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0. Introduction and preliminaries. Recently the author constructed the
Lie theory of algebraic groups in his papers [3] and [4] where a certain class
of algebraic groups played an important part; let G be a connected algebraic
group defined over a field of characteristic 0; let g be the Lie algebra of G;
then it is shown that for any D of g there exists the minimal algebraic sub-
group G(D) of G whose Lie algebra contains D. This algebraic subgroup G(D)
corresponds to the closed subgroup generated by the one-parameter subgroup
determined by the element D of Lie algebra in the classical theory of Lie
groups. In the linear case C. Chevalley has obtained the structural properties of
this class of algebraic groups G(D): for any X of gl(n, k), the subgroup G(X)
of GL(n, k) is commutative; if ¢ is an indeterminate, the point exp X is a generic
point over &2 on G(X) where % is a field of characteristic 0. In this paper we
shall study the structure of G(D) in the general case.

We shall show that G(D) is commutative in the section 1; where the
structural theorems of algebraic groups which were given by C.Chevalley and
M. Rosenlicht are useful ; a characterization of the Lie algebra of the connected
algebraic subgroup generated by some subgroups shall be given. ~The method
of proving the commutativity of G(D) is applicable in showing that, in the
characteristic zero case, a connected algebraic group is commutative if its Lie
algebra is commutative. The converse of this theorem has been known and its
proof has been given by several methods.

In order to obtain the structural properties of G(D) we shall employ the
theory of M.Rosenlicht’s generalized jacobian varieties [6], [7] and [8]. This
seems to be similar to the fact that, in the classical theory of Lie groups, to
generalize the exponential mapping of matrix Lie group to general one, we
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employed the principle of monodromy of simply connected topological spaces.
In the section 2 we shall show that for any D of g there exists a curve on G
passing through the unit element such that a generalized jacobian variety J
which is determined by this curve has its rational homomorphic image G (D);
further it shall be obtained that if G is linear, G(D) is the image of the maxi-
mal linear subgroup of J. This results are due to the universal mapping pro-
perty of the generalized jacobian variety. The rational homomorphism which is
guaranteed by this property gives us a means of obtaining a generic point of
G(D) as the exponential mapping does in the linear case.

Further we shall treat explicitly the linear algebraic groups from the point
of view of what we consider in the preceding two sections. In the linear case
the maximal linear algebraic subgroup L is more important than J itself. The
structure of L is stated completely and a generic point of G(D)is obtained
explicitly. Firstly, dividing the problem in two cases, i. e. inunipotent case
and semi-simple one, we shall consider the relation between L and G(D). Then
combining the results of these two cases by the Jordan decomposition, we shall
consider the linear case to show explicitly what we referred in the general case.

In this paper we may assume the algebraic closedness of the fields of defi-
nition for connected algebraic groups without loss of generality. We shall denote
the Lie algebras by the small German letters, for example, the Lie algebras of
G and H by g and Y respectively. The universal domain is denoted by Q.*

1. Commutativity of algebraic groups. In this section we assume that
the characteristic of Q is 0. Let G be a connected algebraic group defined over
a field &. At first we shall prove the following lemma which is useful in this
section.

LEMMA 1. Let H and M be connected algebraic subgroups of G such
that His contained in the normalizator of M ;then the set HM is a connected
algebraic subgroup of G whose Lie algebra is Y) + m.

Since H normalizes M, the set HM is an abstract group; therefore the
algebraic closure K of HM is an algebraic subgroup of G: in fact, the mapping
x —> x~' being birational biregular, K™' is the algebraic closure of (HM)™!;
HM being an abstract group, K™ = K; for any x € HM, z-HM is contained
in HM and therefore £:K is contained in K; thus HM-K is contained in K
and finally K-K is contained in K; thus K is a group.

The mapping £ Xy —>z+y from G X G into G induces an everywhere
defined rational mapping from H X M into G. So the set-theoretic image HM
of this mapping is épais i.e. HM contains a non-empty open set in the
algebraic closure K of HM. Now suppose that HM were distinct from K; then,

*) As for the fundamental properties of algebraic groups, cf:[2] and |8].
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HM being épais, the coset of HM in K is contained in a proper closed subset
of K; since the cosets are biregularly equivalent, this is a contradiction; thus
we have that K = HM, that is, HM is an algebraic subgroup of G. On the
other hand, since H and M are connectd, HM being the rational image of
irreducible variety H X M, HM is connected.

Since H normalizes M, for any = of H, Ad(x) maps m into itself, where
Ad means the adjoint representation of G;and therefore the corollary of the
proposition 4 of [3] shows that § normalized m; thus the subalgebra of g
generated by § and m is § + m. By the main theorem of [3] we have that
H + m is the Lie algebra of the connected algebraic group HM. Thus the
proof of Lemma 1 is complete.

It is known that there exists the unique maximal connected linear algebraic
subgroup L of G; the structure theorem of Chevalley tells us that L is normal
and that the factor group G/L is abelian. On the other hand, let C be the
center of G; then it is shown by Rosenlicht that the factor group G/C is
linear. The first assertion of the lemma 1 shows that the set LC is a connected
normal algebraic subgroup of G. The connected algebraic group G/LC being
a rational homomorphic image of the abelian variety G/L, G/LC is abelian
and, G/LC being a rational homomorphic image of the linear algebraic group
G/C, G/LC is linear. Therefore G/LC reduces to the unit element, that is,
G = LC. From the lemma 1 we have the following lemma : '

LEMMA 2. G =LC and g =1+ ¢, where L is the maximal connected
linear algebraic subgroup of G and C is the center of G.

Now suppose that g is commutative; then | is commutative. As the chara-
cteristic of & is 0, the linear algebraic group L is commutative. Since C is the
center of G, the lemma 2 shows that G is commutative. Thus we have

THEOREM 1. A connected algebraic group defined over a field of cha-
racteristic 0 is commutative if its Lie algebra is so.

The converse is true without the condition of the characteristic: in fact,
if G is commutative, the adjoint representation Ad(G) of G reduces to the unit
element and the Lie algebra of Ad(G) does to the zero matrix; then the propo-
sition 1 of [3] shows that g is commutative. This method is orthodoxy ; Rosen-
licht [5] gave an interesting proof, using the invariant differential forms on G.

Let D be any element of g. By the lemma 2 we have an expression D =
D, + D, where D, is in [ and D, is in ¢. Let L(D,) be the smallest algebraic
subgroup of G whose Lie algebra contains D, and let C(D,) be that of which
Lie algebra contains D,. Then L(D,) is contained in L and C(D;) is in C.
From the lemma 1 it follows that the set L(D;)C(D,) is a connected algebraic
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subgroup of G whose Lie algebra is (D;) + ¢(D;) where U(D;) and ¢(D,) are
the Lie algebras of L(D,) and C(D,) respectively.

D = D, + D, being contained in I(D,) + ¢(D,), the smallest algebraic sub-
group G(D) of G whose Lie algebra contains D is contained in the group
L(D,)C(D,). But L being linear, L(D,) is commutative. On the other hand
C(D,) is central in the group L(D,) C (D,). Therefore L(D,)C (D,) is commut-
ative and G(D) is commutative.

Thus we have

THEOREM 2. Let G be a connected algebraic group defined over a field
of characteristic 0; then for any element D of § the smallest algebraic sub-
group G(D) of G whose Lie algebra contains D is commutative.

This theorem is the generalization of the result which is stated in the
theorem 10 of the chapter IT of [1].

2. Generalized jacobian varieties and G(D). Now that the commuta-
tivity of G(D) has been shown in the section 1, we may assume that the ambient
algebraic group G of G(D) is commutative so far as the structure of G(D) is
studied. Thus in this section we treat a connected commutative algebraic
group G.

At first, we have to make some preparation, giving two lemmas on the
relation betweent angent spaces and curves. The methods of the proofs of these
two lemmas are useful in the next three sections

LEMMA 1. Let Q be k-rational point on the n-dimensional affine space
S; let X be a nonzero tangent vector on S at Q which is rational over k; then
there exists an irreducible linear variety Cx of dimension 1 on S, defined
over k, passing through Q such that Q is simple on Cx and the tangent space
on Cx at Q is spanned by X.

The affine space S has a structure of algebraic group (G.)"; let fi,...... s Sn
be a system of coordinate functions on S such that fi(x) = z;, for =z = (zy,...
...;Z,). Firstly take Q =0 = (0, 0,...... ,0) and put d; = Xf;, then d; is con-
tained in k. Let Cx be the set of those points (ad,,...... ,ad,) = a(d) of S for
any @ € Q. Then Cx has a structure of algebraic subgroup of (G,)" and
therefore the point 0 is simple on Cy. It is easily seen that if ¢ is a quantity
which is transcendental over %, the point #- (d) is generic on Cx over k. So Cx
is an irreducible curve defined over k.

Then we have that the tangent space T(0,Cx) on Cx at 0 is spanned by
X. In fact; let ¢ be the natural embedding of Cx into S; let f be a coordinate
function of Cx defined by f(¢t(d)) =¢; let T be an element of 7(0, Cx) such
that Tf = 1. Then we have ¢ * f; = d,f since for ¢:(d) € Cx,
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Ffe(d) = flt(d) = td, = di-K(d)).
Thus for an element diT of TY(0,.S),
AT f, = T, = T-df = d, = X-f,.

So we have diT = X, which means that 770, Cy) is spanned by X, since 0 is
simple on Cx.

Now, for any k-rational point Q on S, the translation T maps the linear
variety Cx onto T¢(Cx), biregularly and the differential dT, is an isomorphism
of T(0, S) onto T(Q, S). Put X = dT_y X, then from what we have seen it
follows that there exists Cy passing through 0. It is easily seen that T(Cx)
is the required linear variety.

Now generalizing the preceding lemma we have

LEMMA 2. Let P’ be a simple point on an irreducible variety U; then
for any non-zero tangent vector X on U at P, there exists an irreducible
curve Cx on U passing through P’ such that P is simple on Cx and the
tangent space on Cx at P’ is spanned by X.

We may assume that U is affine; let £ be a field of definition for U such
that P is rational over k; let (x) be a generic point on U over %; let Fy,...... ,
F, be a uniformizing set of linear forms for U at P’ such that F; € k[X,...
.o.s Xy}; put y; = F(x) and y; = Fy(z'); then the points Q = (y) and Q =
(") are in the n-dimensional affine space S. From the definition we have k(x,
y) = k(z). It gives a rational mapping f from U into S such that f{z) = (y).
Let W be the graph of f in U x S; then W has the projection U on U and
the projection S on S; and f is regular at P'.

It is shown that df-X is not zero. In fact, suppose that df-X = 0, then

X'F'L(fl’ """ ’ fN) = df X'gi = 09

where fi,...... , fvand gy,...... , §n be systems of coordinate functions on U and
S respectively such that f(X) = z; and g,(y) = y;. For any polynomial H of
the prime ideal associated with U in k[ Xj,...... X,

X(Afﬂ' H) (.fh """ 1 fN) =Zj (aH/aX,)(x')Xf,
= X-H(fio oo f) = X0 =

Since Fi,...... , F, and those A, H span the vector space k-X; + - + kX,
X is the zero vector; this is the contradiction.

From the lemma 1 there exists an irreducible linear variety Caux on S-
passing through Q' such that T(Q’, Cizx) = Q- df X. Then the proposition 1¢
of VIII; of [8] shows that there exists uniquely proper component ¥ of W N
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(U X Cux) containing P x Q" which is multiplicity 1 of W N (U x Cax) on
U x S. Since Y is proper, the dimension of Y is 1. Y has the projection Casx
on S. Let (x, %) be a generic point on Y over a field 2 of definition for Y
containing &; f being defined by the linear forms, f is defined at z and flx)
=y, and Y has the projzction Cx on U which is an irreducible curve passing
through P

Now we shall show that P” is simple on Cx; we may suppose that the
above uniformizing set of linear forms Fi,...... , Fpare Xi,...... » X Let df
X9, = d;; then df X being non-zero, the vector (d,,-..... ,d,) is not zero vector;
suppose that d, 5=0. Let M bz the linear variety defined by

dX,—z)=4dX\,—z), i =2,...... .
From the definitions and what we have seen it follows that Cx is a component
of U N M which contains P".
Since P’ is simple on U, the dimension of T(P, U) is n. Let H, be the

linear forms in k[X,...... , X»] such that the linear equations H, = @; for

some @, €k, i = 1,...... , N — n define the tangent linear variety to U at P'.
Then the set of linear forms Xi,...... , X, Hi,

...... » Hy_n are linearly indepen-
dent over k. Now put

Then Q,,.-.... , Qn Hi,...... , Hy_n are linearly independent over k; in fact,
suppose that
b, Qy +-e-- + 6,Q, + ¢, H, +----- + cy-n Hy-n =0
for some b; and c¢; € k. Then since Q; € k[ X,,...... » X,), ¢; = 0. Thus,
— (bydy +----- + b,d )X, + b.d Xy Ao + 8,d. X, = 0.

Therefore &, = 0, since d; +=0.
So M is transversal to the tangent linear variety tc U at P'. And P’

being simple on U, the proposition 21 of V; of [9] shows that P* is simple
on Cy.

It is easily seen that T(P’, Cx) is spanned by X.
" Let X be a non-singular irreducible projective curve ; a divisor M = >_ np

P of X such that #, > 0 is called a module. Let S be the support of m. For
divisors D and D" of X that are independent of the places of S, it is said that
D and D" are m-equivalent if there exists a rational function g such that

a) vl — ¢) = np for any P of S,

*) As for the theory of the generalized jacobian variety, cf. [6],[7] and (8].
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b) D— D" = (g),

where vp is the normalized valuation at P. Let C, be the group of mM-equiva-
lence classes of divisors independent of the places of S and let C% be the
subgroup of C, of those classes of divisors of degree 0, independent of the
places of S. Let J. be the generalized jacobian variety which is a commutative
connected algebraic group determined by X and m. Then there exists the cano-
nical rational mapping @ from X into J. such that @(X) generates Ju; for any
divisor D= )" epP of X, put @(D) = >_ er@(P), then it is known that this
extended @ induces an isomorphism from Ch onto J.

For any point P of X, let Up be the multiplicative group of rational
functions ¢ such that vx(g) =0 and for positive integer 7, let U$? be the
subgroup of Up of those rational functions ¢ such that vX1 — ¢g) =n. Then
Ur/U® is isomorphic to the product Gn X Vi); where Viny is a connected
algebraic group isomorphic to the product (G,)""!if the characteristic of Q is
0. Let R, be the direct product of Up/US " for P € S. Let A be the subgroup
of R, of those elements (a,...... ,a) for non-zero a € Q. Let H, = R,/A.
Then it is known that the mfapping ¢ —> (¢9) from the function field of X into
the principal divisors induces an isomorphism from H, onto the maximal linear
connected algebraic subgroup L, of J.

Let G be a connected commutative algebraic group; let f be rational
mapping from X into G; let S be the set of those points P of X such that f

is not regular at P. Then there exists a module M = ) 7P with the support
S such that for rational function g, f{(g)) = 0 if

vl — ¢9) =np for P€ S,

where f is considered the as naturally induced mapping from the divisors into G.
Such a module m is called to be associated with the rational mapping f from
X into G. If the characteristic of  is 0, a module associated with f is obtained
as follows: let wy,...... , W, be a base of the vector space of invariant differential
forms of degree 1 on Gj let wf,...... , wy be the differential forms on X induced
by f; then for P € S there exists a positive integer np such that

; then the module M = np-P is associated with f. For any module m to be
associated with f, it is necessary and sufficient that there exists the local symbol
associated with f and m, i.e. a mapping (f,¢)r from X X Q(X)* into G
satisfying the following conditions :

(1) (f,99)e=(F 9+ (f,9)efor g, 9 € Q(X¥), Pe X,
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(ii) (L9r=0if P€ S and vp(1 — g) = 75,
Gi) (f, 9r = vd) AP) if P€ X — S,
Gv) 2 (=0

PeX
There exist many modules associated with f. But the local symbol is uniquely
determined by f if it exists.

For a rational mapping f from X into G there exists a rational homomor-
phism F,, from J. into G such that f = F.- @. This property is the universal
mapping property of generalized jacobian variety.

Henceforth we assume that the characteristic of Q is 0. Let D be a non-zero
element of the Lie algebra g of a connected commutative algebraic group G ;
let D, be the local component of D at the unit element ¢ of G. Then by the
lemma 2 there exists an irreducible curve Cp on G passing through e such
that T(e, Cp) = Q-D,. Let X, be the non-singular projective model of Cbp.
Then we have a rational mapping from Xp into G such that

fiXp 1> Cp—G,

where 7 is the natural embedding and j is the birational mapping between X,
and Cp. Let m be a module associated with f; let J. be the generalized
jacobian variety determined by X, and m. Then the universal mapping property
gives a rational mapping F. such that the following diagram is commutative

f:XD‘—>CD—"_’G

@ \ / F.
Jﬂl

Thus F.(J.) contains f(Xp) = Cp. Since an invariant derivation on G is deter-
mined by its local component at any point of G, D is contained in the Lie
algebra of F.(J.) and therefore Fu(Jn) contains G(D).

In particular, the above consideration in the case of G = G(D) gives that
F, (J,) = G (D). Thus we have

THEOREM 3. Let G be a connected algebraic group defined over a
field of characteristic 0; then for any non-zero element D of g there exists
an irreducible curve Cp on G passing through the unit element e of G as
Sfollows: let Xp be a non-singular projective model of Cp; let f be a
rational mapping from Xp into G such that f: Xp—=>Cp—> G; let m be a
module associated with f;, then G(D) is a rational homomorphic image J.,
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where Ju is the generalized jacobian variety determined by Xp and m.

Now suppose that G is commutative and linear; then F.(J.) is linear. Let
L, be the maximal connected linear algebraic subgroup of J,.. Put L = F.(L.),
then Ju/F3'(L) and Fu(Jn)/ L are isomorphic. Therefore Ju/Fi(L) is linear.
Since Fi! (L)contains L., we have the natural rational homomorphism from
Ju/Lu onto Ju/Fi(L). But Ju/L. being abelian, J./F2'(L)is abelian. Thus
Jo/F7{(L) reduces to the unit group, that is, Ju = FaX(L). Therefore F.(J.)
= L = F.(L.). Thus we have

COROLLARY. The notations being as those of the theorem 3, if G is linear,
G(D) is the rational homomorphic image of the maximal connected linear
algebraic subgroup L. of Ju. '

From the definition, for a generic point x over £ on Ju, Fu(x) is generic

over 2 on G(D) if D is defined over . So we may say that the mapping Fa
is a generalization of the exponential mapping of the linear case.

3. Unipotent algebraic groups. In the rest of this paper we assume
that the characteristic of Q is 0. A matrix x is called to be unipotent if x—e
is nilpotent, where e is the unit matrix. An algebraic group of unipotent mat-
rices is called to be unipotent. For commutative unipotent algebraic groups the
following proposition is important.®

PROPOSITION 1. A connected commutative unipotent algebraic group defined
over a field of characteristic 0 is isomorphic to a product of the groups G..

Generally a connected unipotent algebraic group G has a composition series:
GC=G,2G,2.....2G,_, 2G, = {e}

such that Gi/G,;, is isomorphic to G,. Thus if the dimension of G is 1, the
proposition is shown. We prove the proposition by the induction on the dimension
of G. Suppose that it is shown for the case of dimension less than 7. Then,
from the induction hypothesis and what we have mentioned above it follows
that the z-dimensional group G is an extension of G, by (G.)*". This extension
determines a regular symmetric factor set from G,XG, into (G,),"™! i.e. an
everywhere regular rational mapping f from G, XG, into (G,)*! satisfying the
following conditions:

(1) dfizy2) =fy:2)—flx+y.2) + Axy +2)—Kay)=0, for 2y,2€G,,
(2) Azy)=fyx) for zy€GC,.

%) Cf. [8] p.172 Cor. of Prop.S8.
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It is sufficient to show that there exists a rational mapping ¢ from G, into
(G.)*! such that

(3) Aaxy) = dg(zxy) = glx+y)— glz)— g(y).
Since the group (G,)"™! is a direct product of G,, we may restrict the problem
to the case of n=2. Thus f is an everywhere defined rational mapping from G,
X G, into Ga and therefore f is expressed as follows:

fxy) = 2 ayx'y’ € kayl.

From (2) we have @; = a@;. Now we shall find an everywhere defined rational
mapping ¢ from G, into G,. So ¢ is expressed as a polynomial in 2[X]. Thus
we may suppose that f is a homogeneous polynomial of degree q. So we have

q
fzxy) = ZO Qi 2y
=
Firstly we have from (1)
df(z,0,0) = £(0,0) — f{z,0) =0,
df(0,0,2) = f(0,2) — f(0,0) = 0.
and therefore
an = ay = 0.

Calculating the coefficient of z'y'z’ in the equation (1), we have

L+ j i+ 1
(zj]).aiﬂ_l:(]j )'aij-H

for i+j+I=¢q and 154, I<g—1.
Then putting i=1,

(4) Qg = (?: i) c @) g1 for 1=5i<q—1.

Now putting Clz,y) = (x+y)'—z2"—4", find an element a of %k such that in
the polynomial f{x,y)—a-C(x,y) the coefficient of xy*™* is 0, that is

arme (1),

By a simple calculation, it follows from (4 ) that

Qi q—1 =a(z)

and we have flz,y) = a:C(x,y). Thus ¢g(x) = a-z’ satisfies (3).

The proposition shows that, in treating our problem, we may assume that
G = (G,)" without loss of generality. Let g be the Lie algebra of G ;let D be
a non-zero element of g;let &,...... £, be a system of coordinate functions on
G ;let D, be the local component of D at the unit element 0 = (0,...... ,0), then
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D, is determined by (d,,......,d,) where d;, = (D&)(0).

The proof of the lemma 1 of the section 2 shows that the linear variety
Cp consisting of those points a- (d) = (ad,,-....- ,ad,) for a€Q is a connected
algebraic group whose Lie algebra contains D. So the following lemma shows

that C» = G(D).

LEMMA. Let G be a connected algebraic group defined over a field of
characteristic 0; then if H is a one-dimensional connected algebraic subgroup
of G whose Lie algebra contains D, H = G(D).

In fact, H contains G(D) from the definition of G(D), therefore dim
H=>dimG(D). But dimH = 1 and dimG(D)>0, so dimH = dimG(D) = 1. Since
H and G(D) are connected, we have H = G(D).

Now let € be a coordinate function on Gg;let D be an element of the Lie
algebra of G, which is defined over %; then we have

(5) R, -DE = D-R,E for any x of G,.

Since & is everywhere defined on G,, DE is everywhere defined on G, and

therefore DE is a polynomial >, @€ in k[&]; then from (5) we have

a(x+y) =D iay' for any x and y€G,,

therefore DE=ac€ k. Let D, be the derivations of the function field of G = (G.)"
such that ‘

(6) D¢, = §,; (Kronecker delta).
then by what is mentioned above, D, ...... ,D, form a base of g. Let <D, w>
be the dual operation from the product of the space of derivations on G=(G,)"
and the space of differential forms of degree 1 on G into Q. Then (6) means
<D, d&;>=3§,. That is, d&,...... ,d€, form a dual base of the space of differ-
ential forms. But D,,...... ,D, are invariant and therefore dé,,...... ,dé, form a
base of the space of invariant differential forms.

We have a rational mapping from the projective line A into G defined by

Syoy1) = yo/yi- (d) ;
S is defined over % and everywhere regular on A -- P, where P, = (1,0). Then
m = 2-P, is a module associated with f; in fact, let 7 be a uniformizing variable
at P, on A such that 5{y,y,) = y:/y.; let T be a derivation of the function field
of A such that Ty = 1; let f* dE, be the differential forms on A induced by
S put g(n) - dn = f*dE; ; then
<T,g(n)-dn>=<T,f*dt,>=<df Tdg>=df T-&=T-d/n=—d,/n"

Thus f*dé = —d,/9*-dn and we have

vr(ffdé)=vr(—di/n")=—2 it d;+0,
= 00 lf dt =0.
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The local symbol determined by f is given by (f,9)r =Resp(?-a’g/ [7) B (7P
d,) for PEA, g€ Q(A)*, where f is a rational function on A such that f(yey:)
= y,/y1, (cf.[8] p.43 Prop.5).

Now let Ju be the generalized jacobian variety determined by the projective
line A and m = 2-P,; let L. be the maximal connscted linear algebraic subgroup
of Ju. Then Up/U®,, is isomorphic to G, X G, and H, is isomorphic to G,.
Therefore L. is isomorphic to G,. So dim L.=>dim Fu(Lw)>0 and Fu(L.)=Cbp.

Let M bz the maximal ideal of the local ring at P, in the function field
of A. For any a,+an and b,+b,9, a,b,€Q, we have

(@ +am) (b, +b1m) = aby + (a1 +b:)y mod %
Thus, for a representative 1 + @y of a class of H, = R,/4, the
quantity a is the coordinate of the corresponding point of L, in the faithful
representation guaranteed by the isomorphism between L, and G,. Let ¢ be
a quantity transcendental over k; let ¢ = 1 —¢, then the principal divisor (g)
= Q—p, where Q =(z,1) and P = (0,1). Let 2 be a generic point over £ on
L,, which corresponds to ¢ by the representation ; then

Fu®) = A(9) = AQ~AP) = t-(de......dy).

We know that G, has a matrix representation 7 as follows:

v:G,5z —> <(1) ‘i) € GL(2,Q),

therefore the direct product T" of 7-copies of vy is a matrix representation of
(Go)". On the other hand for an indeterminate ¢, exptN is in GL (n, Ft])
if the matrix N is nilpotent in gl (n, £). Thus we may suppose that ¢ is a
quantity. We have

I'- (#(d)) = direct product of ((1) t‘f}) = exp #-(direct product of (g d(;))
= expt-dl'D,.

This implies I'-F,(z) = expt-dT'D,. That is, F. may be considered as an
exponential mapping.

Considering the isomorphism between the unipotent group G and (G,)",
we have

PROPOSITION 2. Let G be a connected unipotent algebraic group defined
over a field k of characteristic 0; then for non-zero D of g, defined over
k, there exists a rational mapping f from the projective line A into G as
follows: f is defined over k and regular outside P, = (1,0);0,1) = e;f(A)
generates G (D); m = 2-P, is a module associated with f;let J., L., and F,, be
those defined by A and m as in the section 2, L, is isomorphic with G,; F,
induces an isomorphism between L, and G (D); if z is generic on L,, over k, F,, (2)
= exptD,, where D, is the local component of D at the unit element e and
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qnautity t is a transcendental over k which corresponds to = by the isomor-
phism between L, and G,.

Non-trivial rational homomorphism from G, into itself is an isomorphism x
— ax for some a€ Q¥. So the proof is completed.

4. Algebraic groups of semi-simple matrices. A matrix = is called to
be semi-simple if the minimal polynomial of z is a product of distinct irreducible
separable polynomials. A commutative algebraic group of semi-simple matrices
is transformed into an algebraic subgroup of the group of diagonal matrices
D(n) = D(n,Q). For such a group the following proposition is fundamental®.

PROPOSITION 1. Let G be an r-dimensional connected algebraic subgroup
of D(n). Then there exists a unimodular matriz (m;;) € GL(n,Z) such that,
let

F,= X" X", X"
then the automorphism o of D(n) defined by
(1) o(z) = (Fy(x),--eeone . Fo(x))

maps G onto the subgroup of IXn) of those elements (a,--..-. 22 TR ,1) for
@, € Q¥, where Z is the ring of integers.

Let (£,) be the coordinate functions on gl (7,Q). Then for z = (z4,------ Zn)
€ D(n),
R; Eu = z;&;.
Thus the space R, which is the homogeneous component of degree g of Q [£]
is G-invariant; if we take a base of R, consisting the monomials, R: gives a
diagonal representation of G whose matrix-coefficients are

o SRR x%, e; are non-negetive integers.

Let Py,...... , P bz the semi-invariant polynomials of G with the same weight
X which define G; take an integer ¢ such that Zjﬂ R, contains all P;; let V
be the subspaces of Zle R, of those which are semi-invariant of G with the
weight x. Since IXz)is commutative, V is D(n)- invariant. And, for x€ D (n), x
is in G if and only if R} induces a mapping -1 on V for some a€ Q. Let
&(V) be the ring of endomorphisms of V ;put p be the representation of D (n)
with the representation space (V) such that

plx) : X— REXRY .,
then p is a diagonal representation whose coefficients are

... x'%, m,; are integers.

*) Cf.[2] p.43 Prop.7.2 and Prop.7.4.
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Thus G is defined by the finite number of the equations of the type
.Z‘"{' ...... x";:n = 1.

Let x be a generic point on G over a field £ of definition for G, then for
any integer d >0, z” is generic on G over k. Thus we may suppose that the

greatest common divisor of mi,...... ,m, is 1. Then there exists a unimodular
matrix (m;;)€ GL(n,Z) such that m,; = m;.Now let T be such that
(), = 2 Zn'.

Then 7 is an automorphism of D(n) and if x is in G, T(x), = 1. Succeeding
this method we have the proposition.

This proposition shows that so far as the structure of G(D) is studied in the
case of semi-simple matrices, we may suppose G = D(7). Further if we assume
G(D) = G, then we obtain that s, ...... , S, are linearly independent over the
ring of integers, i.e.

(C) There exists no non-trivial relation such that

es; e +en.s, = 0, e;: integers,

where s, are such quantities that (Dg;) (e) = s, (&y,-..... ,£,) being the coordinate
functions of G. In fact, if such non-trivial relation existed, the local
component D, of D at the unit element e is contained in the tangent space at
e on the algebraic subgroup G* of G defined by Xj------ X% = 1. Therefore D is
contained in the Lie algebra of G’. But the proof of the proposition 1 shows
that dimG” < dimG = dimG(D), and it is the contradiction.

Thus, let G = D(n) and let D be an element of g, defined over k%, satisfying
the condition (C). Xi,...... ,X, form a uniformizing set of linear forms for G at
the unit element e = (1,...... ,1). Let v be a birational mapping between G and
the n-dimensional affine space S such that y(x) = (x,—1,...... ,Z,—1). Then the
differential dy is an isomorphism from T(e, G) onto T(0,S). Let D, be the local
component of D at e, then dyD, is in T(0,S) and dy D, = (sy5...... ,So); in fact,
if 9yyeenees M. are the coordinate functions on S, then

dyDm; = D(&;+1) = s;.
Let Cuyp be the curve on S consisting of those points a-(s) for any a € Q; let
¥ Y(Cuyp) = Cp; then Cp is the irreducible curve on those points
(as,+1, asy+ 1, ceeeeenn... ,as,+1), for a€Q
such that T(e, Cp) = Q-D,.

Let & be the coordinate function on Gum. Then, the derivation D on G
such that D& = £ is invariant: in fact any z and y of G,

(REDE) (y) = (RZE) (y) = xy,

(D-R% &, RY)(y) = (Dxf) (y) = = Dy) = x-&y) = zy.

Lzt D, bz the derivations on G such that
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(2) DiEj = Sij‘sj,
then by what is mentioned above Di,...... ,D, form a base of g. Further the
dual base to (Dj,...... ,D,) of the space of invariant differential forms of degree

1 on G is (§71-dE,,...... ER1-dE,); in fact, from (2)
<Dia§f_l'dgj > = j_l'< Di’ dEj > =€‘j—l'8u Ez = 81;'-
We have a rational mapping f from the projective line A into G defined
by
Slyoyr) = (ygyi i+ 1o Yoy s, +1);
S is defined over & and everywhere regular on A—S where S = {P, = (1,0),
P=(1,—s)i=1,..... ). From the condition (C) those points P; are distinct
n points on A. Then M = P+ P+ ------ + P, is a module associated with f. In
fact, let 7 be the uniformizing variable at P, on A such that 7(ye,y:) = y:/y0;
let T be the derivation of the function field of A such that Tn = 1;let
SYET dE = ¢g(n)-dy ; then
<T.g(n)ydn > = <TfEdE > = (f&)™" < df T,dé >
(fRe) ' TF*E = (s + 1) T (s~ +1)
= —'si(sm +7°)7"

Thus,
f*ét_]'dfz = —Si(sm + ﬂz)_ldﬂ,
and we have vp(f*&7-dE) = —1, since, from the condition (C), s; == 0. Next,

for i=1,,...... n, let T be the uniformizing variable at P; on A such that
T(yo,y1) = ¥1y5'+s;. Then T = n+s;, and dr = dn. And we have
[rEdE; = —s(smtn*) "-dn
= —sf(r—s5) " (r—s;ts;)" " dr
Thus we have
v (f*E7-dE;) = 0 if is=j,
=1 if i =],
since, from the condition (C), s;=0 and s, 5= s; if i 3= .
From the definition of the local symbol we have

LEMMA. Let f, be rational mappings from X — S into commutative
algebraic groups G, for i = 1,2 ; let (fi,9)r be the local symbols associated with
fi- Then

(fiX fog)e = (fu.9)r X (f2.9)r

is the local symbol associated with the rational mapping fiXf, from X—S
into G, x G, such that fix fo(P) = fi(P) x fP).

Thus, in our case, the local symbol associated with f is
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(f9r = (=1 (=1)"Fig ™(P),...... (= 1) Fig™™(P)) for PE A, g€ QA)*,
where f; is rational functions on A such that

Flyey) = yoilsi+1 and I = vp(g), m; = vr(fy), (cf.[8]p.44 Prop.6).

Let Juw,L. and F, bz those determined by the projective line A and m =
Py+P,+...+P,. Then R, is isomorphicto(Gn)"*'. So, Le is isomorphic to
(G Let ty,...... ,t, be independent transcendental quantities over &;let ¢
= Hi:l (n—1t,), then the principal divisor (¢)=Q;+ -+ +Q,—n-P, where Q,=(1,
t;) and P = (0,1). Let = bz a point of L, which corresponds to the divisor
(9). Then

F.(()=A(9) = AQ))-..... AQIP)™"
= (IL, Gty + 1) I oty + 1)
Let u, = f(Q) = (s, +1,...... St +1); then ug,...... ,u, are independent generic
points on Cp over k. Thus f((g)) is generic over k on the product C3 in G.
Now let 2,41,----- s, be independent generic points on Cp over K u,...... )

for 1=<s<2n, let H, be the locus of the product u;...... u, on G over k, then
since Cp contains e, we have

Co=H CH, ... CH,,

Since dimG = #n, there exists an integer 7 <z such that H, = H,,,. Then H,
=H.,  =.... = H,,; in fact; since the two points xs-- - Zyrp and Zpeco Tyyp are
generic on H, over Kx,), the two points z;--+-- Zye1 and xyoc - Z,,» have the

same locus on G over k Thus H, = H,. and H, is a connected algebraic
subgroup of G. Since n = r, the point f(g)) is generic over k on H = H,.

Suppose that dimH < dimG, then there exist non-trivial integers (ey,...
...,e,) such that the polynomial

M(X) = X0...... Xe—1

vanishes on H. Let A be the ideal of A[z,,...... ,to] which is spanned by the
monomials of degree = 2. Then

0=M#» =" Al (st;+1)e—1

= Hl-zl (H,-: (1+e siz))—1 mod A
= H[Z] (1+eisit1+ +eisitn)_1 mod A
=2, o5 mod A

= Z:l (Z:I es) t;).

Thus, es;+...... +e,5, = 0. This is a contradiction. Therefore H = G, ie. Fy
(2) is a generic point on G over k.

Now, we shall go back to the propastion 1;let ¢ be the aatomorphism. of
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D(n) of the type (1) in the proposition. Let D be an element of the Lie
algebra of D(n); let (Dg,) (e) = (s1y------ ,Sn); then

(doDE,)(e) = (Da*&;)(e) = DF, (§)(e) = 2_,_, S5 -

Let G be the group in the proposition ; then D is contained in ¢ if and only if
Z;l mys; =0 fori=r+1,....c...... .

Thus we have

PROPOSITION 2. Let G be a connected algebraic group of semi-simple
matrices defined over a field k of characteristic 0let D be an element of §
defined over k;lets,,..., s, be the eigen-values of the local component D, of
D at the unit element e; then there exists a unimodular matrix (m,;) of integer
coefficients such that, let

Si = M8 Foe +mmsn,

S1perenns S are linearly independent over integers and sy, =------= s, =0.
Further there exists a rational mapping f from the projective line A into G as
follows; f is defined over k;let P, = (1,0) and P, =(1, —s;), fis everywhere
regular on A—{P,P,,...... ,P,}; f(0,1) = e; f(A) generates G(D); m = P, +

-+ P, is a module associated with f;let Ju, Lu let and F. be those defined
by A and m as in the section 2, then L. is isomorphic to (G,) ; Fu(Lw) =
G(D) is isomorphic to (Gn) and if z is generic on L. over k, F.(z) and exp
tD, are generic specialization of each other over k where t is an indeterminate.

5. Linear algebraic groups. Now we shall discuss the problem in the
case of linear algebraic groups. Let G be a connected commutative linear
algebraic group defined over £ Then G is the direct product of the semi-simple
part G, of G and the unipotent part G, of G. G, is the algebraic subgroup of
G of the semi-simple matrices in G and G, is that of the unipotent matrices.
For z€ G, let x = x,x, be the multiplicative Jordan decomposition. The mappings
x—>x; from G onto G, and z—z, from G onto G, are rational. Since G, and G,
are commutative, the propositions of the sections 3 and 4 show that we may
assume that G, = (Gn)" and G, = (G.)". Then ¢ is the direct sum of g, and g,
where g; and g, are the Lie algebra of G, and G,.

Let D be an element of g defined over %; let D, =S+ N be the Jordan
decomposition of the local component D, of D at e where S is semi-simple
and N is nilpotent. For simplicity, put D, = (sy,-...-. 7 AR ,d,) and suppose

that s,,...... ,S» are linearly independent over integers. Let Cp be the curve on
G of those points
(as,+1,...... ,as,+1, ad,,...,ad,) for a€Q,

then C, is irreducible and T(e, Cp) = Q- D.,.
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We have a rational mapping f from the projective line A into G defined
by

f(yo:yl) = (y0y1~131+1; """ 7y0y1-]sr+1, yoyl—ldls """ ,yoyl_ldq)-
Suppose that S=5=0 and N==0. Let P, =(1,0) and P, = (1,—s,), then the
arguments in the sections 3 and 4 give that f is everywhere regular on A—
§Poye-n... ,P,} and that m = 2-P, + P, +------ + P, is a module associated with f.
From the lemma of the section 4 it follows that the local symbol associated
with f is

(e = (=) (—=1)™FL g™ (P),...... (—=1"F, g™ (P)) x

Reso(f-dg/q)(dsy------,d,)
for P € A, g € Q(A)¥,

where f; and f are rational functions on A such that

Syoy1) = yoyi’sit1 and fAyey1) = yo/y: and I = vlg), m; = ve(f).

Let Ju, Ln and F, be those defined by A and ™ as in the section 2,then
H, is isomorphic to (Gu)*! G, and L, is isomorphic to (Gn) X Ga.

Thus, combining the results of the sections 3 and 4, we have

THEOREM 4. Let G be connected linear algebraic group defined over a
field k of characteristic 0. Let D be an element of § defined over k. Let
D, be the local component of D at the unit element e. Let D, =S + N be
the Jordan decomposition where S is semi-smple and N is nilpotent. Suppose
that S¥4=0 and N=4=0. Let s,...... Sa be the eigen-values of D,. Then there
exists a rational mapping f, defined over k, from the projective line A
into G as follows: f(A) generates G(D); f is everywhere regular on A —
§Po, Py,-ee-- , P,} where Py = (1, 0) and P, = (1, — s;,) for i=1,...... , 7. the
vector (s,...... 2 Sr0,eennn. ,0) being a transformed one of (si,--.... s Spy Spplpeeenes Sn)
by a unimodular matrix of integer coefficients such that si,...... ,Sr are
linearly independent over integers: f(0,1) =e; m = 2:-P, + P, +---+ P, is a
module associated with f; let Ju, L. and F. be those defined by A and m as in
the theorem 3, then L, is isomorphic to (Gn) x Ga and F.(L.) = G(D) is iso-
morphic to (G,) x Ga; if z is generic point over k on L., F.(z) and exp tD, are
generic specialization of each other over k, where t is an indeterminate.

As for the assumption that S==0 and N==0, if S =0, the theorem is
the proposition 2 of the section 3 and if N =0, the proposition 2 of the
section 4.
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