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1. Zygmund [5] defined the (K, 1) method of summability of a series. This
method has the several similar properties to those of the Riemann's (R, 1) method of
summability. Concerning the method (R, 1), we have defined, in the paper [1],
the Riemann-Cesaro method (R, 1, a) which reduces the method (R, 1) when
a = — 1. In this note, by the analogous method, concerning the method (K, 1),
we shall define the new methods of summability and show that the new methods
have the similar properties to those of the methods (Λ, 1, cί).

Let a be a real number such that — 1 ±S a ̂  0, and let s" be the Cesaro

sum, of order a, of a series ^L an with ao — 0. If the series in

2 tan χ/2

converges in some interval 0 < t < £0, and if

lim τ(a, t) = Bas,

where

τr/2 a = ~ 1

BΛ = (α + I)'1 sin (α + l)τr/2 - 1 < Λ < 0

then, we will say that the series Σan *s ^valuable (K, 1, α) to 5. When a == — 1,

the method (K, 1, α) reduces the method (-K, 1).

2. The above constant BΛ is obtained if we consider the (K, 1, a) transform
of the series

0 + 1 + 0 + 0 +

For a = — 1, it is obvious that BΛ = ττ/2. For — 1 < # < 0, since, AJ denot-
ing the Andersen notation,

sin nx
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= t«+l Γ Siu^a + 1)(?Γ ~ *)/2 + X^ dx
Λ (2 sin ;c/2)"+1 (2 tan */2)Jt (2sin;c/2)"+1(2ι

we have

lim τ(a, t) = (a + I)'1 sin (a + lV/2 = BΛ.

Further we shall prove that lim τ(0, t) = BQ. By

sn nx =
2 tan x/2 2 sin a:/

we get, by the Riemann Lebesgue Theorem,

sin nx

t 2tanV2

sin

(2tan:r/2)3

2tant/2 2 \ 2 2

Hence

lim τ(0, ί) = 1 = 50-

3. We shall now consider the regularity of the method (K, 1, OL). Then we

have the following theorem.

THEOREM 1. The method (K, 1, α) is not regular when — 1 <Ξ α ̂  0.

PROOF. Let — 1<^Λ<:0. Then, for any sequence {sn}y sn being the
eo '

partial sum of the series Σa»> converges to zero, we have
n-O

\ Λ-
'*) = '
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s n

sin

~ ί 'r"".. 2 tana/2

= ί*+lf>, Γ* * /0 (f;A»^ sin nx]dx
~ Jt 2iΆΏ.x/2 \~ )

~ f' sin{(i> - a/2)* + W2j ,
ΠΓi Λ (2smx/2Y(2tanx/2) "

Let us assume that the method (X, 1, α) is regular. Then, by the Toeplitz

Theorem, f or 0 < t < tα,

ίJt

sinJQ - α/2)x + πα/2\

(2 sin x/2T (2 tan x/2)
dx = 0(1).

Hence the series

f* sin{(z/ —
X(sin x/2)Λ tan x/2

is absolutely convergent for 0 < t < tQ. Now, in virtue of the integration by

parts, for 0 < t < TT,

sin|(y — a/2}x 4- ττa/2} , _ cos((y ~-Γ* s i n { y

J£ (sin α:/2)Λ tan x/2 (v - ct/2) (sin ί/2)α tan ί/2

_ r

Λ

a: cos2

and then, by the second mean value theorem,

(1 + o:cos2V2)cos{(y - a/2)g + ττα/2} dχ

2(»'-Q;/2)(sinί/2)'li+2

where 0 < | < j? < TT. Hence the series

x/2)cos{(ι> - α/2)x + ττ«/2j ,

^2(I'-α/2)(sinV2)α+

is absolutely convergent for 0 < ί < TT. Therefore, by
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(sin t/2)Λ tan ί/2 |~ v — a/2

Γ" sin\(v - a/2)x + ττa/2}

(smx/2)« ta.nx/2

α:cos2 V2)cosj(y - α/2)x + τrα/2\
^ Γ*
έϊ Λ sn x

where the two series in the right hand are absolutely convergent f or 0 < t < tQ,
the series

is absolutely convergent for 0 < t < t0. But, by the Lusin-Denjoy Theorem [6 :
p. 131], this series is not absolutely convergent on any set of positive measure.
From this contradiction, Theorem is proved.

REMARK. A similar argument give an another proof of Theorem 2, in the
paper [l], which asserts that the method (R, 1, ά) is not regular when — 1 ±S

α^O.

Concluding this paragraph, I take this opportunity of expressing my heartfelt
thanks to Dr. T. Tsuchikura for his valuable suggestions.

4. We shall now consider the sufficient conditions for the (K, 1, ά) sum-
00

mability of the series ̂  αn. The following results are stated without the proofs
w-ϋ

since, though not immediate, these are similar to the proofs of the corresponding
results for the methods (R, 1, α). It is remarkable that these conditions are the

same to those for the methods (R, 1, ά).

oo

THEOREM 2. Suppose that the series ^ an is evaluable Abel to s and,

for some r, — 1 < r < 0,
w-O

Then the series ̂  an is evaluable (K, 1, a) to s when — 1 5Ξ a ̂  0.
w=0

(R, 1, a) analogue of this theorem is Theorem 3 in the paper [3] when — 1
a < 0 and Corollary 5 in the paper [4] when a = 0.
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COROLLARY. The series evaluable (C, r), — 1 < r < 0, to s is also eva-
luable (K, 1, a) to s when — 1 <^ a ̂  0.

THEOREM 3. Suppose that

#n £5 evaluable Abel to s. Then the series Σan *s evaluable
n=0 w«=0

, 1, a) to 5 when — 1 <; α: <; 0.

(R, 1, α) analogue is Theorem 4 in the paper [1].

THEOREM 4. Suppose that

and
n

Σ\s» "" Ή = o(n/logn).

5̂ X] Λn /s evaluable (K, 1, α) ίo 5 wA^w — 1 ̂  Λ ̂  0.
w=0

(jR, 1, α) analogue is Theorem 5 in the paper [1].

THEOREM 5. Suppose that, for S > 0,

Then the series ^Γ) *zw w evaluable (K, 1, #) ίo 5 τe Aen — 1 ̂  α ̂  0.
w=0

(R, 1, Λ) analogue is Theorem 3 in the paper [2].

THEOREM 6. The series evaluable | C, 1 1 to s is also evaluable (K, 1, a)
to s when — 1 <ί a Ŝ 0.

(R, 1, α) analogue is Theorem 3 in the paper [l] when a = 0 and Theorem 4
in the paper [3] when — 1 < a < 0.

REFERENCES

[1] H. HlROKAWA, Riemann-Cesaro methods of summability, Tohoku Math. Jour n., 7(1955),
279-295.



ON THE (£,l,αO METHODS OF SUMMABILITY 23

[2] H. HlROKAWA, Riemann-Cesaro methods of summability II, Tohoku Math. Journ.,
9(1957), 13-26.

[3] H. HlROKAWA, Riemann-Cesaro methods of summability III, Tohoku Math. Journ.,
11(1959), 130-146.

[4] K. YANO, Note on Tauberian theorems for Riemann summability, Tohoku Math.
Journ., 10(1958), 19-31.

[5] A.ZYGMUND, On certain methods of summability associated with conjugate trigono-
metrical series, Studia Math., 10(1948), 97-103.

[6] A.ZYGMUND, Trigonometrical series, 1935, Warsaw.

CHIBA INSTITUTE OF TECHNOLOGY, CHIBA, JAPAN.




