of summability of a series. This method has the several similar properties to those of the Riemann's $(R, 1)$ method of summability. Concerning the method ($R, 1$), we have defined, in the paper [1], the Riemann-Cesàro method $(R, 1, \alpha)$ which reduces the method $(R, 1)$ when $\alpha=-1$. In this note, by the analogous method, concerning the method ($K, 1$), we shall define the new methods of summability and show that the new methods have the similar properties to those of the methods ($R, 1, \alpha$).

Let α be a real number such that $-1 \leqq \alpha \leqq 0$, and let s_{n}^{α} be the Cesàro sum, of order α, of a series $\sum_{n=0}^{\infty} a_{n}$ with $a_{0}=0$. If the series in

$$
\tau(\alpha, t)=t^{\alpha+1} \sum_{n=1}^{\infty} s_{n}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x
$$

converges in some interval $0<t<t_{0}$, and if

$$
\lim _{t \rightarrow 0+} \tau(\alpha, t)=B_{\alpha} s
$$

where

$$
B_{\alpha}=\left\{\begin{array}{lr}
\pi / 2 & \alpha=-1 \\
(\alpha+1)^{-1} \sin (\alpha+1) \pi / 2 & -1<\alpha<0 \\
1 & \alpha=0
\end{array}\right.
$$

then, we will say that the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to s. When $\alpha=-1$, the method ($K, 1, \alpha$) reduces the method ($K, 1$).
2. The above constant B_{α} is obtained if we consider the ($K, 1, \alpha$) transform of the series

$$
0+1+0+0+\ldots \ldots
$$

For $\alpha=-1$, it is obvious that $B_{\alpha}=\pi / 2$. For $-1<\alpha<0$, since, A_{n}^{α} denoting the Andersen notation,

$$
\tau(\alpha, t)=t^{\alpha+1} \sum_{n=1}^{\infty} A_{n-1}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x
$$

$$
\begin{aligned}
& =t^{\alpha+1} \int_{t}^{\pi} \frac{1}{2 \tan x / 2} \Im\left(\sum_{n=1}^{\infty} A_{n-1}^{\alpha} e^{i n x}\right) d x \\
& =t^{\alpha+1} \int_{t}^{\pi} \frac{1}{2 \tan x / 2} \Im\left\{e^{i x}\left(1-e^{i x}\right)^{-(\alpha+1)}\right\} d x \\
& =t^{\alpha+1} \int_{t}^{\pi} \frac{\sin \{(\alpha+1)(\pi-x) / 2+x\}}{(2 \sin x / 2)^{\alpha+1}(2 \tan x / 2)} d x,
\end{aligned}
$$

we have

$$
\lim _{t \rightarrow 0+} \tau(\alpha, t)=(\alpha+1)^{-1} \sin (\alpha+1) \pi / 2=B_{\alpha}
$$

Further we shall prove that $\lim _{t \rightarrow 0+} \tau(0, t)=B_{0}$. By

$$
\sin x+\sin 2 x+\ldots \ldots+\sin n x=\frac{1}{2 \tan x / 2}-\frac{\cos (n+1 / 2) x}{2 \sin x / 2}
$$

we get, by the Riemann-Lebesgue Theorem,

$$
\begin{aligned}
\tau(0, t) / t & =\sum_{n=1}^{\infty} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x \\
& =\lim _{m \rightarrow \infty} \int_{t}^{\pi}\left(\sum_{n=1}^{m} \frac{\sin n x}{2 \tan x / 2}\right) d x \\
& =\int_{t}^{\pi} \frac{d x}{(2 \tan x / 2)^{2}} \\
& =\frac{1}{2 \tan t / 2}-\frac{1}{2}\left(\frac{\pi}{2}-\frac{t}{2}\right) .
\end{aligned}
$$

Hence

$$
\lim _{t \rightarrow 0+} \tau(0, t)=1=B_{0} .
$$

3. We shall now consider the regularity of the method $(K, 1, \alpha)$. Then we have the following theorem.

THEOREM 1. The method $(K, 1, \alpha)$ is not regular when $-1 \leqq \alpha \leqq 0$.
PROOF. Let $-1 \leqq \alpha \leqq 0$. Then, for any sequence $\left\{s_{n}\right\}, s_{n}$ being the partial sum of the series $\sum_{n=0}^{\infty} a_{n}$, converges to zero, we have

$$
\tau(\alpha, t)=t^{\alpha+1} \sum_{n=1}^{\infty} s_{n}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x
$$

$$
\begin{aligned}
& =t^{\alpha+1} \sum_{n=1}^{\infty}\left(\sum_{\nu=1}^{n} A_{n-\nu}^{\alpha-1} s_{\nu}\right) \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x \\
& =t^{\alpha+1} \sum_{\nu=1}^{\infty} s_{\nu} \sum_{n=\nu}^{\infty} A_{n=\nu}^{\alpha-1} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x \\
& =t^{\alpha+1} \sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} \frac{1}{2 \tan x / 2}\left(\sum_{n=\nu}^{\infty} A_{n=\nu}^{\alpha-1} \sin n x\right) d x \\
& =t^{\alpha+1} \sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} \frac{\sin \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{(2 \sin x / 2)^{\alpha}(2 \tan x / 2)} d x .
\end{aligned}
$$

Let us assume that the method $(K, 1, \alpha)$ is regular. Then, by the Toeplitz Theorem, for $0<t<t_{0}$,

$$
t^{\alpha+1} \sum_{\nu=1}^{\infty}\left|\int_{t}^{\pi} \frac{\sin \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{(2 \sin x / 2)^{\alpha}(2 \tan x / 2)} d x\right|=O(1)
$$

Hence the series

$$
\sum_{\nu=1}^{\infty} \int_{t}^{\pi} \frac{\sin \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{(\sin x / 2)^{\alpha} \tan x / 2} d x
$$

is absolutely convergent for $0<t<t_{0}$. Now, in virtue of the integration by parts, for $0<t<\pi$,

$$
\begin{aligned}
\int_{t}^{\pi} \frac{\sin \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{(\sin x / 2)^{\alpha} \tan x / 2} d x=\frac{\cos \{(\nu-\alpha / 2) t+\pi \alpha / 2\}}{(\nu-\alpha / 2)(\sin t / 2)^{\alpha} \tan t / 2} \\
-\int_{t}^{\pi} \frac{\left(1+\alpha \cos ^{2} x / 2\right) \cos \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{2(\nu-\alpha / 2)(\sin x / 2)^{\alpha+2}} d x
\end{aligned}
$$

and then, by the second mean value theorem,

$$
\begin{aligned}
& \left|\int_{t}^{\pi} \frac{\left(1+\alpha \cos ^{2} x / 2\right) \cos \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{2(\nu-\alpha / 2)(\sin x / 2)^{\alpha+2}} d x\right| \\
& \quad=\frac{1}{2(\nu-\alpha / 2)(\sin t / 2)^{\alpha+2}} \left\lvert\, \int_{\xi}^{\eta} \cos \left\{\left(\nu-\frac{\alpha}{2}\right) x+\frac{\pi \alpha}{2}\right\} d x\right. \\
& \quad \leqq\left(\nu-\frac{\alpha}{2}\right)^{-2}(\sin t / 2)^{-\alpha-2},
\end{aligned}
$$

where $0<\xi<\eta<\pi$. Hence the series

$$
\sum_{\nu=1}^{\infty} \int_{t}^{\pi} \frac{\left(1+\alpha \cos ^{2} x / 2\right) \cos \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{2(\nu-\alpha / 2)(\sin x / 2)^{\alpha+2}} d x
$$

is absolutely convergent for $0<t<\pi$. Therefore, by

$$
\begin{aligned}
& \frac{1}{(\sin t / 2)^{\alpha} \tan t / 2} \sum_{\nu=1}^{\infty} \frac{\cos \{(\nu-\alpha / 2) t+\pi \alpha / 2\}}{\nu-\alpha / 2} \\
& =\sum_{\nu=1}^{\infty} \int_{t}^{\pi} \frac{\sin \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{(\sin x / 2)^{\alpha} \tan x / 2} d x \\
& \quad+\sum_{\nu=1}^{\infty} \int_{t}^{\pi} \frac{\left(1+\alpha \cos ^{2} x / 2\right) \cos \{(\nu-\alpha / 2) x+\pi \alpha / 2\}}{2(\nu-\alpha / 2)(\sin x / 2)^{\alpha+2}} d x,
\end{aligned}
$$

where the two series in the right hand are absolutely convergent for $0<t<t_{0}$, the series

$$
\sum_{\nu=1}^{\infty} \frac{\cos \left\{\left(\nu-\frac{\alpha}{2}\right) t+\frac{\pi \alpha}{2}\right\}}{\nu-\frac{\alpha}{2}}
$$

is absolutely convergent for $0<t<t_{0}$. But, by the Lusin-Denjoy Theorem [6: p. 131], this series is not absolutely convergent on any set of positive measure. From this contradiction, Theorem is proved.

REMARK. A similar argument give an another proof of Theorem 2, in the paper [1], which asserts that the method $(R, 1, \alpha)$ is not regular when $-1 \leqq$ $\alpha \leqq 0$.

Concluding this paragraph, I take this opportunity of expressing my heartfelt thanks to Dr. T. Tsuchikura for his valuable suggestions.
4. We shall now consider the sufficient conditions for the ($K, 1, \alpha$) summability of the series $\sum_{n=0}^{\infty} a_{n}$. The following results are stated without the proofs since, though not immediate, these are similar to the proofs of the corresponding results for the methods $(R, 1, \alpha)$. It is remarkable that these conditions are the same to those for the methods ($R, 1, \alpha$).

THEOREM 2. Suppose that the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable Abel to s and, for some $r,-1<r<0$,

$$
\sum_{v=1}^{n}\left|s_{\nu}^{r}\right|=O\left(n^{r+1}\right)
$$

Then the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
($R, 1, \alpha$) analogue of this theorem is Theorem 3 in the paper [3] when $-1 \leqq$ $\alpha<0$ and Corollary 5 in the paper [4] when $\alpha=0$.

Corollary. The series evaluable (C, r), $-1<r<0$, to s is also evaluable $(K, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.

THEOREM 3. Suppose that

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O(1)
$$

and the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable Abel to s. Then the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to $s w h e n-1 \leqq \alpha \leqq 0$.
$(R, 1, \alpha)$ analogue is Theorem 4 in the paper [1].
THEOREM 4. Suppose that

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{1-r}\right), \quad 0<r<1
$$

and

$$
\sum_{\nu=1}^{n}\left|s_{v}-s\right|=o(n / \log n)
$$

Then the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
($R, 1, \alpha$) analogue is Theorem 5 in the paper [1].
THEOREM 5. Suppose that, for $\delta>0$,

$$
s_{n}-s=o\left(1 /(\log n)^{1+\delta}\right)
$$

Then the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
($R, 1, \alpha$) analogue is Theorem 3 in the paper [2].
THEOREM 6. The series evaluable $|C, 1|$ to s is also evaluable $(K, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
($R, 1, \boldsymbol{\alpha}$) analogue is Theorem 3 in the paper [1] when $\boldsymbol{\alpha}=0$ and Theorem 4 in the paper [3] when $-1<\alpha<0$.

REFERENCES

[1] H. Hirokawa, Riemann-Cesàro methods of summability, Tôhoku Math. Journ., 7(1955), 279-295.
[2] H. Hirokawa, Riemann-Cesàro methods of summability II, Tôhoku Math. Journ., 9(1957), 13-26.
[3] H. Hirokawa, Riemann-Cesàro methods of summability III, Tôhoku Math. Journ., 11(1959), 130-146.
[4] K. YANO, Note on Tauberian theorems for Riemann summability, Tôhoku Math. Journ., 10(1958), 19-31.
[5] A. ZYGMUND, On certain methods of summability associated with conjugate trigonometrical series, Studia Math., 10(1948), 97-103.
[6] A.ZyGMUND, Trigonometrical series, 1935, Warsaw.

Chiba Institute of Technology, Chiba, japan.

