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0. Introduction and preliminaries. Recently the author constructed the
Lie theory of algebraic groups in his papers [3] and [4] where a certain class
of algebraic groups played an important part let G be a connected algebraic
group defined over a field of characteristic 0; let g be the Lie algebra of G
then it is shown that for any D of g there exists the minimal algebraic sub-
group G(D) of G whose Lie algebra contains Zλ This algebraic subgroup G(D)
corresponds to the closed subgroup generated by the one-parameter subgroup
determined by the element D of Lie algebra in the classical theory of Lie
groups. In the linear case C. Chevalley has obtained the structural properties of
this class of algebraic groups G(D): for any X of $t(n, k), the subgroup G(X)
of GL(n, k) is commutative; if t is an indeterminate, the point exp tX is a generic
point over k on G(X) where k is a field of characteristic 0. In this paper we
shall study the structure of G(D) in the general case.

We shall show that G(D) is commutative in the section 1 where the
structural theorems of algebraic groups which were given by C. Chevalley and
M. Rosenlicht are useful a characterization of the Lie algebra of the connected
algebraic subgroup generated by some subgroups shall be given. The method
of proving the commutativity of G(D) is applicable in showing that, in the
characteristic zero case, a connected algebraic group is commutative if its Lie
algebra is commutative. The converse of this theorem has been known and its
proof has been given by several methods.

In order to obtain the structural properties of G(D) we shall employ the
theory of M.Rosenlicht's generalized jacobian varieties [6], [7] and [8]. This
seems to be similar to the fact that, in the classical theory of Lie groups, to
generalize the exponential mapping of matrix Lie group to general one, we
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employed the principle of monodromy of simply connected topological spaces.
In the section 2 we shall show that for any D of g there exists a curve on G
passing through the unit element such that a generalized jacobian variety J
which is determined by this curve has its rational homomorphic image G (D);
further it shall be obtained that if G is linear, G(D) is the image of the maxi-
mal linear subgroup of J. This results are due to the universal mapping pro-
perty of the generalized jacobian variety. The rational homomorphism which is
guaranteed by this property gives us a means of obtaining a generic point of
G(D) as the exponential mapping does in the linear case.

Further we shall treat explicitly the linear algebraic groups from the point
of view of what we consider in the preceding two sections. In the linear case
the maximal linear algebraic subgroup L is more important than J itself. The
structure of L is stated completely and a generic point of G(D) is obtained
explicitly. Firstly, dividing the problem in two cases, i. e. inunipotent case
and semi-simple one, we shall consider the relation between L and G(D). Then
combining the results of these two cases by the Jordan decomposition, we shall
consider the linear case to show explicitly what we referred in the general case.

In this paper we may assume the algebraic closedness of the fields of defi-
nition for connected algebraic groups without loss of generality. We shall denote
the Lie algebras by the small German letters, for example, the Lie algebras of
G and H by g and ί) respectively. The universal domain is denoted by ί2.*}

1. Commutativity of algebraic groups. In this section we assume that
the characteristic of Ω, is 0. Let G be a connected algebraic group defined over
a field k. At first we shall prove the following lemma which is useful in this
section.

LEMMA I. Let H and M be connected algebraic subgroups of G such
that His contained in the normalizator of M then the set HM is a connected
algebraic subgroup of G whose Lie algebra is ί) + m.

Since H normalizes M, the set HM is an abstract group therefore the
algebraic closure K of HM is an algebraic subgroup of G: in fact, the mapping
x-+x~λ being birational biregular, K'1 is the algebraic closure of (HM)'1;
HM being an abstract group, K"1 = K; for any x € HM, x-HM is contained
in HM and therefore x-K is contained in K; thus HM K is contained in K
and finally K'K is contained in K; thus K is a group.

The mapping x X y - » x y from G X G into G induces an everywhere
defined rational mapping from H X M into G. So the set-theoretic image HM
of this mapping is epais i. e. HM contains a non-empty open set in the
algebraic closure K of HM. Now suppose that HM were distinct from K; then,

*) As for the fundamental properties of algebraic groups, cf:[2] and [8].
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HM being epais, the coset of HM in K is contained in a proper closed subset
of K; since the cosets are biregularly equivalent, this is a contradiction; thus
we have that K = HM, that is, HM is an algebraic subgroup of G. On the
other hand, since H and M are connectd, HM being the rational image of
irreducible variety H X M, HM is connected.

Since H normalizes M, for any x of H, Ad(x) maps m into itself, where
Ad means the adjoint representation of G; and therefore the corollary of the
proposition 4 of [3] shows that ΐ) normalized m; thus the subalgebra of g
generated by ί) and m is ί) + m. By the main theorem of [3] we have that
ΐ) + m is the Lie algebra of the connected algebraic group HM. Thus the
proof of Lemma 1 is complete.

It is known that there exists the unique maximal connected linear algebraic
subgroup L of G; the structure theorem of Chevalley tells us that L is normal
and that the factor group G/L is abelian. On the other hand, let C be the
center of G; then it is shown by Rosenlicht that the factor group G/C is
linear. The first assertion of the lemma 1 shows that the set LC is a connected
normal algebraic subgroup of G. The connected algebraic group G/LC being
a rational homomorphic image of the abelian variety G/L, G/LC is abelian
and, G/LC being a rational homomorphic image of the linear algebraic group
G/C, G/LC is linear. Therefore G/LC reduces to the unit element, that is,
G = LC. From the lemma 1 we have the following lemma:

LEMMA 2. G = LC and g = ί + t, where L is the maximal connected
linear algebraic subgroup of G and C is the center of G.

Now suppose that g is commutative; then ί is commutative. As the chara-
cteristic of k is 0, the linear algebraic group L is commutative. Since C is the
center of G, the lemma 2 shows that G is commutative. Thus we have

THEOREM 1. A connected algebraic group defined over a field of cha-
racteristic 0 is commutative if its Lie algebra is so.

The converse is true without the condition of the characteristic: in fact,
if G is commutative, the adjoint representation Ad(G) of G reduces to the unit
element and the Lie algebra of Ad(G) does to the zero matrix; then the propo^
sition 1 of [3] shows that g is commutative. This method is orthodoxy Rosen-
licht [5] gave an interesting proof, using the invariant differential forms on G.

Let D be any element of g. By the lemma 2 we have an expression D =
A + D2 where D1 is in t and D2 is in c. Let L(Dί) be the smallest algebraic
subgroup of G whose Lie algebra contains Dλ and let C(D2) be that of which
Lie algebra contains D2. Then L(D1) is contained in L and C(D2) is in C.
From the lemma 1 it follows that the set L(Dj)C(D2) is a connected algebraic
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subgroup of G whose Lie algebra is l(A) + c(A) where t(Dj) and c(D2) are
the Lie algebras of L(Dλ) and C(D2) respectively.

D = Dι + D2 being contained in I(-Di) + ^(D2)} the smallest algebraic sub-
group G(D) of G whose Lie algebra contains D is contained in the group
L{Dι)C{D2). But L being linear, L(Dγ) is commutative. On the other hand
C(D2) is central in the group L{Dι) C (A) Therefore L{D^)C(P^) is commut-
ative and G(D) is commutative.

Thus we have

THEOREM 2. L ^ G be a connected algebraic group defined over a field
of characteristic 0; then for any element D of g the smallest algebraic sub-
group G(D) of G whose Lie algebra contains D is commutative.

This theorem is the generalization of the result which is stated in the
theorem 10 of the chapter Π of [1].

2. Generalized jacobian varieties and G(D). Now that the commuta-
tivity of G(JD) has been shown in the section 1, we may assume that the ambient
algebraic group G of G{D) is commutative so far as the structure of G(D) is
studied. Thus in this section we treat a connected commutative algebraic
group G.

At first, we have to make some preparation, giving two lemmas on the
relation betweent angent spaces and curves. The methods of the proofs of these
two lemmas are useful in the next three sections

LEMMA I. Let Q be k-rational point on the n-dimensional affine space
S; let X be a nonzero tangent vector on S at Q which is rational over k; then
there exists an irreducible linear variety Cx of dimension 1 on S, defined
over k, passing through Q such that Q is simple on Cx and the tangent space
on Cx at Q is spanned by X.

The affine space S has a structure of algebraic group (Ga)
n; let /Ί, ,/w

be a system of coordinate functions on S such that fix) = x% for x = (xu .
...,xn). Firstly take Q — 0 — (0, 0> , 0) and put dt = Xfif then dt is con-
tained in k. Let Cx be the set of those points (adu ,adn) = aid) of S for
any a € ίl. Then Cx has a structure of algebraic subgroup of (Gα)w and
therefore the point 0 is simple on Cx. It is easily seen that if t is a quantity
which is transcendental over k, the point t- (d) is generic on Cx over k. So Cx
is an irreducible curve defined over k.

Then we have that the tangent space T(0, Cx) on Cx at 0 is spanned by
X. In fact; let ι be the natural embedding of Cx into S; let f be a coordinate
function of Cx defined by f(t-{d)) — t; let T be an element of T(0, Cx) such
that Tf =' 1. Then we have 1 *ft = dj since for t (d) € Cx,
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Thus for an element diίΓ of T(0,5),

ΛT ί = T.**/, = T df = d, = X /t.

So we have Λ T = X, which means that T(0, Cr) is spanned by X, since 0 is

simple on Cx.

Now, for any ^-rational point Q on S, the translation TQ maps the linear

variety Cx onto TQ(Cχ), biregularly and the differential dTQ is an isomorphism

of T(0, 5) onto T(Q, 5). Put X' = J T _ ρ X, then from what we have seen it

follows that there exists Cχ> passing through 0. It is easily seen that TQ(Cχ>)

is the required linear variety.

Now generalizing the preceding lemma we have

LEMMA 2. Let P' be a simple point on an irreducible variety U; then

for any non-zero tangent vector X on U at P\ there exists an irreducible

curve Cx on U passing through P' such that P is simple on Cx and the

tangent space on Cx at P' is spanned by X.

We may assume that U is affine; let k be a field of definition for U such

that P is rational over k; let (x) be a generic point on U over k; let Fi, ,

Fn be a uniformizing set of linear forms for U at P such that Ft 6 k[Xu...

..., Xv]; put yt = Fix) and y\ = Ffa'); then the points Q = (y) and Q' =

(y') are in the w-dimensional affine space S. From the definition we have k(x,

y) = k(x). It gives a rational mapping / from U into S such that f(x) = (3/).

Let W be the graph of / in U x S; then W has the projection U on U and

the projection S on 5; and /" is regular at P.

It is shown that df-X is not zero. In fact, suppose that df-X = 0, then

where fu , fN and gl9 , gn bs systems of coordinate functions on U and

S respectively such that /*(X) = xt and gό(y) = y5. For any polynomial H of

the prime ideal associated with U in k[Xu ,X^],

X{^H){fu , fN) = £ , (pH/dXfayXf,

= X H(/1, ,/» = X 0 = 0.

Since F 1 ? , Fn and those Δx, H span the vector space ^ Xi + + k X#,

X is the zero vector; this is the contradiction.

From the lemma 1 there exists an irreducible linear variety Casx on S

passing through Q' such that T(Q, Ca/je) = Ω* df X. Then the proposition 10

of VIII3 of [8] shows that there exists uniquely proper component Y of W Π
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(U X Cdfx) containing P' x Q which is multiplicity 1 of W Γ) (U x Cdfx) on

U x S. Since Y is proper, the dimension of Y is 1. Y has the projection Cajz

on S. Let Or, 3;) ba a generic point on Y over a field £ of definition for Y

containing k; f being defined by the linear forms, / is defined at ~x and f(x)

= y, and Y has the projaction Cx on £/ which is an irreducible curve passing

through P\

Now we shall show that P' is simple on Cχ\ we may suppose that the

above uniformizing set of linear forms Fl9 , Fn are Xl9 , Xn. Let df

X-g% — d%\ then df X being non-zero, the vector (du ,dn) is not zero vector;

suppose that dx 4= 0. Let M ba the linear variety defined by

di(Xi — xι) = dt(Xi — x{), i = 2, ,n.

From the definitions and what we have seen it follows that Cx is a component

of U Π M which contains P\

Since P' is simple on U, the dimension of T(P', U) is n. Let i ΐ be the

linear forms in k[Xu , XN~\ such that the linear equations Ht = a% for

some di € k, i = 1, , iV— w define the tangent linear variety to ί7 at P\

Then the set of linear forms Xl9 , Xn> Hu , HN-n are linearly indepen-

dent over k. Now put

Then Q2, ,Qn, Hl9 , HN-n are linearly independent over k; in fact,

suppose that

b2Q2 + + bnQn + c.H.Λ- + cN.nHN-n = 0

for some bt and ct € k. Then since Qt € k[Xί9..:..., Xn~], cs = 0. Thus,

- ( M i + + bndn)X1 + MiXt + + M i X » = 0.

Therefore b% = 0, since di 4= 0.

So M is transversal to the tangent linear variety to U at P'. And P'

being simple on U, the proposition 21 of V3 of [9] shows that P* is simple

on Cx.

It is easily seen that T(P\ Cx) is spanned by X.

*}Let X be a non-singular irreducible projective curve a divisor m = ^ yzP*

P oί X such that w« > 0 is called a module. Let *5 be the support of m. For

divisors D and D' oί X that are independent of the places of S, it is said that

D and D' are πt-equivalent if there exists a rational function g such that

a) vp(l — g)>nP for any P of 5,

*) As for the theory of the generalized jacobian variety, cf. [6], [7] and [8].
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b) D-D' = (g),

where VP is the normalized valuation at P. Let Cm be the group of ttt-equiva-

lence classes of divisors independent of the places of S and let CL be the

subgroup of Cm of those classes of divisors of degree 0, independent of the

places of S. Let Jm be the generalized jacobian variety which is a commutative

connected algebraic group determined by X and tn. Then there exists the cano-

nical rational mapping φ from X into Jm such that φ(X) generates Jm; for any

divisor D = Σ eP P of X, put φ(D) = Σ er'ψ(P\ then it is known that this

extended φ induces an isomorphism from Cm onto Jm.

For any point P of X, let UP be the multiplicative group of rational

functions g such that Vp(g) = 0 and for positive integer n, let UP } be the

subgroup of UP of those rational functions g such that VP(1 — g) 2> n. Then

Up/Up is isomorphic to the product Gm x V"(α); where V(W) is a connected

algebraic group isomorphic to the product ( G ^ - 1 if the characteristic of ί2 is

0. Let Rm be the direct product of UP/UP

inv) for P € S. Let Δ be the subgroup

of Rm of those elements (a, , a) for non-zero a € ί2. Let i ί m = Rm/&.

Then it is known that the mίapping g -> (g) from tke function field of X into

the principal divisors induces an isomorphism from Hm onto the maximal linear

connected algebraic subgroup Lm of Jm.

Let G ba a connected commutative algebraic group; let / be rational

mapping from X into G; let S be the set of those points P of X such that /

is not regular at P. Then there exists a module m = Σ np'P with the support

S such that for rational function g, f((g)) = 0 if

VP(1 - g)^nP for P € S,

where / is considered the as naturally induced mapping from the divisors into G.

Such a module tn is called to be associated with the rational mapping f from
X into G. If the characteristic of ί2 is 0, a module associated with f is obtained

as follows: let wl9 , wn be a base of the vector space of invariant differential

forms of degree 1 on G; let wf9 , wt be the differential forms on X induced

by / ; then for P € S there exists a positive integer nP such that

Vp(Wί*)>— nP. i = 1, , n.

then the module πt = nP P is associated with / . For any module m to be

associated with f9 it is necessary and sufficient that there exists the local symbol

associated with f and tn, i. e. a mapping (f, g)p from X X Ώ (X)* into G

satisfying the following conditions:

( i ) if, gg\ = if, g)p + if, g\ for g, g € a (X*), P e X,
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(ϋ) if, g)r = 0 if P € S and vF(l - g) ̂  nP,

(iii) (/, g)F = vAg)AP) if P ^ X ~ S,

There exist many modules associated with f But the local symbol is uniquely
determined by / if it exists.

For a rational mapping / from X into G there exists a rational homomor-
phism Fm from Jm into G such that / = Fm φ. This property is the universal

mapping property of generalized jacobian variety.

Henceforth we assume that the characteristic of 12 is 0. Let D be a non-zero

element of the Lie algebra g of a connected commutative algebraic group G

let De be the local component of D at the unit element e of G. Then by the

lemma 2 there exists an irreducible curve CD on G passing through e such

that T(e, CD) = Ω-De. Let XD be the non-singular projective model of CD.

Then we have a rational mapping from XD into G such that

/ : XD >• CD *- G,

where i is the natural embedding and j is the birational mapping between XD

and CD- Let m be a module associated with /; let Jm be the generalized

jacobian variety determined by XD and m. Then the universal mapping property

gives a rational mapping Fm such that the following diagram is commutative

f \ XD *• CD ** G

<P

Thus Fm(Jm) contains /(XD) — CD Since an invariant derivation on G is deter-
mined by its local component at any point of G, D is contained in the Lie
algebra of Fm(Jm) and therefore Fm(Jm) contains G(D).

In particular, the above consideration in the case of G = G(D) gives that
Fm (Jm) = G (D). Thus we have

THEOREM 3. Let G be a connected algebraic group defined over a

field of characteristic 0; then for any non-zero element D of g there exists

an irreducible curve CD on G passing through the unit element e of G as

follows: let XD be a non-singular projective model of CD; let f be a

rational mapping from XD into G such that f: XD ~> CD -* G; let m be a

module associated with f; then G(D) is a rational homomorphic image Jm,
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where Jm is the generalized jacobian variety determined by XD and m.

Now suppose that G is commutative and linear; then Fm(Jm) is linear. Let

Lm be the maximal connected linear algebraic subgroup of Jm. Put L = Fm(Lm),

then Jm/Fm\L) and Fm(Jm)/ L are isomorphic. Therefore Jm/Fz\L) is linear.

Since Fm1 (L) contains Lm, we have the natural rational hόmomorphism from

Jm/Lm onto Jm/Fή\L). But Jm/Lm being abelian, Jm/F^\L) is abelian. Thus

Jm/FZ\L) reduces to the unit group, that is, Jm = Fΰ\L). Therefore Fni(Jm)

= L = Fm(Lm). Thus we have

COROLLARY. 77ιe notations being as those of the theorem 3, if G is linear,
G(D) is the rational homomorphic image of the maximal connected linear
algebraic subgroup Lm of Jm.

From the definition, for a generic point x over k' on Jm, Fm(x) is generic
over k' on G(D) if D is defined over k\ So we may say that the mapping Fm

is a generalization of the exponential mapping of the linear case.

3. Unipotent algebraic groups. In the rest of this paper we assume
that the characteristic of Ω is 0. A matrix x is called to be unipotent if x—e
is nilpotent, where e is the unit matrix. An algebraic group of unipotent mat-
rices is called to be unipotent. For commutative unipotent algebraic groups the
following proposition is important.510

PROPOSITION I. A connected commutative unipotent algebraic group defined
over a field of characteristic 0 is isomorphic to a product of the groups Ga.

Generally a connected unipotent algebraic group G has a composition series:

G^Go^G^ ^Gn.^Gn= \e\

such that Gt/Gi+i is isomorphic to Ga. Thus if the dimension of G is 1, the
proposition is shown. We prove the proposition by the induction on the dimension
of G. Suppose that it is shown for the case of dimension less than n. Then,
from the induction hypothesis and what we have mentioned above it follows
that the w-dimensional group G is an extension of Ga by (Go)11"1. This extension
determines a regular symmetric factor set from Ga X Ga into (GJ/ 1" 1 i. e. an
everywhere regular rational mapping f from GaxGa into (Ga)n~x satisfying the
following conditions:

( 1) df(x,y,z) =f(y,z)-f(x +y,z) +f(x,y+z)-f(xy)=0, for x,y,z€ Ga,

( 2 ) f(x,y)=fb>x) for x&€ Gα.

•) Cf. [8] p. 172 Cor. of Prop. 8.
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It is sufficient to show that there exists a rational mapping g from Ga into
{Ga)

n-1 such that

( 3 ) f(x,y) = dg(χ,y) = g{χJry)-g{x)-g(y).

Since the group (Ga)
n~ι is a direct product of Ga> we may restrict the problem

to the case of n =2. Thus / is an everywhere defined rational mapping from Ga

X Ga into Ga and therefore / is expressed as follows:

f(x,y) = Σ aυxy € k\x,y].

From ( 2 ) we have aυ = a3i. Now we shall find an everywhere defined rational

mapping g from Ga into Ga. So g is expressed as a polynomial in k\X\. Thus

we may suppose that / is a homogeneous polynomial of degree q. So we have

ί = 0

Firstly we have from ( 1 )

^/Cr,0,0) = /(0,0) - Rxfi) = 0,

df(0,0,z) = /(0,2:) - /(0,0) = 0.

and therefore

ΛQO = aoq = 0.

Calculating the coefficient of xιyιz in the equation ( 1), we have

(i + A / j + l\

for i + j + l = q and lίgz, l^q— 1.

Then putting z = l,

( 4 ) i α,,_, = ( ? I J) Λ ] β_! for l^iSq-1.

Now putting C(x,3;) = (^+3^)9 —^ α —^ 9 , find an element a oί k such that in

the polynomial f(x,y)—a-C(x,y) the coefficient of xyq~x is 0, that is

By a simple calculation, it follows from ( 4 ) that

and we have /(Λ:,^) = a-C(x,y). Thus ^(Λ:) = a xQ satisfies (3).

The proposition shows that, in treating our problem, we may assume that

G = (Ga)
n without loss of generality. Let g be the Lie algebra of G let D be

a non-zero element of g let ζu ,ζn be a system of coordinate functions on

G let Do be the local component of Dat the unit element 0 = (0, ,0), then
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Do is determined by (du ,dn) where d% = (D£f)(0).
The proof of the lemma 1 of the section 2 shows that the linear variety

CD consisting of those points a-(d) = (adu ,adn) for <z€Ω is a connected
algebraic group whose Lie algebra contains D. So the following lemma shows
that CD = G(p).

LEMMA. Let G be a connected algebraic group defined over a field of
characteristic 0; then if H is a one-dimensional connected algebraic subgroup
of G whose Lie algebra contains D, H = G(D).

In fact, H contains G(D) from the definition of G(D\ therefore dim
H>dimG(D). But dimff = 1 and dimG(D)>0, so d imH= dimG(D) = 1. Since
H and G(D) are connected, we have H = G(D).

Now let ζ be a coordinate function on Ga; let D be an element of the Lie
algebra of Ga which is defined over k; then we have

( 5 ) Rx Dξ = D Rjt for any x of Ga.
Since ζ is everywhere defined on Ga, Dζ is everywhere defined on Ga and

therefore Dξ is a polynomial Σi a& λTί k\_ζ~\'9
 t n e n from (5) we have

alx Λ yf == 2Z* aιyι for any x and y € Gα,

therefore Dζ=a^k. Let A be the derivations of the function field of G = (Ga)
n

such that
( 6 ) D& = Si3 (Kronecker delta).

then by what is mentioned above, Du ,Dn form a base of g. Let <D, w >
be the dual operation from the product of the space of derivations on G = (Ga)

n

and the space of differential forms of degree 1 on G into O. Then (6) means
<A> dξj>=8ίj. That is, dξu ,dξn form a dual base of the space of differ-
ential forms. But Du ,DΛ are invariant and therefore dξu ,dξk form a
base of the space of invariant differential forms.

We have a rational mapping from the projective line Λ into G defined by

f(yo,yθ =yo/yi'(d)

f is defined over k and everywhere regular on Λ — Po where Po = (1,0). Then
tti = 2'P0 is a module associated with f; in fact, let η be a uniformizing variable
at PQ on Λ such that y(yo&i) — JΊ/JΌ; let T be a derivation of the function field
of Λ such that Tη = 1; let / ; f dξt be the differential forms on Λ induced by
/ ; put g(η) - dη = f*dξi then

<T,g(η)'dη> = <TJ*dξ t > = <df T,dξι> = df T & = Γ-

Thus f*dξι = —di/η2'dη and we have

) = - 2 if 4 ,
if 4 = 0.
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The local symbol determined b y / i s given by (fg)r = Res^f dg/g)- (du ,

dn) for P € Λ , #€ί2(Λ)*, where / is a rational function on Λ such that f(yo,yi)

= yo/yu (cf. [8] p.43 Prop.5).

Now let Jm be the generalized jacobian variety determined by the projective

line Λ and flt = 2-P0; let Lm be the maximal connected linear algebraic subgroup

of Jnι. Then Uro/Ui2)po is isomorphic to Gm X Gα and Hm is isomorphic to Gα.

Therefore Lm is isomorphic to Gα. So dim Lm2ϊdim Fm(Lm)>0 and Fm(Lm)=Cn.

Let 9ΪΪ bs the maximal ideal of the local ring at Po in the function field

of Λ. For any ao + atf and bo+btf, aφ^ίl, we have

(ao + a^ibo+btf) = aobo 4- (a^b^η mod W.

Thus, for a representative 1 + aη of a class of Hm = i?m/Δ, the

quantity a is the coordinate of the corresponding point of Lm in the faithful

representation guaranteed by the isomorphism between Lm and Gα. Let t be

a quantity transcendental over k; let </ = 1 —ί ̂ , then the principal divisor (g)
= Q~A where Q = (ί, l) and F = (0, l). Let z be a generic point over£ on

Lm which corresponds to g by the representation then

Fm(z) =f{{g))=AQ)-AP) = Hdu ,dn\
We know that Ga has a matrix representation 7 as follows:

J ^) € GL(2,Ω),

therefore the direct product Γ of ^-copies of 7 is a matrix representation of

(Gα)w. On the other hand for an indeterminate t, exptN is in GL (n, k[tj)

if the matrix N is nilpotent in gl in, k). Thus we may suppose that ί is a

quantity. We have

Γ (t(d)) = direct product of ( J td[) = exp ί (direct product of

This implies Γ Fm(z) = exp/ c/ΓDo That is, Fm may be considered as an

exponential mapping.

Considering the isomorphism between the unipotent group G and (Gα)w,

we have

PROPOSITION 2. Let G be a connected unipotent algebraic group defined

over a field k of characteristic 0 then for non-zero D of g, defined over

k, there exists a rational mapping f from the projective line Λ into G as

follows: f is defined over k and regular outside Po — (1, 0) ;/(0, 1) = e ;/(Λ)

generates G (D); m = 2 P 0 is a module associated with f; let Jm, Lm, and Fm be

those defined by A and m as in the section 2, Lm is isomorphic with Ga; Fm

induces an isomorphism between Lm and G (D); if z is generic on Lm over k, Fm (z)

= exptDe, where De is the local component of D at the unit element e and
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qnautity t is a transcendental over k which corresponds to z by the isomor-

phism between Lm and Ga.

Non-trivial rational homomorphism from Ga into itself is an isomorphism x

-> ax for some α€ί2*. So the proof is completed.

4. Algebraic groups of semi-simple matrices. A matrix x is called to

be semi-simple if the minimal pDlynomial of x is a product of distinct irreducible

separable polynomials. A commutative algebraic group of semi-simple matrices

is transformed into an algebraic subgroup of the group of diagonal matrices

D(n) — D(n,Ω). For such a group the following proposition is fundamental*0.

PROPOSITION I. Let G be an r-dimensional connected algebraic subgroup

of D(n). Then there exists a unimodular matrix (mfj) € GL(n,Z) such that,

let

then the automorphism σ of D(n) defined by

( 1 ) σ(x)^(F1(χ), ,Fn(x))

maps G onto the subgroup of D(n) of those elements (au ,ar,l, ,1) for

aiζzΩ*, where Z is the ring of integers.

Let (fw) be the coordinate functions on gί (n,Ω). Then for x = (xu Λ*)

^ D(n),

Thus the space RQ which is the homogeneous component of degree q of Ω [|]

is G-invariant; if we take a base of RQ consisting the monomials, R% gives a

diagonal representation of G whose matrix-coefficients are

xel xe"n, et are non-negetive integers.

Let Pi, ,Pm bs the semi-invariant polynomials of G with the same weight

X which define G; take an integer q such that Σ ί β l Ri contains all P5 let V

be the subspaces of Σ ί = 1 Ri of those which are semi-invariant of G with the

weight %. Since D(n) is commutative, V is Din)- invariant. And, for x€D(n), x

is in G if and only if Rt induces a mapping aΊ on V for some a€ Ω,*. Let

©(V) be the ring of endomorphisms of V put p be the representation oίD(n)

with the representation space ©(V) such that

p(x) : X^RtXRU,

then p is a diagonal representation whose coefficients are

x m ι ι xmn, mt are integers.

*) Cf.[2] p. 43 Prop. 7.2 and Prop. 7.4.
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Thus G is defined by the finite number of the equations of the type

Let x be a generic point on G over a field k of definition for G, then for
any integer <i>0, xd is generic on G over k. Thus we may suppose that the
greatest common divisor of mί9 ,mn is 1. Then there exists a unimodular
matrix (rai; )€GL(n,Z) such that mnj = πtj .Now let T be such that

Then r is an automorphism of LXji) and if x is in G, τ(x)n = 1. Succeeding
this method we have the proposition.

This proposition shows that so far as the structure of G(D) is studied in the
case of semi-simple matrices, we may suppose G = ΣXn). Further if we assume
G(D) = G, then we obtain that sl9 , sn are linearly independent over the
ring of integers, i.e.

( C ) There exists no non-trivial relation such that

βiSi + + ensn = 0, et: integers,

where st are such quantities that (Dξi)(e) = si5 (ξu ,ξn) being the coordinate
functions of G. In fact, if such non-trivial relation existed, the local
component De of D at the unit element e is contained in the tangent space at
e on the algebraic subgroup G' of G defined by Xfι Xe

n

n = 1. Therefore D is
contained in the Lie algebra of G\ But the proof of the proposition 1 shows
that dimG' < dimG = dimG(Z)), and it is the contradiction.

Thus, let G = ΣKn) and let D be an element of g, defined over k, satisfying
the condition (C). Xu ,Xn form a uniformizing set of linear forms for G at
the unit element e = (1, ,1). Let γ be a birational mapping between G and
the w-dimensional affine space S such that y(x) = (xι~ 1, ,xn—ϊ). Then the
differential dy is an isomorphism from T(e, G) onto T(0,S). Let De be the local
component of D at e, then dγDe is in T(0,5) and dy De = (s l5 ,sn) in fact,
if ηu ,ηn are the coordinate functions on S, then

Let CciγD be the curve on 5 consisting of those points α (s) for any a € 11; let
y~ι(CdyD) = CD, then CD is the irreducible curve on those points

(αsi + l, tfs2 + l, ,asn+ϊ), for #€ίl

such that TO, C*) = X2 De.
Let ξ ba the coordinate function on Gm. Then, the derivation D on G w

such that Dξ = ξ is invariant: in fact any x and y of Gm,

(DRt ξ, R*x)(y) = (D xξ)(y) = x-ΌRy) = x ξ(y) = xy.
Let A ba the derivations on G such that
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( 2 ) Afc = &£,
then by what is mentioned above Du ,Dn form a base of g. Further the

dual base to (Dl9 ,Dn) of the space of invariant differential forms of degree

1 on G is (ξΓκdξι, , t £ l e d £ n ) ; i n f a c t , f r o m ( 2 )

<Di,ξj1 dξj > = ξjJ'< Dt,dξ, > ^ f r δufi = 8«

We have a rational mapping / from the projective line Λ into G defined

by

/ is defined over k and everywhere regular on Λ—S where S = \P0 = (1,0),

-Pi = (l, — Si), i = 1, ,n\. From the condition (C) those points P* are distinct

n points on Λ. Then xtl — PO-\ PX + + Pn is a module associated with / . In

fact, let η be the uniformizing variable at Po on Λ such that η(yo,yi) = yi/yol

let T be the derivation of the function field of Λ such that Tη = 1; let

Γ ' dξ^givUv; then
<T:g{η)dη > =

Thus,

and we have VrXf^ξ^ dξi) — — 1, since, from the condition (C), 5*4=0. Next,

for z = 1,, w, let r be the uniformizing variable at Pi on Λ such that

+ Si Then T = ηΛ-Si and ί/τ = dη. And we have

Thus we have

VΓtifξr'dξj) = 0 if z + j ,

= — 1 if i = j ,

since, from the condition (C), 5* 4= 0 and st 4= ̂  if i =+= J

From the definition of the local symbol we have

LEMMA. Let f% be rational mappings from X — S into commutative

algebraic groups Gt for i = 1,2 let (fi,ff)p be the local symbols associated with

ft. Then

is the local symbol associated with the rational mapping fxxf2 from X—S

into G, x G2 such that f x/ a (P) = f(P) x / 2(P).

Thus, in our case, the local symbol associated with / is



A CERTAIN CLASS OF COMMUTATIVE ALGEBRAIC GROUPS 95

,(-ϊ)m fϊg-m<P)) for

where ft is rational functions on Λ such that

/XjΌόΌ =yoyϊ1si + l and I = vP(g), nit — Vp(/t), (cf.[8]p.44 Prop.β).

Let Jm,Lm and Fm be those determined by the protective line Λ and m =

P0 + P1 + ...+Pn. Then Rm is isomorphic to (G m ) n + 1 . So, Le is isomorphic to

(Gm)w. Let ίi, , tn be independent transcendental quantities over k; let #

= Π . ^ (η — tι), then the principal divisor (g) = Qi + +Qn~ n-P, where Qj = (l,

ίj) and P = (0,1). Let # bs a pDint of Lm which corresponds to the divisor

(g). Then

Fm((z))=f((g)) = y(Qt) /(QJ/(P)-W

= (Π Γ, (5!^+1), , Π ^ (sjj+1).

Let Ui = f(Qt) = (srfι + 1, ,snti + l); then uu ,un are independent generic

points on CD over k. Thus f((g)) is generic over & on the product C£ in G.

Now let wΛ+i,, ,u2n be independent generic points on CD over ^(wj, ,un)

for 1^5^2«, let ί ζ be the locus of the product uv us on G over &, then

since CD contains e, we have

CD = H1^H2^ ^H2n.

Since dimG = n, there exists an integer r<Ξ?z such that Hr = i/ r +i. Then ί/r

== Hr+! =.. . .— = H2n in fact since the two points x2 xr+1 and x2 xr+2 are

generic on Hr over k(xi), the two points xx xr+1 and xx xr+2 have the

same locus on G over k. Thus Hr = //2r and i/ r is a connected algebraic

subgroup of G. Since w > r, the point fdg)) is generic over k on H = Hr.

Suppose that dim//< dimG, then there exist non-trivial integers (#i,...

>.-,en) such that the polynomial

vanishes on //. Î et A be the ideal of k[tl9 ,ίn] which is spanned by the

monomials of degree ^ 2. Then

0 = M(f((g)) = Π;= i (Π;,, (ίrf, + l))e t-1

l mod A

)—l mod A

mod A

Thus, £iSi + +^«5W = 0. This is a contradiction. Therefore H — G, i.e. F m

(z) is a generic point on G over &.

Now, we shall go back to the proportion 1 let <r be the automorphism, of
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D(n) of the type ( l ) in the proposition. Let D be an element of the Lie

algebra of D(n); let (Dξi) (e) = (sί9 ,sn); then

(dσDξdie) = (Dσ%)(e) = DF, (*)(«) = £ / „ « i i Λ .

Let G be the group in the proposition then D is contained in g if and only if

Σf=ι

mijsj = 0 for i = r + 1 , ,«.

Thus we have

PROPOSITION 2. Ltfί G be a connected algebraic group of semi-simple

matrices defined over a field k of characteristic 0 let D be an element of g

defined over k let su..9 sn be the eigen-values of the local component De of

D at the unit element e\ then there exists a unimodular matrix (win) of integer

coefficients such that, let

si = miγsι + + minsn9

s'u ySr are linearly independent over integers and s'r+i — = Sn = 0.

Further there exists a rational mapping f from the protective line Λ into G as

follows; f is defined over k let Po = (1,0) and Pi = (1, — sί), f is everywhere

regular on Λ - \P0,Pl9 Λ i M D = *; /(A) generates G(D); m = Po +...

—YP r is a module associated with f; let Jm, Lm let and Fm be those defined

by A and m as in the section 2, then Lm is isomorphic to (Gm)r ;Fm(Lm) =

G(D) is isomorphic to (Gm)r and if z is generic on Lm over k9 Fm(z) and exp

tDe are generic specialization of each other over k where t is an indeterminate,

5. Linear algebraic groups. Now we shall discuss the problem in the

case of linear algebraic groups. Let G be a connected commutative linear

algebraic group defined over k. Then G is the direct product of the semi-simple

part Gs of G and the unipotent part Gu of G. Gs is the algebraic subgroup of

G of the semi-simple matrices in G and Gu is that of the unipotent matrices.

For x€:G, \eix = XgXu be the multiplicative Jordan decomposition. The mappings
x-^xs from G onto Gs and x-+xu from G onto Gu are rational. Since Gs and Gu

are commutative, the propositions of the sections 3 and 4 show that we may
assume that Gs = (Gm)r and Gu — (Ga)

q. Then g is the direct sum of Qs and gω

where gs and qu are the Lie algebra of Gs and Gu.

Let D be an element of g defined over k; let De = S+N be the Jordan

decomposition of the local component De of D at e where S is semi-simple

and N is nilpotent. For simplicity, put De = (su 9sr,dl9 ,dq) and suppose

that sl9 9sr are linearly independent over integers. Let CD be the curve on

G of those points

(αSi + 1, ,asr + l, adu ..9ad^) for

then CD is irreducible and T(e9 CD) = ί l De.
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We have a rational mapping / from the projective line Λ into G defined

by

f(yo9yι)=.(yoyΓ1si + l9"""iyoyi'1sr + l9 y<>yϊιdu ,yoyϊΊdQ).

Suppose that S =f= 0 and i V + 0 . Let Po = (1,0) and P% = (1, — s*), then the

arguments in the sections 3 and 4 give t h a t / is everywhere regular on A -

{Po, ,Pr} and that m = 2P0 + Pi + +Pr is a module associated with/.

From the lemma of the section 4 it follows that the local symbol associated

with / is

ResP(fdg/g)idu fdq)
for P € Λ, g € n (A)*,

where / and / are rational functions on Λ such that

fi(yo,yi) =3ΌJ'Γ1Si + l and J{yo,yι) = yo/yi and / = Vj(g\ mt = vP{f).

Let Jm, Lm and Fm be those defined by Λ and m as in the section 2, then

Hm is isomorphic to (Gm)r+1 Ga and Lm is isomorphic to (G m ) r xG α .

Thus, combining the results of the sections 3 and 4, we have

THEOREM 4. Let G be connected linear algebraic group defined over a

field k of characteristic 0. Let D be an element of g defined over k. Let

De be the local component of D at the unit element e. Let De = S + N be

the Jordan decomposition where S is semi-smple and N is nilpotent. Suppose

that 5 4=0 and JV+O. Let sx sn be the eigen-values of De. Then there

exists a rational mapping f defined over k, from the projective line A

into G as follows: /(A) generates G(D); f is everywhere regular on A —

\Po,Pi, ,Pr\ where Po = ( l , 0) and P, = (1, - si,) for i = 1, , r? the

vector (sΊ, ,Sr,0, ,0) being a transformed one of (si, , sr,sr+1, ,sw)

by a unimodular matrix of integer coefficients such that s[} , sr are

linearly independent over integers: /(0,1) = e m = 2 P 0 + P\ ^ V Pr is a

module associated with f; let Jnx, Lm and Fm be those defined by A and m as in

the theorem 3, then Lm is isomorphic to (Gw) r x Ga and Fm(Lm) = G(D) is iso-

morphic to (Gm)r x Ga; if z is generic point over k on Lm, Fm(z) and exp tDe are

generic specialization of each other over k, where t is an indeterminate.

As for the assumption that 5 + 0 and JV+O, if S = 0, the theorem is

the proposition 2 of the section 3 and if N = 0, the proposition 2 of the

section 4.
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